用户名: 密码: 验证码:
复合材料微观组织结构的计算机设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的日新月异,工程应用中对材料性能的要求愈来愈来高,对材料服役条件愈来愈苛刻,对工程构件服役寿命的估算也日益严格。一些传统的材料已经不能满足各种极端条件下的需求,这就要求我们拓展思路、改进方法设计适用于各种工程环境下作业的先进材料,并对设计出的新型先进材料的材料性能、失效行为进行有效地预测与评估。
     近年来,伴随计算科学的迅猛发展,计算机技术在各学科领域内得到广泛的应用。当前,国内外许多学者以计算机仿真与数值计算为手段将计算机技术成功运用于材料科学,以弥补传统材料设计与制备的不足。通过各种算法设计实现材料微观组织结构的数字化仿真与数值化模拟已经成为利用计算机技术研究材料科学的主要研究趋势,并逐步演化为一门崭新的学科——材料微结构计算学。“数字材料”技术是材料设计、性能预测与评估材料服役行为计算机化的关键手段,它被用来支撑跨尺度/跨时度的材料的微结构及其演化过程的可视化表达、表征、模拟与虚拟推演,从而实现材料微观组织结构状态的可设计、可推演、可预测。同时,伴随着材料微观组织结构状态的数字化过程,材料微结构的数值化处理技术的应用亦显得十分重要。数字化过程是对一种状态的翻译过程,而数值化过程就是对一种状态的处理过程。“数值材料”技术是“数字材料”技术成功走进材料科学领域最基本的前提,亦是“材料微结构计算学”的基础,其作用是依据材料微观组织结构之几何结构、组成物结构、或相结构做出有效地数值计算,“数值材料”技术为定量分析材料微结构奠定了基础。在实现对材料微结构进行数值计算的基础上,还可以实现材料微结构的虚拟失效分析,从而系统地建立一套推演多元多相异质体材料微结构虚拟失效过程、评估微结构虚拟失效状态的科学方法,开发一套较为实用的计算机软件,最终创建一整套“微结构组成物几何结构-微结构组成物材料性能-材料结构弱点特性-微裂纹扩展行为-材料损伤后性能-微结构失效状态”数据库平台。
     围绕上述问题,本文分别结合金属基复合材料、树脂基复合材料以及碳-碳编织复合材料在航空航天领域中的广泛应用,以“数字材料”技术为先导,用于表征具有各种复杂几何形貌的复合材料微观组织结构,以“数值材料”技术为核心,用于实现材料微结构在各种工况条件下的数值模拟与虚拟失效分析,从而实现不同复合材料微观组织结构设计与数值计算的研究工作。
     钛基复合材料(TMCs)以其高的比强度、比刚度和抗高温特性而成为超高音速宇航飞行器和下一代先进航空发动机的候选材料。随着航空工业的飞速发展,常规的钛及钛合金已不能满足要求,需要开发新的高性能钛合金以满足更高的要求,因此研究问题的焦点由常规钛合金转向金属间化合物、由固溶强化钛合金转向钛基复合材料,钛基复合材料主要分为颗粒增强和纤维增强2大类,当低密度、高模量、高强度的增强相加入到钛基体合金中,复合材料的比强度、比模量和蠕变强度等材料性能都有较大的提高,可以满足航空工业的需要。本文以开发的材料微观组织结构仿真软件ProDesign为基础,构造出钛基复合材料微结构的“代表性体积单元块”,并结合C++程序设计、Python脚本语言,对商业有限元软件ABAQUS的前后处理进行二次开发,实现钛基复合材料微结构的有限元网格划分与细观力学计算,并根据材料微结构力学计算的数值解,预测钛基复合微结构材料材料性能,识别“材料结构弱点”,评估微裂纹(群)的启裂、扩展,推演“微结构虚拟失效”行为。
     先进树脂基复合材料由于其比强度和比刚度高、可设计性强、抗疲劳断裂性能好、耐腐蚀、结构尺寸稳定性好以及便于大面积整体成形的独特优点,已经在航空、航天等领域得到广泛应用。先进树脂基复合材料基体的主要成分是聚合物,可分为热塑性树脂和热固性树脂两大类,环氧树脂是一种最常见的热固性树脂,具有形式多样、固化方便、黏附力强、收缩性低、良好的力学与电学性能、化学稳定性好等一系列优异的性能,环氧树脂最大的弱点就是韧性较差,固化后的树脂耐冲击性能差,容易裂开,因此作为航空高性能复合材料应用时,需要对其进行增韧改性。对于按照不同TP/TS (Thermoplastic/Thermoset)配比制备的环氧树脂基复合材料微结构具有不同相结构,本文结合北京航空材料研究院提供的实验数据,以原位共混工艺制备的增韧环氧树脂基复合材料为基础,采用计算机仿真的方法,表征实验观测到的原位共混增韧体系相结构,研究其组分配比与粒径分布、粒间距之间的关系,并通过有限元法的数值模拟,预测所制备的树脂基复合材料的力学性能。
     三维碳-碳编织复合材料以整体编织预成型件作为增强材料,不需缝合和机械加工,具有明显的性能可设计性与良好的综合性能指标,如较高的强度、刚度和较好的抗冲击性、耐烧蚀性等,所以受到工程界的普遍关注,成为航空、航天领域的重要材料。本文分别通过对六方、四方纤维束以及三向缎布穿刺等三维碳-碳编织复合材料微观组织结构进行设计,表征不同编织材料微结构的“重复性单元块”(RUC),对构造的材料微结构进行具体的工况分析,预测其不同方向的弹性模量、拉伸强度以及热膨胀系数等材料性能。并在此基础上,利用刚度为零的材料单元表征编织复合材料微结构内的缺陷,研究不同类型缺陷对弹性模量的影响。
Along with the development of science and technology, in the engineering applications of the material the requirement of material performance becomes much higher, the service conditions for material become more and more harsh, and the service life estimates for the engineering component are increasingly strict. Some traditional materials have been unable to meet a variety of extreme conditions demand, which requires us to design the advanced material to be applicable to various engineering environment by expanding thinking and improving methods, effectively to predict the material property and to evaluate the failure behavior for the advanced material.
     In recent years, with the rapid development of computational science, computer technology has been used to a wide range of applications in various fields. At present, many scholars at home and abroad make computer technology to apply to material science successfully by means of computer simulation and numerical calculation, to make up for deficiency of the design and manufacture of the traditional material. Digital simulation and numerical simulation of material microstructures is achieved by using various algorithms, and material science is researched by using computer technology, which has become the major study trends. Finally a new subject that is the Material Microstructures calculation is formed gradually. "Digital Materials" technology is a key to computerize the design of microstructure, the prediction of performance and the evaluation of material service. It is used to support visualizing expression、characterization、simulation and virtual failure of interscale/intertemporal material microstructures and the process