用户名: 密码: 验证码:
导航接收机实时调度关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国新一代卫星导航接收机研发过程中,为了满足各种应用需求,接收机种类较多,不仅必须具备多频多通道卫星信号接收的基本功能,通常还需要具备多径抑制、抗干扰、高动态载体导航、信息加解密等功能,某些高端接收机更是集上述功能于一身,功能模块繁多,时序调度控制复杂。同时在研发及试验过程中,设计需求难免会发生变更,需要增加新的功能模块。传统开发方法关注模块级设计,将功能测试正确的模块直接整合到接收机任务集中;对接收机整体调度设计则是较多地停留在方案层,缺少定量的可操作性强的实时调度优化设计方法和性能评估方法,其后果是不能及时发现潜在的时序冲突,在研发中后期需要花费大量的人力时间成本,从而导致开发效率低下。
     在接收机设计阶段对实时调度进行规划可以有效地提高开发效率。随着不断发展的嵌入式处理器逐渐具备成熟的静态优先级调度内核,接收机设计人员已不再需要自己设计任务调度内核,而是重点对接收机任务的执行时间、优先级、周期和相对截止时间进行离线优化设计,确保调度内核中运行的所有任务实时可调度,并尽可能降低接收机功耗——这正是论文研究的重点。
     论文针对上述特点,着重研究导航接收机任务集调度优化技术和调度性能评估方法,主要工作和创新如下:
     系统地研究导航接收机任务参数离线优化技术。论文提出静态优先级实时调度性能评估方法,全面考虑了接收机任务执行时间、优先级、周期和相对截止时间的定量分析。提出并解析证明了接收机有限优先级情况下的可调度判定准则。传统开发中欠缺定量的可操作性强的接收机实时调度优化设计方法,主观决断往往导致开发效率低下。针对上述不足,提出最大允许执行时间均衡二分寻优的离线数值计算方法,指明了使得任务集可调度的最大允许执行时间,有利于解决设计需求变化引发的调度时序冲突;提出并论证了截止期单调保序饱和分配算法能够得到最少优先级,指明系统最少需要分配的优先级数目,有利于设计阶段处理器选型;提出降频节能调度方法,在保障导航任务可调度前提下尽可能降低接收机功耗。研究成果为接收机任务调度、时序分配和功耗规划提供了理论依据。优化设计常用的导航函数是保障任务集可调度、降低接收机功耗的重要手段。
     对基带信号估计、鉴相、定位解算等常用非线性导航运算进行系统地优化,提出使用差分进化算法离线寻求逼近多项式最优系数的方法,解决了直接运算调度开销太大和传统级数逼近类优化方法精度不够的弱点。以锁相环鉴相为例,在运算精度相同的前提下,本文方法运算量约是Chebyshev级数逼近的1/2,约是Taylor级数逼近的1/1700。
     在设计阶段关注接收机外围设备调度可以有效地提高接收机开发效率。论证了循环缓冲区可调度充要条件是外围设备总响应时间占总时间的比率小于1,提出求解开辟缓冲区最小空间的离线数值计算方法。提出改进的基于字的行进测试方法,用于快速诊断接收机外设存储器的静态非链接故障。研究成果为保障导航接收机外围设备实时调度提供了重要依据。
     针对导航任务多精度分档调度问题,提出基于截止期错失率可预测的时间冗余调度方法,消除了传统冗余方法可能引起的多个任务截止期连续错失的多米诺效应。进一步地在本文方法中融合传统时间冗余方法的优点,提出了求解检测点上界位置的离线快速算法,有效降低了截止期错失率。本文研究成果已成功应用于我国导航接收机实时调度设计。
In the process of R&D(Researching and Developing) our new generation satellite navigation receivers, which are classified into different categories in order to meet different requirements in applications, receivers must not only have multi-frequency and multi-channel satellite signal receiving functions, but also be inevitably of applicable functions, such as multipath suppression, antijamming, high dynamic carrier navigation, information encryption and decryption, and so on. Some top-class receiver even has all the above functions and need complicated timing control. Also, design demand often changes, which requires adding new modules. Traditional R&D methods focus on module-stage design. Adding tested modules directly into receiver task set lacks for controllable quantificational scheduling optimization and performance evaluation methods. This cannot troubleshoot the potential task timing conflict in time, which costs much especially at the late stage, and results in low efficiency.
