用户名: 密码: 验证码:
WDM光网络中的多播算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着网络技术的不断发展和用户需求的不断变化,各种带宽需求较高的多播业务(如视频会议、高清晰数字电视、远程教学、网络游戏等)日益流行。另一方面,WDM技术的出现使得一根光纤可以提供巨大的带宽,从而使得在网络中支持大量高带宽需求的多播业务成为可能。因此,如何在WDM光网络中实现对多播业务的支持成了近年来光网络研究的热点之一。在WDM光网络中支持多播业务需要网络数据平面和控制平面的支持。目前,这两方面都还有许多问题需要深入的研究。本文主要研究了WDM光网络控制平面中与多播算法相关的问题,主要集中在以下几个方面:WDM网络中的多播约束路由问题、多播专用保护设计问题、多播共享保护设计问题和多播业务量疏导问题。
     在WDM光网络中,多播路由可能受到设备或光层传输限制的约束。本文第二章研究WDM光网络中的多播约束路由问题。主要贡献在于:(1)为了减少网络建设成本,WDM光网络中分光节点很可能是稀疏配置的。现有文献中提出的分光节点稀疏配置约束下的多播路由算法在建立路由所需的代价、建立光树的数目和计算复杂度方面均存在不同缺点。针对这些问题,本文提出了一种有效的分光节点稀疏配置约束下的多播路由算法并分析了其性能。(2)光信号在网络中传输还要受到一些物理层的传输约束,比如波长连续性约束和传输损伤约束。为了保证通信的目的节点能正确可靠的接收到信号,多播路由算法则需要考虑这些约束。据我们所知,目前尚无文献研究满足这些传输约束下的多播路由问题。针对这一问题,本文研究了光层传输约束(包括波长连续性约束、偏振模散射约束和放大器自激散射约束)下的多播路由问题并提出了一种多播路由算法。该算法在考虑传输约束的情况下,尽量使得计算出的多播路由所使用的代价小。计算机仿真结果表明,该算法可以在满足约束的同时有效地降低建树所使用的代价。
     在WDM光网络中,一根光纤的失效可能会导致多播业务的多个目的节点不能正常接收数据。因此,对多播业务提供保护是很重要的。本文第三章研究WDM光网络中的多播专用保护设计问题。主要贡献在于:(1)现有多播专用保护算法计算出的多播生存性路由中可能含有一些多余链路。针对这一问题,文中首先用改进的ILP(整数线性规划)模型重新描述了多播的专用保护问题,然后提出了两种启发式算法。这两种算法分别在计算多播生存性路由的过程中删除和避免形成多余链路。计算机仿真表明,这两种算法可以有效地减少多播生存性路由中的多余链路,因而比现有算法有更好的性能。在大多数情况下两种算法的性能和ILP最优解相当接近。(2)在无波长变换器和分光节点稀疏配置的网络中,现有的多播专用保护算法计算出来的保护路不能和工作树共享波长,从而增加使用的波长资源和计算保护路由失败的概率。针对这一问题,本文提出了一种分光节点稀疏配置和波长连续性约束下的多播专用保护算法。该算法通过构造辅助图的方法,使得找出的保护路满足与工作树共享波长的条件,从而减少建立生存性路由所需要的波长资源。另一方面,在波长连续性约束下,由于可以和工作树共享波长,该算法计算保护路由的成功率也是很高的。计算机仿真表明,在分光节点稀疏配置和波长连续性约束下,该算法能有效地提高波长利用率和降低网络阻塞率。
     共享备份资源可以有效减少消耗的保护资源,从而可以有效地提高资源的利用率。目前研究多播共享保护设计问题的文献还较少。本文第四章研究WDM网络中的多播共享保护设计问题。主要贡献在于:(1)研究了SRLG(共享链路风险组)约束下的多播共享保护问题。在SRLG约束下,有可能找不到和工作路SRLG分离的保护路径。这就是所谓的“陷阱(trap)”问题。分段保护可以有效地解决“陷阱”问题。然而,现有的多播分段算法都采用固定分段方式。固定分段方式有两个主要的缺点:第一,在有些情况下不能有效地避免“陷阱”问题;第二,采用固定分段方式不能有效地保证波长利用率的优化。为此,本文提出了一种更灵活的多播共享分段保护算法。该算法可以根据网络状态和多播树所经过的SRLG链路来确定多播树的分段方式,从而有效地避免“陷阱”问题和提高资源的利用率。(2)据我们所知,目前还没有文献研究分光节点稀疏配置下约束下的多播共享保护问题。为此,本文对分光节点稀疏配置约束下的多播共享保护问题进行了研究,并且提出了一种分光节点稀疏配置约束下的多播共享保护算法。该算法可以在分光节点稀疏配置的网络中实现自共享(同一棵多播树的保护路和工作树间的波长共享)和空闲容量共享(不同多播树的保护路间的波长共享)。仿真结果表明,通过共享可以大大地提高资源利用率和降低网络的阻塞概率。
     在WDM网络中,每个波长可以提供高达数十Gbps的传输容量。但是,很多多播业务连接请求的带宽都小于一个波长容量。为了提高波长的利用率,可以将低速的多播业务连接疏导在一根波长上进行传输。目前研究动态多播业务量疏导的文献还较少。现有的动态多播业务量疏导算法可以分成两类:第一类采用疏导图的方法来疏导动态多播业务;第二类采用尽量使用已有光树的方法来疏导新到的业务。第一类动态多播业务量疏导算法使用的疏导图的节点数目相当多,从而算法的复杂度很高;而第二类算法的波长利用率又比较低。为此,本文第五章研究动态多播业务量疏导问题。主要贡献在于:针对现有动态多播业务量疏导算法的缺点,本文提出了两种动态多播业务量疏导算法。这两种算法的基本思想是通过尽量扩展已有的光树来为新业务提供连接,从而提高波长利用率和避免构建分层图来进行疏导带来的高复杂度。仿真结果表明这两种算法可以有效地提高波长利用率和降低网络阻塞概率。
With the development of network technologies and the variety of user's requirements, multicast applications such as video conferencing, high-definition television, interactive distance learning, and distributed games become widely popular. On the other hand, the emergence of wavelength-division multiplexing (WDM) technology has made it possible for a single fiber to provide vast amount of bandwidths and opened the gates for bandwidth-intensive multicast applications. Therefore, the problem of supporting multicasting in WDM networks has become a research topic in recent years. In order to realize the optical layer multicasting, various techniques are required from both the data plane and control plane. Currently, there are still a lot of open issues for both of the data plane and control plane in multicast capable WDM networks. This dissertation investigates multicast algorithms in the control plane. Specifically, we mainly focus on the following aspects: constrained multicast routing in WDM networks, dedicated multicast protection, shared multicast protection, and multicast traffic grooming.