evolution, thus the design、deducing and prediction of the status of material microstructure is achieved. At the same time, along with the digitizing process of the material microstructure, the numerical technology of material microstructure is also very important. Digitization process is a translation process of a status, while numerical process is a treatment process of a status. "Numerical material" technology is the basic premise of "Digital Materials" technology going into the field of materials science successfully, and is basis of "material microstructure calculation". Its role is to make effective numerical calculation based on the geometric、component and phase structure of material microstructure. "Numerical Materials" technology has laid a foundation for the quantitative analysis of material microstructure. After numerical calculation of material microstructures is implemented, you can achieve virtual failure analysis of material microstructures, which systematically set up the scientific method of deducing virtual failure process of multi-phase heterogeneous material microstructure and assessing the virtual failure state of the microstructure, develop the more useful computer software. Eventually a set of database platform of" the component geometric structure of microstructure-the component material properties of microstructure-the identification of material microstructure weaknesses-propagation behavior of microcrack-material performance after damage-virtual failure status of microstructure "is created.
     Around the above problem, this paper finally achieves the design of the different composites microstructure and the study of numerical simulation, respectively, combining with metal matrix composites, resin-based composites and carbon-carbon braided composites applied widely in the field of aerospace. As the guide of "Digital Materials" technology, composite microstructure with a variety of complex geometric morphology is characterized. As the core of "Numerical Materials" technology, numerical simulation and virtual failure analysis of material microstructure is achieved in a variety of working conditions.
     Titanium matrix composites (TMCs) become select materials of ultra-high speed aerospace vehicle and the advanced of aero-engine next generation, because of its higher specific strength, specific stiffness and resistance of high-temperature. With the rapid development of aviation industry, the conventional titanium and titanium alloy can not meet the requirements.so it is necessary to develop new high-performance titanium alloys to meet higher requirements, therefore the focus of research is shifted from conventional titanium to intermetallic compounds、from the solid Solubilization enhanced titanium to titanium matrix composites. Titanium matrix composites include fiber reinforced and particle reinforced 2 major categories. When the low-density、high-modulus、high-strength reinforcement is added to titanium matrix alloy, the composite performance such as strength, modulus and creep strength has been greatly improved, and be able to meet the needs of the aviation industry. Based on the developed material microstructure simulation software ProDesign, the "representative volume element" of a titanium matrix composite microstructure is constructed, and combined with C++ programming and Python scripting language, the secondary development of pre-/post-processing for the commercial finite element software ABAQUS is carried out. We can achieve the finite element mesh and mesomechanics calculation of titanium matrix composite microstructure, and according to numerical value of the material microstructure mechanical response calculation, predict material performance of titanium matrix composite microstructure, identify "material structural weaknesses", assess the crack initiation、expansion of the micro cracks, deduce "microstructure virtual failure" behavior.
