用户名: 密码: 验证码:
松辽盆地旋回地层的地球物理替代性指标及分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以地球物理测井曲线为主要研究对象,以识别地层中的米兰柯维奇旋回为主要目的,本文系统论述了目前使用比较多,效果比较明显的周期识别方法。通过对这些方法的理论依据、使用条件及计算效果进行研究,将其中分析效果明显、易于计算机实现的方法,通过改写公式,编制成各自独立的功能分析模块;以接口调用的方式将各功能模块集成到统一的Windows界面中。研制成一套界面友好、功能比较齐全的旋回识别软件系统。
     文中介绍了米兰柯维奇旋回的理论及研究背景,围绕旋回识别问题提出了三类旋回分析方法。系统讨论了经典的功率谱分析方法,针对其原理、应用前提以及方法不足进行了深入的分析研究。针对经典功率谱方法在频率域不能反映频谱随时间变化的缺点,讨论了能同时反映时频特征的短时傅立叶变化的理论和方法,同时指出了方法的不足。针对前面两类方法的缺点,研究了小波变换识别旋回的优势,重点讨论了Morlet小波变换的原理和方法。详细研究了对非等间距取样数据直接进行谱分析的方法。本文还对旋回分析计算中必要的预处理方法和窗函数选择方法进行了介绍。
     本文论述了地球物理测井数据作为旋回地层分析的依据和优势。在讨论了如何利用测井曲线识别沉积地层中米兰柯维奇旋回的前提下,首先研究了米兰柯维奇旋回与沉积速率的关系。详细讨论了如何从米兰柯维奇旋回的时频分布特点分析沉积速率随时间(深度)变化的特征。指出了利用沉积速率随时间(深度)变化的曲线将厚度剖面改正到时间剖面的理论依据。
     用不同构造环境下多口井的自然伽玛地球物理测井数据对松辽盆地青山口组和嫩江组一、二段进行了米兰柯维奇旋回分析,发现了地层中普遍记录了米兰柯维奇旋回。利用旋回分析结果分析计算了沉积速率变化特征;提取特定周期的自然伽玛测井曲线,进行高分辨率地层划分与对比。利用精度高、连续性好、较少受后期破坏的松科1井南井的自然伽玛测井数据分析计算了青山口组地层沉积时间,通过与已知资料对比,证明了计算结果的正确性;用岁差周期曲线高精度计算了青山口一段缺氧事件层段的持续时间,为此事件层段可能与白垩纪古海洋赛诺曼阶-土伦阶期界线附近的缺氧事件相对应提供了辅助证据。
In this paper, the author gives the cycle identification method for detecting the Milancovitch cycles from geophysical logging data. After a detailed discussion of the theory, using condition and using effect of the methods, the author develops a friendly interface and multiple functional cycle identification program system by rewriting formulas, programming independent modules.
     In the beginning of the paper, the author discuses the theory background of the Milancovitch, and puts forward three kinds of period identification methods based on the problem of cycle identification. The author systematically discusses the theories, using conditions and deficiency of the classical power spectrum analysis methods. Then, according to the advantages of the classical power spectrum analysis methods, which there are no spectrum information changed with time in the frequency domain, the author studies the characteristics, and the advantages and disadvantages of short time fourier transform, a time-frequency analysis method. The author discusses the wavelet transform analysis method which overcoming the disadvantages of the two above methods. In the paper, the author also gives the discussion of preprocessing methods, window-function selection methods and power spectrum analysis methods for unequally-spaced data.
     The author discusses the evidence and advantage of geophysical logging data. As the precondition of geological application, the author discusses firstly, how to identify the Milankovitch cycles from the geophysical logging data, then, studies the relationship between Milankovitch cycles and deposition rate. The author introduces in detail how to analysis the characteristics of deposition rate changed with time(or depth)and puts forward to the thought of transforming the depth profile to time profile by use of the deposition rate curves changed with time.
