用户名: 密码: 验证码:
基于智能计算和混沌理论的铀价格预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铀矿资源产品被世界各国广泛应用于军事、经济和社会生活等方面,对世界诸多领域产生了革命性的影响。铀资源既是核能发展的物质基础,同时也是一种战略资源,铀资源价格定量预测对核能开发及利用政策和发展规划的制定具有重要的参考价值。由于铀价格具有复杂性、非线性和不确定性等特点,使得传统的时间序列预测技术很难达到满意的效果。随着人工智能技术、混沌动力学和信号处理技术的发展,人们对非线性时间序列表现出的复杂性有了更加深刻的认识,这也为国际市场铀价格时间序列分析和预测提供了新的、科学有效的方法。
     本文基于混沌理论和经验模态分解(Empirical Mode Decomposition,EMD)技术,结合若干智能计算方法:最小二乘支持向量机(Least Square Support Vector Machine,LSSVM),动态模糊神经网络(Dynamic Fuzzy Neural Network, DFNN),极限学习机(Extreme Learning Machine, ELM)和相关向量机(Relevance Vector Machine, RVM),针对国际市场铀价格时间序列智能预测建模问题展开较深入的研究,建立了多种混合智能预测模型,为铀价格时间序列预测探索了有效的方法,也为非线性预报建模提供了有效的新途径。主要研究内容如下:
     1、简单介绍了相空间重构理论,以及确定相空间重构参数的常用方法。针对实际铀价格时间序列相空间重构的参数选取问题,首先采用互信息法和Cao方法分别确定延迟时间和嵌入维数,然后引入微分熵方法同时确定嵌入维数和延迟时间;
     2、对铀价格时间序列进行非线性与混沌特性的识别。一方面,将基于相空间重构的延迟向量方差(Delay Vector Variance,DVV)算法用于判定铀价格序列的非线性特性,通过DVV分布图或DVV散点图对铀价格时间序列信号进行定性描述;另一方面,分别通过定量计算G-P关联维数与最大Lyapunov指数两个特征量来对国际铀资源月价格时间序列的混沌特性进行识别;
     3、在相空间重构的基础上,提出了一种基于动态模糊神经网络的铀价格时间序列预测方法,并利用量子行为粒子群算法(Quantum behaved Particle Swarm Optimization,QPSO)优化模型参数。该方法无须领域的专家知识就可以实现对铀价格时间序列预测自动建模及抽取模糊规则,可以实现在线学习,且所得到的模糊规则数不随输入变量的增加而按指数增长;
     4、提出一种基于经验模式分解和极限学习机的铀价格时间序列混合预测方法。首先通过EMD分解,将原始非平稳的价格序列分解为若干固有模态分量(Intrinsic ModeFunction,IMF),根据频率高低将各分量分组叠加得到3个新序列;然后在相空间重构的基础上对各序列分别构建ELM模型进行预测;最后对3个序列的预测值进行合成。仿真实验结果表明了方法的有效性;
     5、提出了一种基于集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和相空间重构的铀价格智能预测混合建模方法。首先针对EMD的不足,将EEMD用于铀价格序列分解,接着对分解后的固有模态分量依据频率高低重新组合成高频、低频与余项3个新序列,然后在相空间重构的基础上分别用RVM、LSSVM和ELM预测高频、低频与余项序列,最后对3个序列的预测值进行叠加得到铀价格序列预测值。仿真实验表明,该方法有较高的预测精度;
     6、建立一种基于多元线性回归和最小二乘支持向量机的铀价格集成预测模型。首先利用多元线性回归模型获取时间序列的线性信息,然后利用最小二乘支持向量机出色的非线性拟合能力建立混合预测模型;此外,为了提高预测精度,将粒子群优化算法用于LSSVM参数的优化选取。实验结果表明,与其他模型相比该方法的预测性能有较大的提高。
Uranium resource products have been widely used in economics, military, social lives,and so on and have a revolutionary effect on the real world in many areas. Uranium resourceis both the material basis for the development of nuclear energy and a kind of strategicresource.Therefore, more accurate forecasts for international uranium resource prices play anincreasingly important role in the development planning and utilization of nuclear energy.Forecasting the uranium resource prices is one of the most important and challenging tasksdue to its inherent nonlinearity and non-stationary characteristics.