     Advanced polymer matrix composites have found widespread application in the field of aviation and aerospace, because of its higher specific strength and specific stiffness, good design, good anti-fatigue fracture properties, corrosion resistance, good dimensional stability, as well as facilitating to form the overall shape. Advanced polymer matrix composits are the major components of the polymer, usually including thermoplastic resin and thermosetting resin two categories. Epoxy resin is one of the most common thermosetting resins, and there is a series of excellent material properties such as structure multiplicity, convenient solidification, strong adhesion, low shrinkage, good mechanical and electrical properties, and good chemical stability. But the biggest weakness of epoxy resin is poor toughness, impact resistance is bad, and easy to crack, hence epoxy resin need to be toughening modification when it is used to an high-performance composites of aviation. For epoxy resin-based composite microstructure of different phase structure manufactured with different ratio of TP/TS (Thermoplastic/Thermoset), We have characterized the phase structure of the toughened epoxy system according to experimental observation, by using of computer simulation methods, combined with experimental data that was provided by Beijing Institute of Aeronautical Materials, have studied the relationship between the composition ratio and particle size distribution、particle spacing, and have predicted the mechanical properties of resin-based composite materials such as elastic modulus, shear modulus, Poisson's ratio, impact toughness and fracture toughness by using of numerical simulation of finite element method.
     Three-dimensional carbon-carbon braided composites, using a whole pieces of knitting as reinforcing material, without suture and mechanical processing, have good design of high material properties and good comprehensive performance indicators, such as higher strength, stiffness and better impact resistance, ablation resistance, etc. So it has been the general concern of the engineering sector, and become an essential material in the fields of aviation and aerospace. By means of design of three-dimensional carbon-carbon braided composite microstructure of the six-square, the four-square fasciculus. We characterized "repetitive unit cell" (RUC) of the different woven material microstructures, analyzed specific conditions of material microstructure, predicted material properties such as elastic modulus, tensile strength and coefficient of thermal expansion in different direction. On this basis, the impact of elastic modulus on braided composite microstructure including different types of defects which is characterized by material element of zero stiffness is studied.
引文
[1]J. Lankford. The growth of small fatigue cracks in 7075-T6 aluminum[J]. Fatigue &Fracture of Engineering material & Structures,1982,5:233-248.
    [2]J.V. Carstensen, T. Magnin. Characterization and quantification of multiple crack growth during low cycle fatigue [J]. International Journal of Fatigue,2001,23: 195-200.
    [3]李华清,成丽娟,李旭东.平面微裂纹扩展过程的计算机模拟[J].兰州理工大学学报,2004,30(3):23-26.
    [4]S. Suresh. Crack deflection:implications for the growth of long and short fatigue cracks [J]. Metal. Mater. Trans. A,1983,14:2375-2385.
    [5]郭文有.航空发动机叶片机械加工工艺[M].北京:国防工业出版社,1994.
    [6]LiangChia Chen, Grier C.I.-Lin. Reverse engineering in the design of tubrine blades a case study in applying the MAMDP[J]. Robotics and Computer Integrated Manufacting.2000(16):161-167.
    [7]李旭东.关于材料微裂纹在材料微结构的虚拟扩展[J].失效分析与预防,2006,1(1):28-34.
    [8]李旭东.材料结构弱点Ⅰ:基本概念与科学问题[J].材料研究学报,2007,21(增刊):16-21.
    [9]李旭东.材料结构弱点Ⅱ:微裂纹虚拟扩展模拟[J].材料研究学报,2007,21(增刊):22-29.
    [10]任淮辉,李旭东.微裂纹(群)在材料微结构内扩展的计算机模拟[J].兰州理工大学学报,2007,33(4):5-10.
    [11]Taylor G.L.. Plastic strain in metals[J]. J Inst Metals,1938,62:307-324.
    [12]Hill R.. Continuum micro-mechanics of elastoplastic polycrystals[J]. J mech Phys Solids,1965,13:89-101.
    [13]Hutchinson J.W.. Elastic-plastic behavior of polycrystalline metals and composites [J]. Proc Roy Soc Lond,1970, A319:247-272.
    [14]Hill R., Rice J.R. Constitutive analysis of elastic-plastic crystal at arbitrary strain[J]. J Mech Phys Solids,1972,20:401-413.
    [15]Asaro R.J., Rice J.R.. Strain localization in ductile single crystals[J]. J Mech Phys Solids,1977,25:309-338.