     In the paper, the author calculates the Milankovitch cycles of Qingshankou formation and the first part to second part of Nenjiang formation in Songliao basin by logging data of different wells. The result shows the Milankovitch cycles are recorded in all the wells. Using the Milankovitch cycles result, the author analyses the feature of deposition rate changed with time, extracts the specific cycle curves for stratigraphic division and comparison with high precision. The author also explores the method of calculating the continuous time of sedimentary strata, and calculates the continuous time of Qingshankou formation by mean of the logging data from Songke NO.1 well with good continuity and high precision. Comparing to the known information proves the correctness of the result. By counting the number of wavelength of the precession cycles, the author analyses the continuous time of event key bed from the first part of Qingshankou formation, which provides supported evidence that this event key bed is corresponding to the paleo-oceanic anoxic event near the boundary of Cenomanian-Turonian in Cretaceous.
引文
[1]A.范登博斯.1978.最大熵谱估计的另一种解释[J].石油物探,Vol.01.
    [2]蔡雄飞,李长安,占车生.2001.高分辨率地层学的特点、应用范围及研究意义[J].地层学杂志,Vol.25(1).
    [3]蔡雄飞等.2001.高分辨率地层学的特点、应用范围及研究意义[J].地层学杂志,Vol.01。
    [4]陈代钊.2000.旋回地层-一个正在发展中的理论[J].第四纪研究,Vol.20(2): 186-195.
    [5]陈茂山.1999.测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J].石油地球物理勘探,34(1):57-64.
    [6]陈玉东.2003.数字信号处理基础[R].北京:中国地质大学(北京)。
    [7]陈中红,查明,金强.2004.自然伽玛及自然伽玛能谱测井在沉积盆地古环境反演中的应用[J].地球物理学报,Vol.47(6)。
    [8]邓自旺,林振山,周晓兰.1997.西安市近50年来气候变化多时间尺度分析[J].高原气象.Vol.16(1).
    [9]丁仲礼.2006.米兰柯维奇冰期旋回理论:挑战与机遇[J].第四纪研究,Vol.26(5).
    [10]段新明.2004.利用测井曲线进行地层对比的自动识别[J].河南石油,Vol.18(4).
    [113]范国章,金之钧,刘国臣,等.2001.塔里木盆地高频波识别及其意义[J].沉积学报,Vol.19(2):245-248.
    [12]房文静,范宜仁,李霞.2007.Morlet小波用于测井沉积旋回多尺度特性研究[J],物探化探计算技术,Vol.29(2).
    [13]高静怀,满蔚仕,陈树民.2004.广义S变换域有色噪声与信号识别方法[J].地球物理学报,Vol.47(5):869-876.
    [14]高瑞祺,张莹,崔同翠.松辽盆地白垩纪石油地层[M].北京:石油工业出版社,1994:1-333.
    [15]龚一鸣,李保华.1999.高分辨率地层学与Milankovitch旋回和ENSO事件沉积[J].地质科技情报,Vol.18(2):32-36.
    [16]龚一鸣,徐冉,汤中道,李保华.2004.广西上泥盆统轨道旋回地层与牙形石带的数字定年[J].地球科学,Vol.34(7):635-643.
    [17]全国地层委员会.中国区域年代地层(地质年代)表说明书[M].北京:地质出版社,2002:1-72.
    [18]何樵登.1979.关于最大熵谱法[J].石油地球物理勘探,Vol.01.
    [3]胡昌华,张军波,夏军,等.2000.基于MATLAB的系统分析与设计—小波分析[M].西安电子科技大学出版社.
    [19]胡广书.2003.数字信号处理--理论、算法与实现[M].清华大学出版社。
    [20]胡受权,郭文平.2002.断陷湖盆陆相层序中高频层序的米兰柯维奇旋回成因探讨[].中山大学学报:自然科学版,Vol.41(6):91-94.
    [21]简念川,王广利,李金岭,张波.基于Lomb算法的非等间距VLBI观测资料频谱分析研究[J].天文学报,Vol.47(3).