     In real networks, physical layer properties may set some constraints on the multicast routing problem. Chapter 2 of this dissertation studies the constrained multicast routing problem in WDM networks. The main contributions include: (1) to reduce network construction cost, it is desirable to configure light-splitting nodes sparsely in WDM networks. However, existing sparse-splitting constrained multicast routing algorithms have different pitfalls in terms of consumed cost, the number of established light-trees, and the computation complexity. To address these problems, this thesis proposes an efficient sparse-splitting constrained multicast routing algorithm and conducts extensive simulations to evaluate the performance of the algorithm. (2) It has been widely recognized that physical layer constraints, including wavelength continuity constraint and transmission impairments, must be taken into account when routing multicast connections in all-optical networks. To the best of our knowledge, the problem of multicast routing under wavelength continuity and transmission impairments (polarization mode dispersion and amplifier spontaneous emission) constraints has not been studied. This dissertation studies this problem and proposes a multicast routing algorithm. The simulation results prove that the proposed algorithm can find a multicast tree with minimum cost under these constraints.
     In WDM optical networks, any single fiber failure may lead to multiple destinations of a multicast session fail to receive data. Therefore, it is important to provide protection for multicast sessions. Chapter 3 of this dissertation investigates the dedicated multicast protection algorithms for multicast sessions. The main contributions are summarized as follows. (1) The survivable multicast route derived by most of the existing algorithms may include some redundant links. To reduce protection resource, this dissertation first improves existing ILP (Integer Linear Programming) formulation for the dedicated multicast protection problem, and then proposes two algorithms. The two algorithms can remove the redundant links and avoid redundant links in the process of building survivable multicast route, respectively. The simulation results show that the two algorithms have better performance than other existing algorithms. Furthermore, the solutions generated by the two proposed algorithms are quite close to the solutions generated by ILP. (2) With sparse-splitting constraint, the backup paths derived by existing algorithms can not share wavelength channels with primary tree. On the other hand, with wavelength continuity constraint, some of the existing algorithm even can not find link-disjoint backup paths. To address these problems, this dissertation proposes a multicast protection algorithm under sparse-splitting and wavelength continuity constraints. The backup paths derived by the proposed algorithm can share wavelength channels with primary tree in sparse-splitting networks. Due to wavelength channels sharing among primary tree and backup paths, the blocking probability caused by failures of finding link-disjoint backup paths is reduced. Simulation results show that the algorithm can improve wavelength utilization ratio and blocking probability.
     As we know, backup resource sharing within different multicast sessions can reduce consumed backup resources and enhance wavelength utilization ratio. Currently, only a few of literatures studied the shared multicast protection problem. Chapter 4 of this dissertation investigates the shared multicast protection algorithms for multicast sessions. The main contributions are summarized as follows. (1) This dissertation studies the shared multicast protection problem under SRLG (Shared Risk Link Group) constraints. With SRLG constraints, it is possible that we can't find a link-disjoint backup path for a primary path. This is the so-called "trap" problem. Segment protection scheme is regarded as an efficient scheme to avoid traps. However, most of the existing segment multicast protection algorithms use fixed approaches to divide segments for a multicast tree. These fixed approaches have two pitfalls. First, these fixed approaches can't avoid traps in some cases. Secondly, these fixed approaches can't guarantee the optimization of wavelength utilization ratio. Therefore, this dissertation proposes an efficient shared segment multicast protection algorithm, which divide segments for a primary tree according to the network status and the SRLGs traversed by the primary tree. The proposed algorithm can avoid traps and enhance the wavelength utilization ratio efficiently. (2) As far as we know, the problem of shared multicast protection under sparse-splitting constraints has not been studied. This dissertation investigates the problem of shared multicast protection in sparse-splitting WDM networks, and proposes an efficient algorithm for shared multicast protection with sparse-splitting constraints. The proposed algorithm can achieve self-sharing and spare-capacity sharing (backup wavelength channels sharing within different multicast sessions) in sparse-splitting networks. Simulation results show that through wavelength channels sharing, the performance of wavelength utilization ratio and blocking probability is improved.