     Considering real-time scheduling at the design stage can greatly improve the R&D efficiency. Navigation receivers adopt well-appointed fixed priority scheduling kernel. Designers only need to use it, and then pay attention to the off-line optimization of task execution time, priority, period and deadline, so that every task is scheduable, and reduce receiver’s power consumption, which is just the key of this dissertation. This dissertation focuses on navigation receiver task set scheduling optimization method and performance evaluation technology. The main contributions of this dissertation are as follows:
     The off-line optimization technology of navigation receiver task parameters is studied. The fixed priority scheduling performance evaluation method is proposed, where the quantitative analyses of task execution time, priority, period and deadline are considered. The determinant rule for receiver scheduling with limited priority levels is proposed and proved analytically. Traditional R&D methods lack for controllable quantificational scheduling optimization, subjective decision often results in low efficiency. An execution time dichotomy optimization off-line method is proposed based on equilibrium rule, aimed at troubleshooting timing conflict potentially aroused by demand changes. Deadline monotonic ordered saturated assignment is proved to have the least priority levels, which is much quicker than those tradional priority assignment algorithms. An energy-saving scheduling method based on decreasing frequency is proposed to reduce receivers’power consumption, still maintaining taskset schedulability. The above researches provide important theoretical principle for receiver task scheduling. Optimization design of common navigation functions is one of the important methods to guarantee task set schedulable and reduce receiver’s power consumption. As for execution time optimization design of navigation tasks, an optimizing method based on Differential Evolution is proposed to find optimal approximating polynomial coefficients of baseband digital signal processing tasks, such as signal estimation, discriminator, and navigation calculation. In contrast, direct calculation of the above processing costs too much, and tradional progression approximating methods need to improve their computing precision. Take arc tangent PLL discriminator as an example, the calculation complexity of our method is approximately 1/2 of Chebyshev progression approximating, and 1/1700 of Taylor progression approximating, with the same precision.
     Checking peripheral device scheduling at the design stage can greatly improve receiver’s R&D efficiency. This dissertation analytically proves that the circular buffer schedulablity requires the ratio of the total response time of the peripheral device to total time be less than 1, which is the sufficient and necessary condition. An off-line numerical method is proposed to calculate the minimal space of the circular buffer. And an improved word-oriented march test algorithm is proposed to diagnose all the static unlinked fault of the peripheral memory. The above researches provide important principle for receiver peripheral device scheduling.
     As for multi-precision redundancy scheduling of navigatin task, a time redundancy scheduling method with predictable Deadline Miss Ratio is proposed, which eliminates the domino effect of continuous deadline missing. Further improving approach is presented, and Deadline Miss Ratio can be effectively reduced by adopting traditional time redundancy techniques based on off-line checkpointing analysis. The techniques studied in this dissertation have been successfully applied to the real-time scheduling design of high quality navigation receivers.
引文
[1] Software-Defined GPS and Galileo Receiver: a Single-Frequency Approach[M]. Birkhauser Boston. 2006.11.
    [2] Elliott D. Kaplan, and Christopher J. Hegarty编著,寇艳红译. GPS原理与应用(第二版) [M].北京:电子工业出版社, 2007.7.
    [3] James Bao-Yen Tsui. Fundamentals of Global Positioning System Receivers - A Software Approach[M]. John Wiley & Sons, 2000.
    [4]王飞雪.直接序列扩频信号的全数字式快速捕获[D].长沙:国防科技大学研究生院, 1998.
    [5] Philip G Mattos, Giuseppe Gramegna. PALINURO ... A Single Chip GPS Receiver -RF, DSP, CPU, ROM, RAM All on One Piece of Silicon[C]. ION GNSS 17th International Technical Meeting of the Satellite Division, 2004.9:1501-1506
    [6] J. Mitola. Software radios survey, critical evaluation and feature directions[C]. National Telesystems Conference, 1992: 15-23.
    [7] J. Mitola. The software radio architecture[J]. IEEE Communications Magazine, 1995,33(5): 26-38.
    [8] Alexander Fridman and Serguei Semenov. Architectures of Software GPS Receivers[J]. GPS Solutions, 2000,3(4): 58-64.
    [9] Per-Ludvig Normark, Christian Stahlberg, Hybrid GPS/Galileo Real Time Software Receiver[C]. ION-GNSS-2005.