    [22]金之钧,范国章,刘国臣.1999.一种地层精细定年的新方法[J].地球科学—中国地质大学学报,Vol.24(4)。
    [23]金之钧,范国章,刘国臣.1999.一种地层精细定年的新方法[J].地球科学—中国地质大学学报,Vol.24(4):379-383.
    [24]金之钧,李京昌,刘国臣.1997.米兰柯维奇旋回识别问题[J].地学前缘,Vol.4(3~4)。
    [25]景毅、王世称等.1985.马尔柯夫过程在地质学中的应用[M].地质出版社.
    [26]李斌,孟自芳,李相博,等.2005.靖安油田延长组米兰柯维奇沉积旋回分析[J].地质科技情报,Vol.24(2):64-70.
    [27]李春峰.2005.分形分析在测井数据应用中的几个问题[J].测井技术,Vol.29(1):15-22.
    [28]李凤杰,王多云,郑希民,等.2003.测井曲线频谱分析在含煤地层沉积旋回研究中的应用[J].煤田地质与勘探,Vol.31(6):14-17。
    [29]李更生.有限长观测数据的最大熵谱分析与算法[J].云南大学学报,Vol.17(1).
    [30]李海燕、张世红、方念乔、王红强.孟加拉湾MD77-181岩芯磁学记录及其古环境意义[J].科学通报,Vol.51(18).
    [31]李江涛,余继峰,李增学.2004.基于测井数据小波变换的层序划分[J].煤田地质与勘探,Vol.32(2):48-50.
    [33]李庆谋,刘少华.2002.地球物理测井序列的小波波谱方法[J].地球物理学进展,Vol.17(1):78-83.
    [33]李庆谋.1996.测井曲线Milankovitch周期分析与应用[J].地球物理学报,Vol.39(5): 699-704.
    [34]李霞,范宜仁,杨立伟等.2006.测井曲线小波变换特性在层序地层划分中的应用[J].大庆石油地质与开发,Vol.25(4).
    [35]梁齐端,赵世龙,丁忙生.2006.自然伽马测井曲线的分形特征分析[J].物探与化探,Vol.30(3)。
    [36]刘冰,范宜仁,李霞.2006.小波变换用于测井沉积旋回界面划分研究[J].测井技术,Vol.30(4):310-313.
    [37]刘光鼎,李庆某,刘少华.1999.全球变化的地球物理测井研究.地球物理学进展,Vol.14(4):1-8.
    [38]刘国臣,金之钧,李京昌.1995.沉积盆地沉积_剥蚀过程定量研究的一种新方法_盆地波动分析应用之一[J].沉积学报,Vol.13(3):23-32。
    [39]刘国永,杨明慧.2004.沉积盆地波动过程分析方法在中国的应用[J].Vol.23(3):296-212.
    [40]刘葵,刘招君,朱建伟,等.2000.时频分析在石油地球物理勘探中的应用.世界地质,Vol.19(3):282-286.
    [41]刘立薛,林福.1994.旋回地层学的基本原理与研究方法[J],世界地质.Vol.13(3).
    [42]陆先亮,李琴,栾志安,等.2003.基于米兰柯维奇理论的地层划分新方法[J].石油大学学报,Vol.27(5):4-9.
    [43]吕光明,朱昱,辛颖,2008.统计显著性与实际显著性辨析[J].统计教育,Vol.6.
    [44]孟祥化.1997.沉积节律性及其动力学研究[J].地学前缘,Vol.4(3).
    [45]邱贵强,刘军锷,帅平.2001.米兰柯维奇旋回基本原理及其在陆相湖盆分析中的应用前景[J].油气地质与采收率.Vol.8(5).
    [46]邵才瑞,关丽,张福明.2005.基于测井数据的地质曲面插值重构方法比较[J].测井技术,Vol.29(4):311-315.
    [47]石广玉,刘玉芝, 2006.地球气候变化的米兰柯维奇理论研究进展[J].地球科学进展,Vol.21(3).