     In WDM networks, each wavelength channel has a transmission rate on the order of tens of Gigabits per second. However, most multicast applications have bandwidth requirements that are far less than that provided by a wavelength channel. Therefore, in order to efficiently utilize resources, multiple sub-wavelength traffic requirements are groomed onto a single wavelength channel. Currently, only a few of literatures investigated the dynamic multicast traffic grooming problem. The existing dynamic multicast traffic grooming algorithms can be divided into two categories. The algorithms in the first category use auxiliary graph to groom dynamic multicast traffics. And the algorithms in the second category try to use established light-trees to accommodate a new multicast traffic. Due to the large number of nodes in the auxiliary graph constructed by the algorithms in first category, the computation complexity of the algorithms in first category is very high. And the wavelength utilization ratio of the algorithms in the second category is very low. To address these problems in existing algorithms, this dissertation proposes two dynamic multicast traffic grooming algorithms. In the two proposed algorithms, an existing light-tree can be reconfigured or extended when a route is to be established for a new request, and the residual bandwidth can be used by the new request. The simulation results show that the proposed algorithms can improve the network resource utilization ratio and blocking probability.
引文
[1]B.Mukherjee.WDM optical communication networks:progress and challenges.IEEE Journal on Selected Areas in Communications,2000,18(10):1810-1824.
    [2]A.Rodriguez-Moral,P.Bonenfant,S.Baroni,et al.Optical data networking:protocols,technologies,and architectures for next generation optical transport networks and optical internetworks.IEEE/LEOS Journal of Lightwave Technology,2000,18(12):1855-1870.
    [3]韦乐平.向3T级骨干网络演进.《电信网技术》,2001,4(3):1-5.
    [4]李乐民,温蜀山.IP与ATM/SDHAVDM技术的结合。中兴新通讯,1999,21(6):1-8.
    [5]李乐民.IP over WDM网络的研究.电子科技大学学报,2003,32(3):225-229.
    [6]P.Tomsu,C.Schmutzer.Next Generation Optical Networks:The Convergence of IP Intelligence and Optical Technologies(version 1).Prentice Hall PTR,2001.
    [7]B.T.Doshi,S.Dravida,P.Harshavardhana,et al.Optical Network Design and Restoration.Bell Labs Technical Journal,1999,4(1):58-84.
    [8]J.Aboul-Magd,B.Jamoussi,S.Shew,et al.Automatic Switched Optical Network(ASON)Architecture and Its Related Protocols.,Work in Progress.
    [9]ITU-T G.872.Architecture of Optical Transport Networks.
    [10]ITU-T G.807/Y.1302.Requirements for the Automatic Switched Transport Network(ASTN).
    [11]Nina Skorin-Kapov.Heuristic algorithms for virtual topology design and routing and wavelength assignment in WDM networks.Ph.D Dissertation,University of Zagreb,2006.
    [12]K.Sohraby,M.T.Fatehi.Digital container:a mechanism for heterogeneous traffic transport over an all-optical network.Optical Networks Magazine,2001,1(1):45-57.
    [13]W.E.Leland,M.S.Taqqu,W.Willinger,D.V.Wilson.On the self-similar nature of Ethernet traffic(extended version).IEEE/ACM Trans.Networking,1994,2(1):1-15.
    [14]D.K.Hunter,I.Andonovic.Approaches to optical Internet packet switching.IEEE Communications Magazine,2000,38(9):116-122.
    [15]L.Xu,H.G.Perros,G.Rouskas.Techniques for optical packet switching and optical burst switching.IEEE Communications Magazine,2001,39(1):136-142.
    [16]D.K.Hunter,et al.WASPNET:a wavelength switched packet network.IEEE Communications Magazine,1999,37(3):120-129.
    [17]S.Yao,B.Mukherjee,S.Dixit.Advances in photonic packet switching:an overview.IEEE Communications magazine,2000,38(2):84-94.
    [18]C.Qiao,M.Yoo.Optical burst switching(OBS)-a new paradigm for an optical Internet.Journal of High Speed Networks,1999,8(1):69-84.
    [19]J.S.Turner.Terebit burst switching.Journal of High Speed Networks,1999,8(1):3-16.
    [20]A.Ge,F.Callegati.On optical burst switching and self-similar traffic.IEEE Communications Letters,2000,4(3):98-100.
    [21]Y.Xiong,M.Vandenhoute,H.Cankaya.Control architecture in optical burst-switched WDM networks.IEEE Journal on Selected Areas in Communications,2000,18(8):1838-1851.
    [22]Biao Chen,Jianping Wang.Hybrid Switching and P-Routing for Optical Burst Switching Networks,IEEE Journal on Selected Areas in Communications,2003,21(7):1071-1080.
    [23]C.M.Gauger,B.Mukherjee.Optical burst transport network(OBTN)-a novel architecture for efficient transport of optical burst data over lambda grids,in Proceedings of IEEE HPSR'03,2005,58-62.
    [24]C.T.Chou,F.Safaei,P.Boustead,I.Ouveysi,A hybrid optical network architecture consisting of optical cross-connects and optical burst switches.In Proceedings of ICCCN'03,2003,53-58
    [25]B.Mukherjee.WDM-based local lightwave networks part Ⅰ:Single-hop systems.IEEE Network,1992,6(5):12-27.