     Based on chaos theory and empirical mode decomposition technique, several hybridintelligence prediction models for international uranium resource prices forecasting have beenestablished combining with some intelligent computation methods such as Least SquareSupport Vector Machine(LSSVM), Dynamic Fuzzy Neural Network(DFNN), ExtremeLearning Machine(ELM) and Relevance Vector Machine(RVM). The main contents discussedin this thesis are described as follows:
     1、The influence of phase space parameters on phase space quality and the commonmethods for determining delay time and embedding dimension are discussed based on thereconstruction theory. In view of parameter selection problem of phase space reconstructionfor the actual uranium price time series, a novel method for determining the set of parametersfor a phase space representation of a time series named as the entropy ratio(ER) method isintroduced. Based upon the differential entropy, both the optimal embedding dimension andtime lag are simultaneously determined.
     2、 Nonlinearity and chaotic characteristic for uranium price series have beenidentification. On the one hand, nonlinear nature of the time series is examined by performingdelay vector variance (DVV) analyses on both the original and a number of surrogate timeseries, using the optimal embedding dimension of the original time series. On the other hand,quantitative calculation about saturation correlation dimension and the largest Lyapunovexponent of uranium price series is used to identity their chaotic characteristics.
     3、Based on the phase reconstruction, a prediction model for international uraniumresource prices based on DFNN combined with Quantum-behaved Particle SwarmOptimization(QPSO) were proposed. The salient characteristics of the method are:1)hierarchical on-line self-organizing learning is used;2)neurons can be recruited or deleteddynamically according to their significance to the system’s performance; and3)fast learningspeed can be achieved.
     4、A hybrid forecasting approach combining empirical mode decomposition(EMD),phase space reconstruction(PSR), and ELM for international uranium resource prices isproposed. In the first stage, the original uranium resource price series are first decomposedinto a finite number of independent intrinsic mode functions(IMFs), with different frequencies.In the second stage, the IMFs are composed into three subseries based on the fine-to-coarsereconstruction rule. In the third stage, based on phase space reconstruction, different ELMmodels are used to model and forecast the three subseries, respectively, according to the intrinsic characteristic time scales. Finally, in the fourth stage, these forecasting results arecombined to output the ultimate forecasting result. Experimental results from real uraniumresource price data demonstrate that the proposed hybrid forecasting method outperformsRBF neuralnetwork(RBFNN) and single ELM in terms of RMSE, MAE, and DS.
     5、A novel hybrid ensemble modeling approach integrating ensemble empirical modedecomposition(EEMD) and multiple intelligent computation methods such as RVM, LSSVMand ELM is proposed for international uranium resource prices forecasting, based on thephase reconstruction. This hybrid approach is formulated specifcally to address difficulties inmodeling uranium resource prices forecasting, which has inherently complexity andirregularity. In the proposed hybrid ensemble learning paradigm, EEMD, as a competitivedecomposition method in stead of EMD, is first applied to decompose original data ofinternational uranium resource prices into a number of independent intrinsic modefunctions(IMFs) of original data. Then the IMFs are composed into three subseries based onthe fine-to-coarse reconstruction rule. Based on phase space reconstruction, different modelsincluding RVM, LSSVM, ELM are used to model and forecast the three subseries,respectively, according to the intrinsic characteristic time scales. Finally, these predictedsubseries are aggregated into an ensemble result as final prediction. Empirical resultsdemonstrate that the hybrid modeling approach can outperform some other popularforecasting models in both level prediction and directional forecasting.
     6、Based on the phase reconstruction, the time series of uranium resource price isexpanded to multivariate time series, which includes ergodic information, and so that moreabundant information can be found in favor of model training. A hybrid model combiningMLR and LSSVM is established. The proposed hybrid model exploits the unique strength ofMLR and LSSVM models in forecasting uranium resource prices. In addition, particle swarmoptimization (PSO) is used to find the optimal parameters of LSSVM in order to improve theprediction accuracy. Experimental results indicate that the proposed model outperforms sometraditional models, including MLR, RBFNN, LSSVM, the linear combination model, and themodel incorporating MLR and RBFNN.