    [16]Peirce D., Asaro R.J., Needleman A.. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metal,1983,31:1951-1976.
    [17]Asaro R.J., Needleman A.. Texture development and strain hardening in rate depement polycrystals[J]. Acta Metal,1985,33:923-953.
    [18]Kalidindi S.R., Bronkhorst C.A., Anand L.. Crystallographic texture evolution in bulk deformation processing of FCC metals[J]. J Mech Phys Solids,1992,40: 537-569.
    [19]Sarma G, Zacharia G.. Integration algorithm for modeling the elasto-viscoplastic reponse of polycrystalline materials [J]. J Mech Phys Solids,1999,47: 1219-1238.
    [20]Barbe F., Forest S., Cailletaud G. Intergranular and intragranular behavior of polycrystalline aggregates[J]. Int J Plasticity,2001,17:513-563.
    [21]Griffith A.A.. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London, Sereis A,1921,221:163-198.
    [22]M.K. Kassir, GC. Sih.. Griffith's theory of brittle fracture in three dimensions [J]. International Journal of Engineering Science,1967,5(12):899-918.
    [23]D.H. Clyde. On crack direction in relation to Griffith's bi-axial failure criterion[J]. Cement and Concrete Research,1973,3(5):Pages 537-547.
    [24]Morton E.Gurtin. Thermodynamics and the griffith criterion for brittle fracture[J]. International Journal of Solids and Structures,1979,15(7):553-560.
    [25]GR. Irwin. Linear fracture mechanics, fracture transition, and fracture control [J]. Engineering Fracture Mechanics,1968,1(2):241-257.
    [26]G.C. Sih, GR. Irwin. Dynamic analysis for two-dimensional multiple crack division[J]. Engineering Fracture Mechanics,1970,1(4):603-614.
    [27]G.R. Irwin, G.C. Sih. Dynamic energy release rate expression for a spreading circular fracture pattern in a plate [J]. Theoretical and Applied Fracture Mechanics,1986,5(1):47-50.
    [28]E. Orowan. Fracture and Strength of Solids[C]. Reports on Progress in Physics, 1948,7:185-191.
    [29]C.H. Wu. Fracture under combined loads by maximum energy release rate criterion[J]. J. Appl. Mech.,1978,45:553-558.
    [30]王国珍,李震,王洪杰,陈剑虹.缺口夹角对细观解理断裂应力的影响[J].甘肃工业大学学报,2000,26(3):1-6.
    [31]Ravichandran K. S., Larsen J. M., Li Xu-Dong. Significance of crack shape or aspect ration to the behavior of small fatigue cracks in titanium alloys, in Small Fatigue Cracks:Mechanics and Mechanisms[C]. edited by K. S. Ravichandran, R. O. Ritchie and Y. Murakami, Elsevier Science Ltd., London,1999,95-108.
    [32]Li Xu-Dong, Ravichandran K. S.. The role of grain-induced local anisotropy on stress intensity factor for microstructurally-small cracks, in Small Fatigue Cracks: Mechanics and Mechanisms[C]. edited by K. S. Ravichandran, R. O. Ritchie and Y. Murakami, Elsevier Science Ltd., Hawaii,1999,85-92.
    [33]Ravichandran K. S., Li Xu-Dong. Fracture mechanical character of small cracks in polycrystalline materials:concept and numerical K calculations, Acta Materialia,2000,48:525-540.
    [34]季根顺,李旭东.应力场强度因子K的变化及其各向异性:微观组织结构的影响与数值预测.第十一届全国疲劳与断裂学术会议论文集,2002:170-173.
    [35]N. Sukumar, D. J. Srolovitz, T. J. Baker, et al. Brittle fracture in polycrystalline microstructures with the extended finite element method[C]. International Journal for Numerical. Methods in Engineering,2003,56:2015-2037.
    [36]张克实.变温情况下单晶体热-黏塑性有限变形的分析方法[J].机械科学与技术,2001,20(增刊):1-4.
    [37]张克实,张光,冯露.单晶塑性滑移有限变形下的应力计算[J].力学学报,2002,34(4):636-644.
    [38]张克实.多晶体变形、应力的不均匀性及宏观相响应[J].力学学报,2004,36(6):714-724.
    [39]冯露,张克实,张光.基于能量极值原理的单晶体塑性滑移的有限变形分析[J].固体力学学报,2002,23(3):280-287.
    [40]张光,张克实,冯露.率相关晶体塑性模型的塑性各向异性分析[J].应用数学和力学,2005,26(1):111-119.
    [41]G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici. Some elements of microstructural mechanics[J]. Computational Materials Science,2003,27:351-374.