    [48]覃建雄,张长俊,王成善,等.1995.全球旋回地层学.地质科技情报,Vol.14(1):17-23.
    [49]汤良杰,马永生,郭彤楼,等.2005.沉积盆地波动过程分析方法与应用_以四川盆地东北部为例[J].海相油气地质,Vol.10(4):39-47.
    [50]汪品先.2006.低纬过程的轨道驱动[J].第四纪研究,Vol.26(5).
    [51]王成善.白垩纪地球表层系统重大地质事件与温室气候变化研究———从重大地质事件探寻地球表层系统耦合[J].地球科学进展,2006,21(8):838-842.
    [52]王志坤,王多云,宋广寿,等.2005.测井信号小波分析在高分辨率层序地层划分中的应用[J].大庆石油学院学报,Vol.29(6):17-20.
    [53]吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前言,Vol(15).
    [54]吴智勇,姜衍文.1996.地层记录中的天文事件及其研究意义[J].岩相古地理.Vol.16(4).
    [55]吴智勇.1995.米兰柯维奇韵律层及其年代地层意义[J].地层学杂志,Vol.19(2).
    [56]徐道一,韩延本等.2006.天文地层学的兴起[J].地层学杂志,Vol.4.
    [57]徐道一.2005.天文地质年代表与旋回地层学研究进展[J].地层学杂志.Vol.29,增刊.
    [58]徐科军,李永三.2003.基于连续小波变换的功率谱估计方法[J].应用科学学报,Vol.21(2):157-160.
    [59]姚益民,徐道一,李保利等.2007.东营凹陷牛38井沙三段高分辨率旋回地层研究[J].地层学杂志.Vol.31(3).
    [60]业渝光.2003.地质年代学理论与实践[J].北京:地质出版社,2003年.
    [61]于长春,熊盛青,郭志宏等.2003.改进的非线性滤波方法及其在中高山地区的应用[J].物探与化探, 27(1):39-42.
    [62]余海涛.基于Monte Carlo方法的白噪声仿真算法与编程[J].微电子学与计算机,Vol.11。
    [63]张海峰.2006.以米兰柯维奇旋回为标尺进行高级别层序地层划分与对比[J].油气地质与采收率,Vol.13(4).
    [64]张洁,高品贤,林建辉.2002.平稳随机过程非均匀采样信号的数字谱研究[J].信号处理,Vol.18(4).
    [65]张培琴,朱兆芳.1989.最大熵功率谱计算磁源深度方法应用初探[J].物探与化探,Vol.13(1):44-53.
    [66]张世红、王训练、朱鸿. 1996.碳酸盐岩磁化率与相对海平面变化的关系——黔南泥盆石炭系例析[J].中国科学D辑,Vol.29(6).
    [67]张世红.2000.论岩石磁性地层学的概念、方法和应用[J].地学前缘,Vol.7(2):498.
    [68]张贤达.2002.现代信号处理[M].北京:清华大学出版社.
    [69]张占松、蔡道钢等.1994.用测井曲线能谱分析技术研究沉积速率[J].江汉石油学院学报,Vol.21(4).
    [70]赵静,刘琦,2006.Welch法谱估计和参数模型谱估计的MATLAB分析[J].水利电力机械,Vol.28(4).
    [71]赵俊峰,刘池祥.2006.定年的非生物地层学方法[J].新疆石油地质,Vol.27(6)。
    [72]赵俊峰,刘池洋.2007.定年的非生物地层学方法[J].新疆石油地质,Vol.27(6):757-761.
    [73]赵淑红,张文波.2003.短时傅立叶变换在研究沉积旋回地质体中的应用[J].长安大学学报(地球科学版),Vol.25(2)。
    [74]赵淑红.2006.时频分析方法及其在地震数据处理中的应用[R].博士论文,西安:长安大学。
    [75]郑民,彭更新,雷刚林等.2007.频谱分析法确定乌什凹陷白垩系米兰柯维奇沉积旋回及沉积速率[J].新疆石油地质,Vol.28(2)。
    [76]朱强,毕彩芹.2002.陆相地层精细对比方法及应注意的问题[J].油气地质与采收率,Vol.9(3):27-32.