引文
1.张坤.重大核事故影响下国际铀价格趋势预测研究[J].资源科学,2012,34(11):2115-2123
    2.李强,王建平,徐千琰.世界铀资源概况及供需形势展望[J].中国矿业,2013,22(11):13-18
    3.陈建宏,周汉陵,于凤玲,等.改进的QPSO-BP算法的铀价格预测模型及应用[J].计算机工程与应用,2013,49(21):235-239
    4.赵玉,徐鸿,张坤,马智胜.基于小波神经网络的国际铀资源价格趋势分析[J].东华理工大学学报(社会科学版),2012,31(2):113-115
    5.王桓.电力时间序列的混沌识别与短期预测[D].长沙:湖南大学博士学位论文,2009
    6.李嵩松.基于隐马尔可夫模型和计算智能的股票价格时间序列预测[D].哈尔滨:哈尔滨工业大学博士学位论文,2011
    7. Feller W. An Introduction to Probability Theory and Its Applications[M].New York: John Wiley Sons,1968:3-7.
    8. Joseph R, Maxwell S. Commodity Futures Trading with Moving Averages[M].New York: Speer Books,1975:78-99.
    9. Box G, Jenkins G. Time Series Analysis: Forecasting and Control[M]. San Francisco: Holden-Day,1976:2-11.
    10. Engle R F. Autoregressive Conditional Heteroscedasticity with Estimator of the Variance of UnietdKingdom Inflation[J]. Econometrica,1982,50(4):987-1008.
    11.潘慧峰,张金水.基于ARCH类模型的国内油价波动分析[J].统计研究,2005(4):16-20
    12. Bollerslev T. Generalized Autorregressive Conditional Heteroscedasticity[J]. Journal of Econometrics,1986,31:307-327.
    13. Fan Y, Zhang Y J, WeiY M.Estimating “Value at Risk” of crude oil Price and its spillover effect usingthe GED-GARCH approach[J].Energy Economics,2008,30:3156-3171
    14.朱帮助,魏一鸣.基于GMDH-PSO-LSSVM的国际碳市场价格预测[J].系统工程理论与实践,2011,31(12):2264-2271
    15.向小东.基于神经网络与混沌理论的非线性时间序列预测研究[D].成都:西南交通大学博士学位论文,2001
    16. Armano G, Marchesi M, Murru A. A hybrid genetic-neural architecture for stock indexes forecasting[J].Information Sciences,2005,170(1):3-33
    17. Zhang Y, Wu L. Stock market prediction of S&P500via combination of improved BCO approach andBP neural network[J]. Expert Systems with Application,2009,40(8):731-737
    18. White H. Economic Prediction Using Neural Networks: The Case of IBM Daily Stock Returns[C].Proceedings of the Second Annual IEEE Conference on Neural Networks,1988,2:451-458.
    19. Kolarik T, Rudorfer G. Time Series Forecasting Using Neural Networks[J]. Time Series and NeuralNetworks,1994,12(3):86-94.
    20. Leigh W, Purvis R, Ragusa J M. Forecasting the Nyse Composite Index with Technical Analysis,Pattern Recognizer, Neural Network, and Genetic Algorithm: A Case Study in Romantic DecisionSupport[J]. Decision Support Systems,2002,32:361-377.
    21. Li G, Shi J. On comparing three artifcial neural networks for wind speed forecasting[J]. AppliedEnergy,2010,87:2313–2320
    22. Vapnik V N. The Nature of Satistical Learning Theory[M].New York: New York Springer Verlag,1995.
    23. Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
    24. Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988-999.