    [42]T. Dick, G. Cailletaud. Analytic and FE based estimations of the coefficient of friction of composite surfaces[J]. Wear,2006,260:1305-1316.
    [43]K. Sai, G. Cailletaud, S. Forest. Micro-mechanical modeling of the inelastic behavior of directionally solidified materials[J]. Mech. of Materials,2006,38: 203-217.
    [44]E. Busso, G. Cailletaud. On the selection of active slip systems in crystal plasticity[J]. Int. J. of Plasticity,2005,21:2212-2231.
    [45]L. Taleb, G. Cailletaud, L. Blaj. Numerical simulation of complex ratcheting tests with a multimechanism model type [J]. Int. J. of Plasticity,2006,22:724-753.
    [46]杨前邦,李介谷.Voronoi图和遗传算法在对象识别中的应用[J].红外与毫米波学报,1998,17(5):391-396.
    [47]李成名,陈军,朱英浩.基于图的空间邻近定义与查询[J].武汉测绘科技大学学报,1998,23(2):128-131.
    [48]沈满德,余圣甫,王宁.蒙特卡罗法模拟晶粒生长过程中的模型[J].机械工程材料;2006,30(3):11-13.
    [49]Zhang Hongwu, Wang Hui. Parametric voriational principle based elastic-plastic analysis of heterogeneous materials with voronoi finite element method[J]. Applied Mathematics and Mechanics,2006,27(8):1037-1047.
    [50]J. Schwertel, H. Stamm. Analysis and modeling of tessellations by means of image analysis methods[J]. Journal of Microcopy,1997,11:198-209.
    [51]Asim Tewari, Arun M. Gokhale. Application of Three-Dimensional Digital Image Processing for Reconstruction of Microstructural Volume from Serial Sections[J]. Matreials Characterization,2000,44:259-269.
    [52]陈百明,李华清,李旭东.计算机模拟材料组织结构的程序设计[J].兰州理工大学学报,2004,30(1):17-20.
    [53]曾绍红,李旭东.多晶体材料二维微观组织结构的计算机重构[J].兰州理工大学学报,2005,31(3):19-24.
    [54]Qi-Yu Li, Shao-Xiang Zhang, Pheng-Ann Heng, Zheng-Jin Liu, Zhi-Fu Lin, Li-Wen Tan, Yong-Min Xie. Segmentation and three-dimension reconstruction of Chinese digitized human cerebrum Computerized[J]. Medical Imaging and Graphics.2006,30(2):89-94.
    [55]王冒成,邵敏编著.有限单元法基本原理和数值方法[M].清华大学出版社,2000.
    [56]Rao S.S.. The Finite element Method in Engineering [J]. Pergamon Press,1982, 10:264-272.
    [57]倪黎,李旭东.应用TransMesh进行微观组织结构的有限元网格划分,兰州理工大学学报,2005,31(4):24-28.
    [58]Li, Xu-Dong. Computational identification of structural weaknesses in locally anisotropic polycrystalline materials, ASME Transactions, Journal of Engineering Materials and Technology,2001,123:361-370.
    [59]E.E. Nugent, R.B. Calhiun, A. Mortensen. Experimental investigation of stress and strain fields in a ductile matrix surrounding an elastic inclusion[J]. Acta Mater,2000(48):1451-1467.
    [60]P. Rangaswamy, M.R. Daymond, M.A.M. Bourke, R. Von Dreele, K. Bennett, N. Jayaraman. Texture and residual strain in two SiC/Ti-6-2-4-2 titanium composites[J]. Metallurgical and Materials Transactions A,2000,31(13): 889-898.
    [61]Dunn Martin, Ledbetter Hassel, Li Zhuang. Thermal expansion of morphologically textured short-fiber composites[J]. Metallurgical and Materials Transactions A,1999,30, (1):203-212.
    [62]LI Xu-Dong. On composite-structure weaknesses:Part Ⅰ. Simulation, properties, and Numerical approach[J]. Metallurgical and materials transactions A, 2002,33(7):2205-2215.
    [63]LI Xu-Dong. On composite-structure weaknesses:Part Ⅱ. Computer experiments, identification, and correlation[J]. Metallurgical and materials transactions A, 2002,33(7):2217-2227.
    [64]D. Eylon, M.M. Keller, P.E. Jone. Development of permanent-mold cast TiAl automotive valves[J]. Intermetallics,1998,6(6):703-708.
    [65]Wood J.R., Russo P.A., Welter M.F., et al. Thermomechanical processing and heat treatment of Ti26A122Sn22Zr22Cr22Mo2Si for structural applications[J]. Materials Science and Engineering,1998,243(1):109-123.