    [77]邹长春,杨欣德,潘令枝,等.1999.一种基于小波变换的测井曲线去噪新方法[J].物探与化探,Vol.23(6):462-467.
    [78]BERGER A L.1989.Pre-Quaternary Milankovitch frequencies[J ]. Nature,Vol. 342: 133.
    [79]Berger A, Loutre M F. Astronomical forcing through geologic time. 1994.In: de Boer PL, Smith D G (eds.), Orbital forcing and cyclic sequences. International Association of Sedimentologists Special Publication 19,p15-24.
    [80]Berger A. 1988.Milankovitch theory and climate[J]. Reviews of Geophysics, Vol.26:624-657.
    [81]Bloomfield P.2000. Fourier Analysis of Time Series: an Introduction. 2nd Edition, Wiley, New York, 288pp.
    [82]Caron M,Robaszynski F,Amedro F,etal.Estimation de ladurée de lévénement anoxique global au passage Cénomanien/Turonien:approche cyclostratigraphique dans la formation Bahloul en Tunisie central[J].Bulletin de laSociétéGéologique de France,1999,170(2):145-160.
    [83]D’Argenio B, Fischer A G, Premoli-Silva I, et al. 2004.Cyclostratigraphy: Approaches and case histories. Society for Sedimentary Geology(SEPM) Special Publication, 81: 1-311.
    [84]Fischer A G,Bottjer D J.1991. Orbital Forcing and Sedimentary Sequence[J].Journal of sedimentary petrology,Vol.61(7):1063-1069.
    [850]Gradstein F M, Ogg J G, Smith A G, Bleeker W & L L.2004.A new geological time scale, with special reference to Precambrian and Neogene. Episodes, (27):83-100
    [86]Gradstein F., Ogg J.,Smith A.2005. A geologic time scale 2004. London: Cambridge University Press.
    [87]Graham Weedon.2003. Time-Series Analysis and Cyclostratigraphy. Cambridge University Press,Cambridge, 259pp.
    [88]Hinnov L A.2000.Invited: New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28: 419-475.
    [89]Kuhnt W,Luderer F,Nederbragt S,etal.Orbital-scale record of the late Cenomanian-Turonian oceanic anoxic event(OAE-2) in the Tarfaya basin(Morocco)[J].International Journal of Earth Sciences(Geol Rundsch),2005,94:147-159.
    [90]Latta D K, Anastasio D J, Hinnov L A, et al.2006. Magnetic record of Milankovitch rhythms in lithologically noncyclic marine carbonates. Geology, 34(1): 29-32.
    [91]Mader D, Cleaveland L, Bice D M. 2004.High-resolution cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic succession in the Cònero Riviera, Ancona (Italy), Palaeogeography, Palaeoclimatology, Palaeoecology, 211: 325-344.
    [92]McFadden,PD.,Cook;IQ,and Forster, L.M.,1999.Decomposition of gear vibration signals by the generalized S-transform[J]. Mech. Syst. Signal Process., Vol.13.p691-707.
    [93]Meyers S D,B G Kelly,J J O Brien.1993.Anintroduction to wavelet analysis in oceanography and meteorology:with application to the dispersion of Yannaiwaves.Mon Wea Rev,121:2858~2866.
    [94]Michael schulz and karl stattegger.1997.Spectral analysis of unevenly spaced paleoclimatic time series[J].Computers & Geosciences Vol.23(9):929-945.
    [95]Milankovtich M.1941.Kano der Erdbestrahhlung und seine Anwendung auf das Eiszeitenproblem. Academic Serbe,133: 1-633.
    [96]Nuttall A H,Carter G C.1982.Spectral estimation using combined time and lagweighting[J]. Proc.IEEE,Vol.70.