    25. Chen B J, Chang M W, Lin C J. Load forecasting using support vector machines: a study on EUNITEcompetition2001[J]. IEEE Transactions on Power Systems,2004,19(4):1821–1830
    26. Nagi J, Yap K S, Nagi F, etal. A computational intelligence scheme for the prediction of the daily peakload[J]. Applied Soft Computing,2011,11:4773–4788
    27.韩晓霞,谢刚,韩晓明,等.基于相空间重构和支持向量机的多相催化剂失活预测[J].控制与决策,2012,27(6):953-956
    28. Zhu B Z, Wei Y M. Carbon price forecasting with a novel hybrid ARIMA and least squares supportvector machines methodology[J], Omega,41(2013)517-524
    29. Dong B, Cao C, Lee S E. Applying support vector machines to prediction building energy consumptionin tropical region[J]. Energy and Buildings,2005,37:545-553
    30. Kavaklioglu K. Modeling and prediction of Turkey’s electricity consumption using Support VectorRegression[J]. Applied Energy,2011,88:368–375
    31. Zhou J Y, Shi J, Li G. Fine tuning support vector machines for short-term wind speed forecasting[J].Energy Conversion and Management,2011,52:1990–1998
    32. Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters,1999,9(3):293-300
    33. Sayyad H, Manshad A K, Rostami H. Application of hybrid neural particle swarm optimizationalgorithm for prediction of MMP[J].Fuel,2014,116:625-633
    34. Harrald P G, Kamstra M. Evolving Artificial Neural Networks to Combine Financial Forecasts[J].IEEE Transactions on Evolutionary Computation,1997,1(1):40-52.
    35. Zhang Y, and Wu L. Stock market prediction of S&P500via combination of improved BCO approachand BP neural network[J]. Expert Systems with Applications,2009,36:8849-8854.
    36. Fang S F, Wang M P, Qi W H, et al. Hybrid genetic algorithms and support vector regression inforecasting atmospheric corrosion of metallic materials[J]. Computational Materials Science,2008,44:647–655
    37. Fei S W, Wang M J, Miao Y B, et al. Particle swarm optimization-based support vector machine forforecasting dissolved gases content in power transformer oil[J]. Energy Conversion and Management,2009,50:1604–1609
    38. Yang C C, Shieh M D. A support vector regression based prediction model of affective responses forproduct form design[J]. Computers&Industrial Engineering,2010,59:682–689
    39. Hong W C, Dong Y C, Zheng F F, et al. Forecasting urban traffc fow by SVR with continuous ACO[J].Applied Mathematical Modelling,2011,35:1282–1291
    40. Liu L X, Zhuang Y Q, Liu X Y. Tax forecasting theory and model based on SVM optimized by PSO[J].Expert Systems with Applications,2011,38:116–120
    41. Ruelle.D, Takens F. One the nature of turbulence[J].Common. Math. Phys.,1971,50:167-192
    42. May R M. Simple mathematical models with very complicated dynamics[J]. Nature,1976,261:459-467
    43. Feigenbaum M J. Quantitative universality for a class of nonlinear transformations[J]. Journal of Stat.Phys.,1978,19:25-52
    44. Takens F. Detecting strange attractors in fluid turbulence[J]. In: Rand D A and Young L S, editors,Dynamical Systems and Turbulence. Berlin, Springer-Verlag,1981
    45. Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a Time Series[J]. Physical ReviewLetters,1980,45(6):712-716
    46. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J], Physica D,1983,9:189-208
    47. Li L, Liu C X. Application of Chaos and Neural Network in Power Load Forecasting[J]. DiscreteDynamics in Nature and Society, Volume2011,ArticleID597634,12pages, doi:10.1155/2011/597634
    48. Che J X, Wang J Z. Short-term electricity prices forecasting based on support vector regression andauto-regressive integrated moving average modeling[J]. Energy Conversion and Management,2010,51:1911-1917
    49. Huang S C, Chuang P J, Wu C F, etal. Chaos-based support vector regressions for exchange rateforecasting[J]. Expert Systems with Applications,2010,37:8590-8598.
    50. Kazem A, Sharifi E, Hussain F K, etal. Support vector regression with chaos-based firefly algorithmfor stock market price forecasting[J]. Applied soft computing,2013,13:947-958.