    [66]Weiss I., Semiatin S.L.. Thermomechanical processing of beta titanium alloys an overview[J]. Materials Science and Engineering,1998,243(1):46-65.
    [67]Zhao Yongqing, Zhou Lian, Deng Ju. Effects of the alloying element Cr on the burning behavior of titanium alloys[J]. Journal of Alloys and Compounds,1999, 284(2):190-193.
    [68]彭艳萍,曾凡昌,王俊杰等.国外航空钛合金的发展应用及其特点分析[J].材料工程,1997,36(10):3-6.
    [69]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2000,24(3):218-222.
    [70]杨冠军,赵永庆,于振涛,等.钛合金研究、加工与应用的新进展[J].材料导报,2001,15(10):19-25.
    [71]曲恒磊,周廉,周义刚等.高强韧钛合金评述[J].稀有金属快报,2004,23(10):5-10.
    [72]付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展[J].稀有金属,2006,30(6):850-856.
    [73]李成功,傅恒志,于翘 等编著.航空航天材料[M].北京:国防工业出版社,2002.
    [74]Odagiri N., Kishi H., Nakae T.. Torayca T800/3900-2 toughened epoxy prepreg system:Toughening concept and mechanism [C].//Proceeding of the American Society for Composites 6th Technical Conference. Lancaster, Pa.:Technomic, 1991:43.
    [75]G. Hasko, H.B. Dexter, A. Loos. Application of science-based RTM for fabricating primary aircraft structural elements [J]. Journal of advanced material, 1994,10(1):9-15.
    [76]ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[S]. ASTMD-5528, Philadelphia, Pa:ASTM,1994.
    [77]Inoue, Takashi. Reaction-induced phase decomposition" in polymer blends[J]. Prog Polym Sci,1995,20:119-153.
    [78]Jin J.Y., Cui J., Li S.J.. Polyetherimide modified bismaleimide resins Ⅰ. Effect of the chemical backbone of polyetherimide [J]. Macromolecular Chemistry and Physics,1999,200(8):1956-1960.
    [79]Jin J.Y., Cui J., Li S.J.. Polyetherimide modified bismaleimide resins Ⅱ. Effect of polyetherimide content[J]. J Appl Polym Sci,2001,81:250-258.
    [80]陶庆胜.聚醚酰亚胺改性氰酸酯体系的反应诱导相分离研究[D].上海:复旦大学高分子科学系,2004.
    [81]益小苏.先进复合材料技术研究与发展[M].北京:国防工业出版社,2006.
    [82]饶军,梁志勇等.悬浮法制备PPS/CF复合材料[J].高分子材料科学与工程,1996,12(4):59-62.
    [83]秦华宇,吕玲,梁国正,闫福胜,王志强,张明习.环氧树脂改性氰酸醋树脂复合材料的研究[J].纤维复合材料,1999,4(23):23-26.
    [84]张凤翻.航空结构复合材料对碳纤维的需求[J].材料导报,2000,14(11):5-8.
    [85]陈祥宝.先进树脂基复合材料的发展和应用[J].航空材料学报,2003,23(增刊):198-204.
    [86]Wu H.F., Dwinght D.W., Huff N.T.. Effects of silane coup ling agents on the interphase and performance of glass-fibe-reinforced polymer composites[J]. Composites Science and Technology,1997,57:975-983.
    [87]Mandell J.F., Dond D:H., Mcgarry F.J.. Modified microdebonding test for direct in situ fiber/matrixbond strength determination in fiber composites[J]. Composites ASTM STP,1986,893:87-92.
    [88]Broutman L.J.. Glass-resin joint strengehs and the ireffecton failure mechanisms in reinforced plastics[J]. Polymer Eng and Sci,1966,7:263-269.
    [89]Ma C.L., Yang J.M., Chou T.W.. Elastic stiffness of three-dimensional braided textile structural composites[C].//Whitney J M. Composite Materials:Testing and Design. Philadelphia:American Society for Testing Material,1986:404-421.
    [90]徐永东,张立同,成来飞,等.CVI法制备三维碳纤维增韧碳化硅复合材料[J].硅酸盐学报,1996,24(5):485-490.
    [91]陈平,于祺,孙明,陆春.高性能热塑性树脂基复合材料的研究进展[J].纤维复合材料,2005,2:52-57.
    [92]陈平,陆春,于祺,李俊燕.纤维增强热塑性树脂基复合材料界面研究进展[J].材料科学与工艺,2007,15(5):665-669.
    [93]王波.三维编织复合材料力学行为研究[D].西北工业大学学报,2007.
    [94]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术,2003(1):24-32.
    [95]张美忠,李贺军,李克智.三维编织复合材料的力学性能研究现状[J].材料工程,2004,2(2):44-48.