    [26]B.Mukherjee.Optical communication networks.McGraw-Hill,1997.
    [27]A.Banerjee,J.Drake,J.P.Lang,et al.Generalized multiprotocol label switching:an overview of routing and management enhancements.IEEE Communications Magazine,2001,39(1):144-150.
    [28]D.O.Awduche,Y.Rekhter,J.Drake,et al.Multi-protocol lambda switching:combining MPLS traffic engineering control with optical crossconnects.Work in Progress.
    [29]J.Lang.Link Management Protocol(LMP). Work in Progress.
    [30]A.Fredette,J.Lang.Link Management Protocol(LMP) for Dense Wavelength Division Multiplexing(DWDM) Optical Line Systems. Work in Progress.
    [31]B.Rajagopalan,D.Saha.Link Bundling in Optical Networks. Work in Progress.
    [32]D.Papadimitriou et al.Analysis of Generalized MPLS-based Recovery Mechanisms,IETF draft,2003,draft-ietf-ccamp-gmpls-recovery-analysis-01.txt.
    [33]J.Lang,et al.Generalized MPLS Recovery Functional Specification.IETF draft,2003,draft-ietf-ccamp-gmpls-recovery-ftmctional-00.txt.
    [34]M.Brunner,C.Hullo.GMPLS fault management and its impact on service resilience differentiation,presented at Integrated Network Management,2003.IFIP/IEEE Eighth International Symposium on,2003.
    [35]G.Chang,G.Ellinas,J.Gamelin,et al.Multi-wavelength reconfigurable WDM/ATMJ SONET network testbed.IEEE/LEOS Journal of Lightwave Technology,1996,14(6):1320-1340.
    [36]R.Wagner,R.Alferness,A.Saleh,et al.MONET:multi-wavelength optical networking.IEEE/LEOS Journal of Lightwave Technology,1996,14(6):1349-1355.
    [37]http://www-phys.llnl.gov/H_Div/photonics/NTONC.html
    [38]http://www.canarie.ca/canet4/index.html
    [39]http://www.optiputer.net/
    [40]http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/WebHome
    [41]http://www.lucent.com/press/0404/040421.nsa.html
    [42]http://www.azonano.com/details.asp?ArticleID=794
    [43]http://ocpn.ece.ucsb.edu
    [44]M.Mahony,D.Simeonidou,A.Yu,et al.The design of a European optical network.IEEE/LEOS Journal of Lightwave Technology,1995,13(5):817-828.
    [45]S.Johansson.Transport network involving a recontigurable WDM network layer-a European demonstration.IEEE/LEOS Journal of Lightwave Technology,1996,14(6):1341-1348.
    [46]http://www.ist-stolas.org
    [47]http://david.com.dtu.dk/
    [48]http://www.ist-lasagne.org
    [49]http://www.ist-nobel.org
    [50]http://www.ist-mupbed.org
    [51]李乐民.WDM光交换网络的研究与展望。中国光纤通信年鉴(2001-2005),2006,48-53.
    [52]刘华,曾庆济,IP优化的下一代光通信网络.《中兴新通讯》,6(6),2000年12月.
    [53]王晟,李乐民,WDM网络及其对IP业务的支持.《中国通信》,1999(8):19-24.
    [54]徐志根,郭奕理,光通信与全光网络.《中国通信》,1999(8):43-48.
    [55]毛谦,光传送网(OTN)的基本概念.《中国通信》,1999(8):31-36.
    [56] http://www.cainonet.net.cn
    
    [57] S. Paul. Multicasting on the internet and its applications, Kluwer, 1998.
    
    [58] C. Miller. Multicast networking and applications, Addison-Wesley, 1999.
    
    [59] R. Malli, X. Zhang, and C. Qiao: Benefit of multicasting in all-optical networks, Proc. of SPIE All-Optical Networking '98,1998,3531:209-220.
    [60] A. Ding, G. P. A survey of optical multicast over WDM networks. Computer Communications, 2003,26:193-200.
    [61] G. Rouskas. Optical layer multicast: rationale, building blocks, and challenges. IEEE Network. 2003,23(2):60-65.
    [62] A. Ding, G.-S. Poo. A survey of optical multicast over WDM networks, Computer Communications, 2003,26:193-200.
    [63] D. Thaker, G. N. Rouskas. Multi-destination communication in broadcast WDM networks: a survey. Optical Networks Magazine, 2002, 3:34-44.
    [64] X. Zhang, J. Wei, C. Qiao. On fundamental issues in IP over WDM multicast. In proceedings of ICCCN '99. 1999, 84-90.
    [65] C. Qiao, M. Jeong, X. Zhang, J. Wei. WDM multicasting in IP over WDM networks. In Proceedings of ICNP '99, 1999, 89-96.
    [66] M. Jeong, H. Cankaya, C. Qiao. On a new multicasting approach in optical burst switched networks. IEEE Communications Magazine. 2002,22(11):96-103.
    [67] M. Jeong, H. Cankaya, C. Qiao. Efficient multicast schemes for optical burst-switched WDM networks. IEEE ICC 2000,2000,1289-1294.
    [68] S. Yoshima, K, Onohara, N. Wada, et al. Multicast-capable optical code label switching and its experimental demostration. Journal of Lightwave Technology, 2006,24(2):713-712.