    [97]Paillard D, Labeyrie L, Yiou P. 1996.Macintosh program performs time-series analysis. Eos (Transactions, American Geophysical Union), 77: 379.
    [98]Pardo-Igúzquiza E, Rodíguez-Tovar F J. 2004.POWGRAF2: a program for graphical spectral analysis in cyclostratigraphy. Computers and Geosciences, 30: 533-542.
    [99]Pinnegar, C.R.2004.Time-local Fourier analysis with a scalable, phase-modulated analyzing function: The S-transform with a complex window. Signal Processing,Vol.84(7):1167-1176.
    [100]Prokoph A, Villeneuve M, Agterberg F P, et al. Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary. Geology, 29(6): 523-526.
    [101]Prokoph A,Villeneuve M,Agterberg F P.Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian Turonian boundary[J] .Geology,2001,29(6):523-526.
    [102]Rosaria Sandulli,2004.The Barremian carbonate platform strata of the Montenegro Dinarids near Podgorica- a cyclostratigraphic study[J],cretaceous research Vol.25,p951-967.
    [103]Sandulli R.2004. The Barremian carbonate platform strata of the Montenegro Dinarids near Podgorica: a cyclostratigraphic study. Cretaceous Research, 2004, 25: 951-967.
    [104]Schwarzacher W.2000.Repetitions and cycles in stratigraphy[J]. Earth-Sci Rev,(50):51-75
    [105]Schwarzacher.1993.W.Cyclostratigrapgy and the Milankovitch theory[M]. NewYork:Elsevier ,Amsterdam: pp.1-225.
    [106]Schwarzacher.Sedimentation Models and Quantitative[J], Stratigraphy. Elsevier. Amsterdam: pp.1-382
    [107]Shackleton N J , McCave I N, Weedon G P. 1999.Astronomical (Milankovitch) calibration of the geological timescale. Royal Society of London Philosophical Transactions, ser. A, 357: 1733-2007.
    [108]Shackleton N J , McCave I N, Weedon G P.1999. Astronomical (Milankovitch) calibration of the geological timescale. Royal Society of London Philosophical Transactions, ser. A, 357: 1733-2007.
    [109]Shackleton N J , McCave I N, Weedon G P.1999.Astronomical (Milankovitch) calibration of the geological timescale. Royal Society of London Philosophical Transactions, ser. A,357: 1733-2007.
    [110]Stage M. 1999.Signal analysis of cyclicity in Maastrichtian pelagic chalks from the Danish North Sea. Earth and Planetary Science Letters, 173: 75~90.
    [111]T Christopher, P Gilbert,1998.A Practical Guide to Wavelet Analysis[M], Bulletin of the American Meteorological Society.
    [112]Van der Zwan C J.2002. The impact of Milankovitch-scale climatic forcing on sediment supply. Sedimentary Geology,147: 271-294.
    [113]Weedon G P.2003,Time-series analysis and cyclostratigraphy :examining stratigraphic records of environmental cycles[M]. Cambridge, U.K. ; New York: Cambridge University Press,p1-259.
    [114]Weedon.2003.Time-seriesanalysisandcyclostratigraphy , examining stratigraphic records of environmental cycles.Cambridge University Press.
    [115]Wilknson,B.H.,Drummond,C.N.Rothman,E.D.and Diedrich,1997.N.W.Stratal order in peritidal in peritidal carbonate sequences[J].Sed.Res.67:1068-82.
    [116]Williams T, Kroon D, Spezzaferri S. 2002.Middle and Upper Miocene cyclostratigraphy of downhole logs and short- to long-term astronomical cycles in carbonate production of the Great Bahama Bank. Marine Geology, 185: 75-93.
    [117]WU Huaichun, Zhang Shihong,Sui Ssuwen, Huang Qinghua. 2007.Reeognition of Milankovitch Cyeles in the Natural Gamma Ray Logging of UP PerCretaceous Terrestrial Strata in the Songliao Basin[J ].地质学报(英文版), Vol.81(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700