    51. Guo J, Zhou J Z, Qin H, et al. Monthly streamflow forecastig based on improved support vectormachine model[J]. Expert Systems with Applications,2011,38:13073-13081
    52.吴学文,索丽生,王志坚.基于SVM的入库径流混沌时间序列预测模型及应用[J].系统仿真学报2011,23(11):2556-2559
    53.张玉梅,吴晓军,白树林.交通流量序列混沌特性分析及DFPSOVF预测模型[J].物理学报,2013,62(19):190509
    54.朱子虎,翁振松.基于混沌理论的铁路客货运量预测研究[J].铁道学报,2011,33(6):1-7
    55.张华强,张晓燕.基于混沌理论和LSSVM的蒸汽负荷预测[J].系统工程理论与实践,2013,33(4):1058-1066.
    56. Miranian A, Abdollahzade M. Developing a Local Least-Squares Support Vector Machines-BasedNeuro-Fuzzy Model for Nonlinear and Chaotic Time Series Prediction[J]. IEEE Transaction on neuralnetworks and Learning Systems,2013,24(2):207-218
    57. Goswami J C, Chan A K. Fundamentals of Wavelets: Theory, Algorithm, and Appications[M].NewYork: Wiley-Interscience,1999
    58. Huang N E, Shen Z, Long S R, etal. The empirical mode decomposition and the Hilbert spectrum fornonlinear and nonstationary time series analysis[C]. Proceedings of the Royal Society A,1998,454(1971):903–995.
    59. Wu Z, Huang N E. A study of the characteristics of white noise using the empirical modedecomposition method[C]. Proceedings of the Royal Society A,2004,460(2046):1597–1611.
    60. Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1:1-41.
    61. Moazzami M, Khodabakhshian A, Hooshmand R. A new hybrid day-ahead peak load forecastingmethod for Iran’s National Grid[J]. Applied Energy,2013,101:489–501
    62. Huang N E, Wu M L, Qu W L, etal. Applications of Hilbert-Huang transform to non-stationaryfinancial time series analysis[J]. Applied Stochastic Models in Business and Industry,2003,19(3):246-268.
    63. Zhang X, Lai K K, Wang SY. A new approach for crude oil price analysis based on Empirical ModeDecomposition[J]. Energy Econimics,2008,30:905-918
    64. Yu L A, Wang S Y, Lai K K. Forecasting crude oil price with an EMD-based neural network ensemblelearning paradigm[J]. Energy Economics30(2008)2623–2635
    65.玄兆燕,杨公训.经验模态分解法在大气时间序列预测中的应用[J].自动化学报,2008,34(1):97-101.
    66.王军栋,齐维贵.基于EMD-SVM的江水浊度预测方法研究[J].电子学报,2009,37(10):2130-2133
    67.高波,张钦宇,梁永生,等.基于EMD及ARMA的自相似网络流量预测[J].通信学报,2011,32(4):47-56
    68. Chen K L, Yeh C C, Lu T L. A hybrid demand forecasting model based on empirical modedecomposition and neural network in TFT-LCD industry[J]. Cybernetics and Systems,2012,43(5):426-441.
    69. Wei Y, and Chen M C. Forecasting the short-term metro passenger fow with empirical modedecomposition and neural networks[J]. Transportation Research Part C,2012,21:148–162
    70. Lu C J, Shao Y E. Forecasting computer products sales by integrating ensemble empirical modedecomposition and extreme learning machine[J]. Mathematical Problems in Engineering, Volume2012,Article ID831201,15pages.
    71. Bao Y K, Xiong T, Hu Z Y. Forecasting air passenger traffc by support vector machines with ensembleempirical mode decomposition and slope-based method[J]. Discrete Dynamics in Nature and Society,Volume2012, ArticleID431512,12pages
    72. Yan Q S, Wang S T, and Li B Q. Forecasting Uranium Resource Price by Extreme Learning Machinewith Empirical Mode Decomposition and Phase Space Reconstruction[J]. Discrete Dynamics in Natureand Society, Volume2014, Article ID390579,10pages.