    [69] X. Liu, H. Wang, Y. Ji. Hybrid multicast mode in all-optical networks. Photonics Technology Letter, 2007,19(16): 1212-1214.
    [70] X. Li, H. Hamdi. Design of a scalable hybrid multicast packet switch with optical fabric. In Proceedings of ICC '04, 2004, 3:1760-1765.
    [71] W. Hu and Q. Zeng. Multicast Optical Cross Connects Employing Splitter-and-Delivery. IEEE Photonic Technology Letter, 1998,10:970-972.
    
    [72] E. Desurvire. Erbium-Doped Fiber Amplifiers: Principles and Applications, Wiley, 1994.
    [73] M. Ali, J.S. Deogun. Cost-effective implementation of multicasting in Wavelength-Routed Networks. IEEE/OSA Journal of Lightwave Technology,2000, 18(12):1628-1638.
    [74] M. Ali, J. Deogun. Power Efficient Design of Multicast Wavelength-Routed Networks. IEEE Journal On Selected Areas on Communication, 2002, 18(10):1852-1862.
    [75] Zhang, H., et al. A review of routing and wavelength assignmentapproaches for wavelength-routed optical WDM networks. Optical Networks Magazine, 2000,1(1): 47-60.
    [76] F. Hwang, D. Richards, P. Winter. The steiner tree problem. Amsterdam, 1992.
    [77] H. Promel, A. Steger. The steiner tree problem: a tour through graphs, algorithms, and complexity. vieweg, 2000.
    [78] H. Takahashi, A. Matsuyama. An approximate solution for the Steiner problem in graphs, Math Japonica, 1980, 24:573-577.
    [79] J. Strand, J. Chiu, A.Tkach. Issues for routing in the optical layer. IEEE Communications Magazine, 2001, 39(2):81-87.
    [80] 12.R. Tkach., et al. Fundamental limits of optical transparency. In Proceedings.of OFC '98, 1998,161-162.
    [81] S. Wang, L. Li. Impairment aware optimal diverse routing for survivable optical networks. Photonic Network Communications, 2007, 13:139-154.
    [82] A. N. Washington, H. G. Perros, R. Dutta. A Survey of Optical Network Survivability, NCSU CSC, Technical Report TR-2002-08, 2002
    [83] A. J. Vernon, J. D. Portier. Protection of Optical Channels in All-Optical Networks. 18th Annual National Fiber Optic Engineers Conference (NFOEC 2002), Dallas, 2002: 1695-1706.
    [84] D. Zhou, S. Subramaniam. Survivability in Optical Networks. IEEE Network, 2000, 14(6):16-23.
    [85] W.D. Groover. Mesh-based survivable networks: Options and strategies for optical, MPLS, SONET and ATM networking. NJ: Prentice Hall PTR, 2004.
    [86] Jean-Philippe Vasseur, Mario Pickavet, Piet Demeester. Network recovery: protection and restoration of optical SONET-SDH, IP, and MPLS. BOSTON: Elsevier, 2004.
    [87] P. H. Ho, J. Tapolcai, H. T. Mouftah. On achieving optimal survivable routing for shared protection in survivable next-generation Internet. IEEE Transactions on Reliability, 2004, 53(2): 216-225.
    [88] C. H. Ou, J. Zhang, H. Zang, H, et al. New and improved approaches for shared-path protection in WDM mesh networks. IEEE/OSA Journal of Lightwave Technology, 2004, 22(5):1223-1232.
    [89] H. Zang, C. Ou, B. Mukherjee. Path-protection routing and wavelength assignment (RWA) in WDM mesh networks under duct-layer constraints. IEEE/ACM Transactions on Networking, 2003,11(2): 248-258.
    [90] P. H. Ho, H. Mouftah. A framework for service-guaranteed shared protection in WDM mesh networks, IEEE Commun. Mag., 2002,40: 97-103.
    [91] D. Xu, Y. Xiong, C. Qiao. Novel Algorithms for Shared Segment Protection, IEEE Journal on Selected Areas in Communications, 2003,21: 1320-1331.
    [92] C. Ou, H. Zang, N. K. Singhal. Subpath Protection for Scalability and Fast Recovery in Optical WDM Mesh Networks, IEEE Journal on Selected Areas in Communications, 2004, 22:1859-1875.
    [93] X. Shao, G, Xiao, L. Zhou. Hybrid protection in WDM networks with shared risk link groups. Photonic Network Communications, 2006,12: 295 - 307.
    [94] D. Xu, Y. Xiong, C. Qiao. A New PROMISE Algorithm in Networks with Shared Risk Link Groups, in GLOBECOM 2003,2003:2536-2540.
    [95] P.-H. Ho, H. T. Mouftah. A Novel Survivable Routing Algorithm for Shared Segment Protection in Mesh WDM Networks With Partial Wavelength Conversion, IEEE Journal On Selected Areas In Communications, 2004,22(8): 1548-1560.
    [96] C. V. Saradhi, M. Gurusamy, L. Zhou. Differentiated QoS for survivable WDM optical networks. IEEE Communications Magazine, Suppl. S, 2004: S8-S14
    [97] L. Guo, H. Yu, and L. Li. Joint routing-selection algorithm for a shared path with differentiated reliability in survivable wavelength-division-multiplexing mesh networks. Optics Express, 2004,12 (11): 2327-2337.
    [98] T. Cinkler. Traffic and λ grooming telecommunication networks. IEEE Network, 2003, 17(2): 16-21.