    [96]Naslain R.. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:An overview[J]. Composites Science and Technology,2004,64(2):155-170.
    [97]R. J. Roe, W.R. Krigbaum. Description of crystallite orientation in polycrystalline materials having fiber texture[J]. J. Chem. Phys.,1964,40:2608-2615.
    [98]Sankaran Mahadevan, Yao-wu Zhao. Advanced computer simulation of polycrystalline microstructure[J]. Comput. Methods Appl. Mech Engrg,2002, 191:3651-3667.
    [99]Patrick W. Trimby, David J. Prior. Microstructure imaging techniques:a comparison between light and scanning electron microscopy [J]. Tectonophysics, 1999,303:71-81.
    [100]黄晓旭.背散射衍射与透射电镜在单晶铝形变组织研究中的应用[J].电子显微学报,2002,21:449-454.
    [101]宓小川,陈家光.XRD与EBSD在钢板织构研究中的应用[J].宝钢技术,1998,5:16-20.
    [102]桂立丰,唐汝均.机械工程材料测试手册-物理金相卷[M].沈阳:辽宁科学技术出版社,1999.
    [103]Zhaohui Shan, Arun M. Gokhale. Digital image analysis and microstructure modeling tools for microstructure sensitive design of materials[J]. International Journal of Plasticity,2003.
    [104]李华清.平面微裂纹扩展的计算机模拟与相关试验[D].兰州理工大学,2004.
    [105]李俊琛,李旭东,任淮辉.海量平面点集Voronoi图的构造算法[J].兰州理工大学学报,2007,33(5):102-105.
    [106]李俊琛,李旭东,刘德学.空间点集Voronoi图的海量构造算法及可视化技术[J].兰州理工大学学报,2007,33(5):99-104.
    [107]李旭东.复合材料微观组织结构的计算机可视化表征,2004年材料科学与工程新进展,中国材料研究学会主编,冶金工业出版社,2004,1103-1111.
    [108]杨承磊,汪嘉业,孟祥旭.多边形外部Voronoi图顶点和边数的上界[J].计算机辅助设计与图形学学报,2005,17(4):689-693.
    [109]杨永清,冯钧,王志坚.基于Voronoi图的复杂对象空间方位关系的推理计算[J].河海大学学报,2008,36(3):414-427.
    [110]X. You, T. Connolley, P.E. McHugh, H. Cuddy, C. Motz. A Combined experimental and computational study of deformation in grains of biomedical grade 31LVM strainless steel[J]. Acta Materialia,2006,54:4825-4840.
    [111]Li Xu-Dong. An innovative concept and novel microstructure-related parameter-material structure weakness [J]. Material Science and Engineering A, 2004, A386(1):415-419.
    [112]Battaile C.C., Counts W.A., Wellman G.W., Buchheit T.E., Holm E.A. Simulating grain growth in a deformed polycrystal by coupled finite-element and microstructure evolution modeling[J]. Metallurgical & Materials Transactions A, 2007,38A(10):2513-2522.
    [113]Yaowu Zhao, Robert Tryon. Automatic 3-D simulation and micro-stress distribution of poly crystalline metallic materials[J]. Comput. Method Appl. Mech. Engrg.,2004,193:3919-3934.
    [114]Li Xu-Dong. Numerrical correlation of material structure weakness in anisotropicpolycrystalline material[J]. Acta Mechanica,2002,155:137-155.
    [115]Oore M., Burns D.J.. Estimation of stress intensity factor for irregular cracks subjected to arbitrary normal stress field[J]. ASME J. Press. Vessal. Tech,1980b, 102:202-211.
    [116]Xu-Dong Li.. Computational assessment of composite structure weaknesses in short-fiber reinforced MMCs[J]. Mechanics of Materials,2002,34:191-216.
    [117]N. Chawla, R.S. Sidhu, V.V. Ganush. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites[J]. Acta Materialia,2006,54:1541-1548.
    [118]Xu-Dong Li. Visualized Simulation and Modularized Architecture of Microstructure for Composite Materials[C].//Proceeding of Mesomechanics, Tokyo,2003.
    [119]Li X. D.. Mesomechenics of Computation and Design of Use-Specific Materials: Simulation and Fabrication of Advanced Materials with Mesoscopic Structures [C].//Edited by G. S. Sih, S Sakai and V. E. Panin, Proceedings of the fifth international conference for mesomechsnice held in Tokyo, Japan,2003, 259-271.
    [120]罗国珍.钛基复合材料的研究与发展[J].稀有金属材料与工程,1997,26(2):1-7.
    [121]曾泉浦,毛小南,张延杰.TP-650钛基复合材料中的界面[J].稀有金属材料与工程,1997,26(2):8-11.