    73.王帅,汤铃,余乐安.基于单变量分解集成的牛奶消费需求预测研究[J].系统科学与数学,2013,33(1):11-19
    74. Bates J M,Granger C. The combination forecast[J]. Operation Research Quarterly,1969,20(3):451-468
    75. Bunn D W. Combination of forecast[J]. European Journal of Operations Research,1998,33(3):223-229
    76.邓勇,杜志敏,陆燕妮.神经网络优化组合预测模型在油气产量预测中的应用[J].高校应用数学学报,2008,33(3):223-229
    77.胡昌华,司小胜,史小华.基于ER的陀螺漂移组合预测模型[J].控制与决策,2009,24(2):202-205
    78. Pai P F, Lin C S. A hybrid ARIMA and support vector machines model in stock price forecasting[J].Omega,2005,33:497–505
    79. Aladag C H, Egrioglu E, Kadilar C. Forecasting nonlinear time series with a hybrid methodology[J].Applied Mathematics Letters,2009,22:1467-1470
    80. Omer F D. A hybrid neural network and ARIMA model for water quality time series prediction[J].Engineering Applications of Artifcial Intelligence,2010,23(4):586–594
    81. Mehdi K, Mehdi B.A novel hybridization of artifcial neural networks and ARIMA models for timeseries forecasting [J]. Applied Soft Computing,2011,11:2664–2675
    82. Wang J J, Wang J Z, Zhang Z G, etal. Stock index forecasting based on a hybrid model[J]. Omega,2012,40:758-766.
    83. Alwee R, Shamsuddin S M H, Sallehuddin R. Hybrid Support Vector Regression and AutoregressiveIntegrated Moving Average Models Improved by Particle Swarm Optimization for Property CrimeRates Forecasting with Economic Indicators[J]. The Scientific World Journal, Volume2013,http://dx.doi.org/10.1155/2013/951475
    84.彭新建,王瑞琛,张新平,等.国际天然铀价格走势分析[J].世界核地质科学,2006,23(3):151-159.
    85.彭新建.世界天然铀供需分析及价格趋势分析[J].中国核工业,2007(3):28-31.
    86.丁睿.基于神经网络的铀矿国际市场价格预测[D].长沙:中南大学硕士学位论文,2009
    87. Kennel M B, Brown R, Abarbanel H D. Determining embedding dimension for phase spacereconstruction using a geometrical construction[D]. Physical Review A,1992,45(6):3403-3411
    88. Cao L Y. Practical method for determining the minimum embedding dimension of a scalar timeseries[J]. Physical D:Nonlinear Phenomena,1997,110(1-2):43-50
    89. Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J].Physical Review A,1986,33(2):1134-1140
    90. Kim H S, Eykholt R, Salas J D. Nonlinear Dynamics, Delay Times, and Embedding Windows[J].Physica D,1999,127:48-60
    91. Gautama T, Mandic D P, and Hulle M V. A differential entropy based method for determining theoptimal embedding parameters of a signal[C]. IEEE International Conference on Acoustics, Speech,and Signal Processing, VI-29-32vol.6,2003
    92. Thomas S, Andreas S. Surrogate Time Series[J]. Physica D,2000,142:346-382
    93. Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J].Physical D: Nonlinear Phenomena,1985,16(3):285-317
    94. Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunovexponents from small data sets[J]. Physical D:Nonlinear Phenomena,1993,65(1-2):117-134
    95. Gautama T, Mandic D P, Hulle M V. The delay vector variance method for detecting determinism andnonlinearity in time series[J]. Physica D,2004,190(3-4):167–176.
    96. Wu S Q, Er M J. Dynamic Fuzzy Neural Networks: A Novel Approach to Function Approximation[J].IEEE Trans Systems, Man, and Cybernetics. Part B.2000.30(2):358-364
    97. Wu S Q, Er M J. A Fast Learning Algorithm for Parsimonious Fuzzy Neural Systems[J]. Fuzzy Setsand Systems,2002.126:337-351
    98. Lee S, Kil R M. A Gaussian potential function network with hierarchically self-organizing learning[J].NeuralNetworks,1991,4:207–224
    99. Sun J, Feng B, Xu W B, etal. Particle swarm optimization with particles having quantum behavior[C].IEEE Proc of Congress on Evolutionary Computation. Portland, United States: IEEE,2004:619-623
    100. Yu L A, Wang S Y, Lai K K. A novel nonlinear ensemble forecasting model incorporating GLAR andANN for foreign exchange rates [J]. Computer&Operation Research,2005,32:2523-2541
    101.杨云飞.基于EMD分解技术的不同市场原油价格相关性分析及预测研究[D].武汉:华中科技大学博士学位论文,2011
    102. Tatinati S, Veluvolu K C. A Hybrid Approach for Short-Term Forecasting of Wind Speed[J]. TheScientific World Journal,Volume2013, http://dx.doi.org/10.1155/2013/548370
    103. Chen C F, Lai M C, Yeh C C. Forecasting tourism demand based on empirical mode decompositionand neural network[J]. Knowledge-Based Systems,2012,26:281–287
    104. Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J].Neurocomputing,2006,70(1-3):489-501
    105. Huang G B, Zhou H M, Ding X J, et al. Extreme learning machine for regression and multiclassclassification[J]. IEEE transactions on systems, man, and cybernetics-part B: cybernetics,2012,42(2):513-529
    106.袁琦,周卫东,李淑芳,等.基于ELM和近似熵的脑电信号检测方法[J].仪器仪表学报,2012,33(3):514-519.