    [99] K. Zhu, B. Mukherjee. A review of traffic grooming in WDM optical networks: architectures and challenges. Optical Network Magazine, 2003,4(2):55-64.
    [100] R. Dutta, G. Rouska. Traffic grooming in WDM networks: past and future. IEEE Network. 2002,16(6):46-56.
    [101] E. Modiano. Traffic grooming in WDM networks. IEEE Communications Magazine, 2001, 39(7): 124-129.
    [102] X. Zhang, C. Qiao. An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings. IEEE/ACM Transactions on Networking, 2000, 8(5):608-617.
    [103] O. Gerstel, R. Ramaswami, G. H. Sasaki. Cost-effective traffic grooming in WDM rings. IEEE/ACM Transactions on Networking, 2000, 8(5):618-630.
    [104] J. M. Simmons, E. L. Goldstein, A. A. M. Saleh. Quantifying the benefit of wavelength add-drop in WDM rings with distance-independent and dependent traffic. Journal of Lightwave Technology, 1999,17(1): 48-57.
    [105] R. Dutta, G. N. Rouskas. On optimal traffic grooming in WDM rings. IEEE Journal on Selected Areas in Communications, 2002, 20(1):110-121.
    [106] J. Wang, W. Cho, V. Rao Vemuri, et al. Improved approaches for cost-effective traffic grooming in WDM ring networks: ILP formulations and single-hop and multihop connections. Journal of Lightwave Technology, 2001, 19(11): 1645-1653.
    [107] R. Berry, E. Modiano. Reducing electronic multiplexing costs in SONET/WDM rings with dynamically changing traffic. IEEE Journal on Selected Areas in Communications, 2000, 18(10):1961-1971.
    [108] V. R. C. Konda, T.Y. Algorithm for traffic grooming in optical networks to minimize the number of transceivers. In Proceedings of IEEE High Performance Switching and Routing, 2001.
    [109] M. Brunato, R. Battiti. A Multistart Randomized Greedy Algorithm for Traffic Grooming on Mesh Logical Topologies. In Proceedings of Optical Network Design and Modelling, 2002.
    [110] H. Zhu, H. Zang, K. Zhu, et al. A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM Transactions on Networking, 2003, 11(2):285-299.
    [111] R. Srinivasan, A. K. Somani. Dynamic routing in WDM grooming networks. Photonic Network Communications, 2003, 5(2): 123-135.
    [112] S. Thiagarajan, A. K.Somani. Capacity Fairness of WDM Networks with Grooming Capabilities. Optical Networks Magazine, 2001, 2(3):24-32.
    [113] R. Srinivasan, A. K. Somani. A generalized framework for analyzing time-space switched optical networks. IEEE Journal on Selected Areas in Communications, 2002, 20(1):202-215.
    [114] K. Zhu, B. Mukherjee. On-line approaches for provisioning connections of different bandwidth granularities in WDM mesh networks, In Proceedings of OFC '02, 2002.
    [115] J. Louis Anthony Cox, J. R. Sanchez. Cost Savings from Optimized Packing and Grooming of Optical Circuits: Mesh Versus Ring Comparisons. Optical Networks Magazine, 2001, 2(3):72-90.
    [116]K.Zhu,H.Zhu,B.Mukherjee.Traffic engineering in multigranularity heterogeneous optical WDM mesh networks through dynamic traffic grooming.Network,IEEE,vol.17,no.2,pp.8-15,2003.
    [117]H.Zhu,K.Zhu,H.Zang,et al.Cost-effective WDM backbone network design with OXCs of different bandwidth granularities.IEEE Journal on Selected Areas in Communications,2003,21(9):1452-1466.
    [118]L.H.Sahasrabuddhe,B.Muldaerjee.Light-trees:Optical multicasting for improved performance in wavelength-routed networks.IEEE Communincation Magazine,1999,37:67-73.
    [119]Y.Peng,Y.Jin.Impairment constraint multicasting in translucent WDM networks:Architecture,network design and multicasting routing.Photonic Network communications,2007,13(1):93-102.
    [120]X.Wang,S.Wang,Lemin Li.Multicasting on translucent multicast capable WDM mesh networks.International Journal of Electronic and Communication,2007,in press.
    [121]M.Ali,J.Deogun.Allocation of splitting nodes in all-optical wavelength-routed networks.Photonic network communications,2000,2(3):247-265.
    [122]M.Ali.Optimization of splitting node placement in wavelength-routed optical networks.IEEE Jouranl on Selected Areas in Communications,2002,20(8):1571-1579.
    [123]Y.Cao,O.Yu.Optimal placement of light splitters and wavelength converters for multicast in WDM networks.In Proceedings of IEEE ICCCAS'05,2005,585-589.
    [124]Junyan Li,Sheng Wang,Xiong Wang.Robust Solution for Splitter Placement in All-Optical WDM Networks.In Proceedings of IEEE ICCCAS'07,2007,456-460.
    [125]H.Lin,S.Wang.Splitter Placement in all-optical WDM networks.In Proceedings of IEEE Globecom '05,2005,306-310.
    [126]A.Billah,B.Wang,A.A.S.Awwal.Topology based placement of multicast capable nodes for supporting efficient multicast communication in WDM optical networks.Photonic Network Communication,2006,20(5):1121-1133.