    [10] Vasu Chakravarthy, James Tsui, David Lin, and John Schamus, Software GPS Receiver[J]. GPS Solutions, 2001,5(2): 63-70.
    [11] Smurali Krishina, B.R. Madhukar and Ashok Kamath, Digital Signal Processors in GPS Receivers[J]. GPS Solutions, 2000,4(1): 67-71.
    [12] Logan Scott, Aleksandar Jovancevic and Suman Ganguly. Rapid Signal Acquisition Techniques for Civilian and Military User Equipments using DSP Based FFT Processing[C]. Proceedings of the ION GPS 2001, 2001.9: 2418-2427.
    [13] Peter Anderson, Gerald Whitworth, Vincent Ashe, Tom Carter. DSP & GPS Combination for Mobile Communication Platforms[C]. ION GNSS 17th International Technical Meeting of the Satellite Division, 2004.9: 1006-1012.
    [14] Fabio Dovis, Massimiliano Spelat, Paolo Mulassano, Claudio Leone. On the Tracking Performance of a Galileo/GPS Receiver Based on Hybrid FPGA/DSP Board[C]. ION GNSS 18th International Technical Meeting of the Satellite Division, 2005.9: 1611-1620.
    [15] Todd E. Humphreys, Mark L. Psiaki, and Paul M. Kintner, Jr., Brent M. Ledvina. GNSS Receiver Implementation on a DSP: Status, Challenges, and Prospects[C]. ION GNSS 19th International Technical Meeting of the Satellite Division, 2006.9: 2370-2382.
    [16]程水英,武传华,张剑云.带通欠采样技术及在数字中频软件接收机中的工程应用[J].电路与系统学报, 2006,11(3): 22-25.
    [17]唐斌,董绪荣,杨保平. GPS软件接收机基带信号处理研究[J].电光与控制, 2007,14(1): 115-119
    [18] John J. Schamus, James B. Y. Tsui. Acquisition to Tracking and Coasting for Software GPS Receiver[C]. Proceedings of the ION GPS 1999, 1999.9:325-328
    [19] Kent Krumvieda, Premal Madhani, Chad Cloman, Eric Olson, Dr. John Thomas, Dr. Penina Axelrad, Dr. Wolfgang Kober. A Complete IF Software GPS Receiver: A Tutorial about the Details[C]. Proceedings of the ION GPS 2001, 2001.9: 789-829
    [20] B.M. Ledvina, A.P. Cerruti, M.L. Psiaki, S.P. Powell, and P.M. Kintner. Performance Tests of a 12-Channel Real-Time GPS L1 Software Receiver[C]. Proceedings of the ION GPS/GNSS 2003, 2003.9: 679-688
    [21] B.M. Ledvina, A.P. Cerruti, M.L. Psiaki, S.P. Powell, and P.M. Kintner. Performance Tests of a 12-Channel Real-Time GPS L1 Software Receiver[C]. ION GNSS 17th International Technical Meeting of the Satellite Division, 2004.9: 947-955
    [22] Bo Zheng and Gerard Lachapelle. GPS Software Receiver Enhancements for Indoor Use[C]. ION GNSS 18th International Technical Meeting of the Satellite Division, 2005.9: 1138-1142
    [23] Shahin Charkhandeh, M.G. Petovello, G. Lachapelle. Performance Testing of a Real-Time Software-Based GPS Receiver for x86 Processors[C]. ION GNSS 19th International Technical Meeting of the Satellite Division, 2006.9: 2313-2320
    [24] Peter Anderson, Gerald Whitworth, Vincent Ashe, Tom Carter. DSP & GPS Combination for Mobile Communication Platforms[C]. ION GNSS 17th International Technical Meeting of the Satellite Division, 2004.9: 1006-1012
    [25] Dr. Larry D. Smith, Robert S. Lawrence, Lt James A. Wright, Eddie Thompson, Derryl Stutz, David Syse. Embedded GPS and Inertial Navigation System Test Equipment[C]. Proceedings of the ION GPS/GNSS 2003, 2003.9: 532-536
    [26] Kenn Gold and Alison Brown. A Software GPS Receiver Application for Embedding in Software Definable Radios[C]. Proceedings of the ION GPS/GNSS 2003, 2003.9: 2524-2531
    [27] Jonas Thor, Per-Ludvig Normark, Christian Stahlberg. A High-Performance Real-Time GNSS Software Receiver and its Role in Evaluating Various Commercial Front End ASICs[C]. Proceedings of the ION GPS 2002, 2002.9: 2554-2560
    [28]张雄伟,陈亮,徐光辉. DSP芯片的原理与开发应用(第3版)[M].电子工业出版社, 2003.2.