    [122]张小农,吕维洁,张荻,吴人洁.颗粒增强钛基复合材料的制备与性能[J]. 宇航材料,1998,2:24-26.
    [123]吕维洁,卞玉君.原位合成TiC和TiB增强钛基复合材料[J].材料工程,1999,8:9-11.
    [124]毛小南.颗粒增强钛基复合材料在汽车工业上的应用[J].钛工业进展,2000,17(2):5-10.
    [125]毛小南,周廉,周义刚,Alain Vassel,张鹏省,于兰兰.TP-650颗粒增强钛基复合材料的性能与组织特征[J].稀有金属材料与工程,2004,33(6):620-624.
    [126]于兰兰,毛小南,赵永庆,张鹏省,袁少冲.颗粒增强钛基复合材料研究新进展[J].稀有金属快报,2006,25(4):1-5.
    [127]宁建国,王晋平,姜芳.颗粒增强钛基复合材料的弹塑性能研究[J].兵器材料科学与工程,2006,29(6):1-4.
    [128]益小苏.先进复合材料技术的挑战与创新[J].航空制造技术,2004,7:24-30.
    [129]益小苏,许亚洪,程群峰,安学锋.航空树脂基复合材料的高韧性化研究进展[J].科技导报,2008,26(6):84-92.
    [130]许亚洪.RTM工艺用树脂及“离位”RTM技术研究[D].北京:北京航空材料研究院,2003.
    [131]安学锋.基于复相体系的层状化增韧复合材料研究[D].杭州:浙江大学,2004.
    [132]程群峰.双马来酰亚胺树脂基复合材料的离位增韧研究[D].杭州:浙江大学,2007.
    [133]张明,安学锋,唐邦铭,益小苏.增韧环氧树脂相结构[J].复合材料学报,2007,24(1):13-18.
    [134]刘志真,李宏运,邢军,益小苏,杨慧丽,王震.RTM聚酰亚胺树脂性能优化设计研究[J].材料工程,2007,1(增刊):80-85.
    [135]刘志真,李宏运,邢军,益小苏.树脂基复合材料中缺陷的定量表征[J].材料工程,2007,1(增刊):102-105.
    [136]J. Schulte-Fischedick, S. Seiz, N. Lutzenburger, A. Wanner, H. Voggenreiter. The crack development on the micro-and mesoscopic scale during the pyrolysis of carbon fibre reinforced plastics to carbon/carbon composites[J]. Composites, 2007, A38:2171-2181.
    [137]Wittel F.K., Schulte-Fischedick J., Kun F., Frie M., Kroplin B.H.. Discrete element simulation of transverse cracking during the pyrolysis of carbon fibre reinforced plastics to carbon/carbon composites. Comput Mater Sci,2003,28: 1-15.
    [138]张元冲,Harding J..平面织物复合材料机械性能的数值细观力学分析[J]. 应用力学学报,1989,6(4):20-27.
    [139]梁军,陈晓峰,庞宝君,杜善义.多向编织复合材料的力学性能研究[J].力学进展,1999,29(2):197-214.
    [140]梁军.三维编织复合材料力学性能的细观研究[D].哈尔滨工业大学,1996.
    [141]庞宝君,杜善义,吴培莲.三维多向编织复合材料弹性常数细观力学分析[J].哈尔滨工业大学学报,1999,33(3):51-55.
    [142]庞宝君,杜善义,韩杰才,王铎.三维多向编织复合材料非线性本构行为的细观数值模拟[J].复合材料学报,2000,17(1):98-103.
    [143]孙文训,謇锡高,黄玉东,张志谦,王俊山.顶出法对细编穿刺碳-碳复合材料界面强度的研究[J].高技术通讯,1999,11:45-49.
    [144]庞宝君,杜善义,韩杰才.三维四向编织复合材料细观组织及分析模型[J].复合材料学报,1999,16(3):135-139.
    [145]庞宝君.三维多向编织复合材料力学性能预报与优化设计研究[D].哈尔滨:哈尔滨工业大学,1997.
    [146]HIBBITTD.A著,庄茁等译ABAQUS/Standard有限元软件入门指南[M].清华大学出版社,1998.
    [147]庄茁,张帆,芩松等编著.ABAQUS非线性有限元分析与实例[M].科学出版社,2005.
    [148]石亦平,周玉蓉著.ABAQUS有限元分析实例详解[J].机械工业出版社,2007.
    [150]肖建,林海波.Python编程基础[M].清华大学出版社,2003.
    [151]H.M. Deitel, P.J. Deitel, J.P. Liperi, B.A. Wiedermann著,周靖译.PYTHON编程金典[M].清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700