    [127]X.-H.Jia,D.-Z.Du,X.-D.Hu,M.-K.Lee,J.Gu.Optimization of wavelength assignment for QoSmulticast in WDM networks.IEEE Transactions on Communications,2001,49:341-350.
    [128]X.-H.Jia,D.-Z.Du,X.-D.Hu,M.-K.Lee,J.Gu.Integrated algorithms for delay bounded multicast routing and wavelength assignment in all optical networks.Computer communication,2001,24:1390-1399.
    [129] G. Sahin, M. Azizoglu. Multicast routing and wavelength assignment in wide-area networks. In Proceedings of SPIE APOC '98, 1998, 3531:196-208.
    [130] A. Hamad, A. Kamal. Routing and wavelength assignment with power aware multicasting in WDM networks. In Proceeding of Broadband Networks'05,2005, 1:31-40.
    [131] T. Hu, H. Moutah. Dynamic constrained multicast routing in WDM networks:blocking probability, QoS and taffic engineering. In Proceedings of ISCC'06, 2006, 974-980.
    [132] X. Hu, T. Shuai, X. Jia, M. Zhang. Multicast routing and wavelength assigment in WDM networks with limited drop-offs. In Proceedings of INFOCOM'04, 2004, 1: 870-880.
    [133] R. Libeskind-Hadas, R. Melhem. Multicast routing and wavelength assignment in multihop opticalnetworks. IEEE/ACM Transactions on Networking, 2002, 10(5),621-629.
    [134] B. Chen, J. Wang. Efficient routing and wavelength assignment for multicast in WDM networks. IEEE Journal on Selected Areas in Communication. 2002, 20(1):97-109.
    [135] J. Wang, B. Chen, R. Uma. Dynamic wavelength assignment for multicast in all-optical WDM networks to maximize the network capacity. IEEE Journal on Selected Areas in Communication, 2003, 21(8):1274-1284.
    [136] G. Poo, Y. Zhou. A new multicast wavelength assignment algorithm in wavelength-routed WDM networks. IEEE Journal on Selected Areas in Communication, 2006, 24(4):2-12.
    [137] Z. Zhang, Y. Yang. On-Line optimal wavelength assignment in WDM networks with shared wavelength converter pool. IEEE/ACM Transactions on Networking, 2007, 15(1):234-245.
    [138] Y. Zhou, G. Poo. Multicast wavelength assignment for sparse wavelength conversion in WDM networks. In proceedings of INFOCOM'06, 2006.
    [139] T. De, S. Sen. Multicast routing and wavelength assignment in sparse splitting all optical networks. In proceedings of WOCN'06, 2006,11-13.
    [140] J. Wang, Xiangtong Qi, Biao Chen. Wavelength assignment for multicast in all-optical WDM networks with splitting constraints. IEEE/ACM Transactions on Networking, 2006, 14(1),169-182.
    [141] S. Ramesh, G. N. Rouskas, H. G. Perros. Computing call blocking probabilities in multi-classwavelength routing networks with multicast traffic. IEEE Journal on Selected Areas in Communications, 2002, 20: 89-96, 2002.
    [142] A. E. Kamal and A. K. Al-Yatama. Blocking probabilities in circuit-switched wavelength division multiplexing networks under multicast service. Performance Evaluation, 2002, 47:43-71.
    [143] X. Zhang, J. Y. Wei, C. Qiao. Constrained multicastingrouting in WDM networks with sparse light splitting. IEEE/OSA Journal of Lightwave Technology, 2000, 18(12):1917-1927.
    [144] S. Yan, J. S. Deogun, M. Ali. Routing in sparse splitting optical networks with multicast traffic. Computer Networks, 2003,41(2): 89-113.
    [145] C. Y. Hsieh, W. Liao. All optical multicast routing in sparse-splitting optical networks. In Proceeding of Of IEEE LCN '03, 2003,20:162-167.
    [146] N. Sreenath, N. Krishna Mohan Reddy, G. Mohan. Virtual source based multicast routing in WDM networks with sparse light Splitting. In Proceeding of IEEE HPSR '01, 2001, 10(5): 141-145.
    [147] C. Hsieh, W. Liao. All-optical multicast routing in sparse-splitting WDM networks. IEEE Journal on Selected Areas in Communication, 2007,25(6):51-62.
    [148] A. Zsigri, A. Guitton, M. Molnar. Construction of light-trees for WDM multicasting under splitting capability constraints. In proceedings of ICT'03.
    [149] Y. Xin, G. Rouskas. Multicast routing under optical layer constraints. In proceedings of INFOCOM'04,2004,26:2731-2742.
    [150] K. Wu, J. Wu, C. Yang. Multicast routing with power consideration in sparse splitting WDM networks. In proceeding of ICC'01,2001, 513-517.
    [151] V. Kompella, J. Pasquale, G. Polyzos. Multicast routing for multimedia communication. IEEE/ACM Transaction on Networking, 1993, 1(3):286-293.
    [152] G. Rouskas, I. Baldline. Multicast routing with end-to-end delay and delay variation constratints. IEEE Journal on Selected Areas in Communictions, 1997,15(3):346-537.
    [153] X. Wang, H. Cheng, L, Zheng, M. Huang. Bandwidth guarateed, delay, and delay variation-bounded integrated routing and wavelength assignment algorithm for multicast in IP/DWDM optical Internet. In proceedings of SPIE, 2004, 5281:404-411.