    107.李彬,李贻斌.基于ELM学习算法的混沌时间序列预测[J].天津大学学报,2011,44(8):701-704
    108.王改堂,李平,苏成利.岭参数优化的ELM岭回归学习算法[J].信息与控制,2011,40(4):497-500.
    109. Sun Z L, Choi T M, Au K F, et al. Sales forecasting using extreme learning machine with applicationsin fashion retailing[J]. Decision Support Systems,2008,46:411–419
    110. Chen F L, Ou T Y. Sales forecasting system based on Gray extreme learning machine with Taguchimethod in retail industry[J]. Expert Systems with Applications,2011,38:1336-1345.
    111. Xia M, Zhang Y C, Weng L G. Fashion retailing forecasting based on extreme learning machine withadaptive metrics of inputs[J]. Knowledge-Based Systems,2012,36:253-259.
    112. Tipping M E. The Relevance Vector Machine [J]. Advances in Neural Information Processing Systems,2001,12:652-658
    113. Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of MachineLearning Research,2001,1:211-244
    114. Gholami B, Haddad W M,Tannenbaum A R. Relevance Vector Machine Learning for Neonate PainIntensity Assessment Using Digital Imaging [J]. IEEE Transactions on Biomedical Engineering,2010,57(6):1457-1466
    115.杨国鹏,余旭初,周欣,等.基于相关向量机的高光谱影像分类研究[J].测绘学报,2010,39(6):572-578
    116.乔立山,陈松灿,王敏,等.基于相关向量机的图像阈值技术[J].计算机研究与发展,2010,47(8):1329-1337
    117.周欣,秦晓东,吴琪,等.稀疏贝叶斯模型和相关向量机在信号识别中的应用[J].电路与系统学报,2011,16(6):75-80
    118.赵树延,于金涛,王嘉,等.基于RVM的多功能自确认水质检测传感器[J].仪器仪表学报,2011,32(8):1690-1696
    119.胡迪,董云峰.基于RVM回归的姿控系统多故障检测[J].电机与控制学报,2011,15(9):68-73
    120.孙国强,卫志农,翟玮星.基于RVM与ARMA误差校正的短期风速预测[J].电工技术学报,2012,27(8):187-193
    121. Zheng Y P, Sun G Q, Wei Z N, et al. A Novel Power System Reliability Predicting Model Based onPCA and RVM[J]. Mathematical Problems in Engineering, Volume2013(2013), Article ID648250,6pages
    122. Liu L T, Ding Z J. Modeling Analysis of Power Transformer Fault Diagnosis Based on ImprovedRelevance Vector Machine[J]. Mathematical Problems in Engineering, Volume2013(2013), Article ID636374,6pages
    123. Wu Z, Huang N E. Ensemble empirical mode decomposition: anoise-assisted data analysis method,centre for ocean-land-atmosphere studies.TechRep2004;193(51).
    124. Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. Proceedings of IEEE InternationalConference on Neural Networks, Perth Australia, USA: IEEE,1995,1942-1948
    125. Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm[C]. Proceedingsof the1997Conference on System, Man, and Cybernetics, Piscataway, NJ: IEEE Service Center,1997,4104-4109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700