    [154] M. Parsa, Q. Zhu, J. Garcia-Luna-Aceves. An iterative algorithm for delay-constrained minimum-cost multicasting. IEEE/ACM Transactions on Networking, 1998. 6(4):461-474.
    [155] N. Singhal, B. Mukherjee. Protecting Multicast Sessions in WDM Optical Mesh Networks. IEEE/OSA Journal of Lightwave Technology. 2003, 21(4):884-892.
    [156] N. Singhal, L. sahasrabuddhe, and B. Mukherjee. Provisioning of Survivable Multicast Sessions Against Single Link Failures in Optical WDM Mesh Networks. IEEE/OSA Journal of Lightwave Technology, 2003, 21(11):2587-2594.
    [157] H. Luo, L. Li, H. Yu. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks. Journal of Optical Networking, 2006.5(12):1071-1083.
    [158] A. Khalil, A. Hadjiantonis, G. Ellinas. M. Ali. Dynamic Provisioning of Survivable Heterogeneous Multicast and Unicast Traffic in WDM Networks. In Proceedings of the ICC'06. 2006, 6:2465-2470.
    [159] T. Rahman, G. Ellinas. Protection of multicast sessions in WDM mesh optical networks. In Proceedings of OFC'05, 2005, 2590-2592.
    [160] A. Fei, J. Cui, M. Gerla. A "dual-tree" scheme for fault-tolerant multicast. In proceedings of ICC'01, 2001,690-694.
    [161] R. Lin, S. Wang, L. Li. Protections for multicast session in WDM optical networks under reliability constraints. Journal of Network and Computer Applications, 2007, 20:695-705.
    [162] N. Sreenath, T. S. Prasad. Protecting multicast sessions from link and node failures in sparse-splitting WDM networks. In Proceedings of IWDC'05, 2005, 3741:195-200.
    [163] N. Singhal, C. Ou, B. Mukherjee. Cross-sharing vs. self-sharing trees for protecting multicast sessions in mesh networks. Computer Networks, 2006, 50:200-206.
    [164] Q. Yu, N. Ge. Protecting dynamic multicast sessions in optical WDM mesh network. In Proceedings ICICS'05, 2005, 1187-1190.
    [165] L. Liao, L. Li, S. Wang, Dynamic segment shared protection for multicast traffic in meshed wavelength-division-multiplexing optical networks. Journal of Optical Networking, 2006, 5(12):1084-1092.
    [166] Y. Li, Y. Jin, L. Li, On finding the multicast protection tree considering SRLG in WDM optical networks. ETRI Journal, 2006, 28(4):545-548.
    [167] H. Luo, H. Yu, L. Li, S. Wang. On protecting dynamic multicast sessions in survivable mesh WDM networks. In Proceedings of IEEE ICC '06, 2006, 6: 835-840.
    [168] S. Hariri, G. Qu, R. Modukuri, et al. Quality-of-protection (QoP)-an online monitoring and self-protection mechanism. IEEE Journal on Selected Areas in Communications, 2005, 23(10): 1983-1993.
    [169] W. Zhang, G. Xue, J. Tang, et al. Linear time construction of redundant trees for recovery schemes enhancing QoP and QoS. In proceedings of INFOCOM'05, 2005,4: 2702-2710.
    [170] R. UI-Mustafa, A. Kamal. On the grooming of multicast traffic in WDM networks. In Proceedings of ISSCC04, 2004, 1:76-81.
    [171]R.Abdur,B.Billah,B.Wang,A.Awwal.Multicast traffic grooming in WDM optical mesh networks.In Proceedings of GLOBECOM'03,2003.
    [172]G.Chowdhary,C.Murthy.Grooming of multicast sessions in WDM mesh networks.Workshop on Traffic Grooming.2004.
    [173]A.Rawat,R.La,S.Marcus,M.Shayman.Grooming multicast traffic in unidirectional SONET/WDM rings.IEEE Journal on Selected Areas in Communication,2007,25(6):70-83.
    [174]A.Khalil,A.Hadjiantonis,C.Assi,et al.Dynamic provisioning of low-speed unicast/multieast traffic demands in mesh-based WDM optical networks.Journal of Lightwave Technology,2006,23(2):681-693.
    [175]X.Huang,F.Farahmand,J.Jue.Multicast traffic grooming in wavelength-routed WDM mesh networks using dynamically changing light-trees.Journal of Lightwave Technology,2006,23(10):3178-3187.
    [176]L.Liao,H.wen,L.Li.New dymamic grooming approaches for multicast traffic in meshed wavelength-division-multiplexing networks.Optical Engineering,2007,46(2):
    [177]A.Kamal.Algorithms for multicast traffic grooming in WDM mesh networks.IEEE Communication Magazine,2006,20(11):96-105.
    [178]T.H.Corman,C.E.Leiserson,R.L.Rivest,Introduction to Algorithms,2nd ed,MIT Press,2001.
    [179]J.W.Suurballe:Disjoint paths in a network.Networks,1974,4:125-145.
    [180]P.J.Plauger,A.A.Stepanov,M.Lee,et al.The C++ Standard Template Library:Prentice Hall.
    [181]G.Siek.L.Lee,A.Lumsdaine.The Boost Graph Library.Pearson,2002.
    [182]M.H.Austern.Generic Programming and the STL.Addison Wesley.
    [183]熊光楞,肖田元,张燕云.连续系统仿真与离散事件系统仿真.清华大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700