    [29]李方慧,王飞,何佩琨. TMS320C6000系列DSPs原理与应用(第2版)[M].电子工业出版社, 2003.1.
    [30] C. Douglass Locke. Best-Effort Decision Making for Real-Time Scheduling[D]. Carnegie Mellon University: Department of Computer Science, 1986.
    [31] C. M. Krishna and Kang G. Shin, Real-time Systems[M]. The McGraw-Hill Companies, Inc., 1997.
    [32] Alan Burns, Andy Wellings著,王振宇,陈利等译. Real-Time Systems and Programming Languages(Ada 95, Real-Time Java and Real-Time POSIX, Third Edition)[M].机械工业出版社&中信出版社, 2004.4.
    [33]边少锋,李文魁编著,系统概论[M].电子工业出版社, 2005.
    [34]童铠.中国导航定位卫星系统的进展[J].中国航天, 2002.8.
    [35]徐绍铨,张华海,杨志强,王泽民编著, GPS测量原理及应用(修订版)[M].武汉大学出版社, 2003.1.
    [36]刘基余编著, GPS定位原理与方法[M].科学出版社, 2003.12.
    [37]杨光,李勇.俄罗斯的GLONASS系统[J].国防科技, 2005.3.
    [38]刘春保.俄罗斯GLONASS系统政策、管理与发展[J].中国航天, 2007.4.
    [39]柴霖. GLONASS的最新进展及可用性分析[J].电讯技术, 2007.4.
    [40]钱桂山.欧洲伽利略系统[J].国外卫星动态, 2006.6.
    [41]李彤.欧空局计划研发第二代“伽利略”卫星[J].飞行器测控学报, 2007.4.
    [42]郝建军,何秋生,李辉,程亚奇,王立军.伽利略系统BOC信号的特性及码跟踪方法研究[J].电光与控制, 2007.4.
    [43]新华网.我国第四颗北斗导航试验卫星发射成功[EB/OL]. http://news.xinhuanet.com/ mil/2007-02/03/content_5689012.htm, 2007.2.
    [44]窦长江.北斗导航卫星应用产业化研究[J].全球定位系统, 2006.5.
    [45]王春刚,张江水,胡立成.基于北斗导航系统的车载嵌入式终端的开发与实现[J].国防交通工程与技术, 2007.2.
    [46]刘建,汪宏宇,刘艳武.北斗导航定位系统的民用应用状况及发展前景[J].卫星应用, 2005.2.
    [47]刘基余. GNSS全球导航卫星系统的新发展[J].遥测遥控, 2007.4.
    [48] Dennis M. Akos, Per-Ludvig Normark, Andreas Hansson, Andreas Rosenlind, Christian Stahlberg, Fredrik Svensson. Global Positioning System Software Receiver (gpSrx) Implementation in Low Cost/Power Programmable Processors[C]. Proceedings of the ION GPS/GNSS 2001, 2001.9: 2851-2858
    [49] Aleksandar Jovancevic, Andrew Brown, Suman Ganguly, Michael Kirchner, Slavisa Zigic,Logan Scott, Phillip Ward. Reconfigurable Dual Frequency Software GPS Receiver and Applications[C]. Proceedings of the ION GPS 2001, 2001.9: 2888-2899
    [50] Aleksandar Jovancevic, Andrew Brown, Suman Ganguly, Michael Kirchner and Slavisa Zigic. Real-Time Dual Frequency Software GPS Receiver[C]. Proceedings of the ION GPS 2002, 2002.9: 2471-2482
    [51] Aleksandar Jovancevic, Andrew Brown, Suman Ganguly, Jignesh Goda, Michael Kirchner and Slavisa Zigic. Real-Time Dual Frequency Software GPS Receiver[C]. Proceedings of the ION GPS/GNSS 2003, 2003.9: 2572-2583
    [52] Anteneh Alemu Abbo. An Embedded Processor for Integrated Navigation Receiver[J]. IEEE, 1997: 116-121.
    [53] Jonas Thor, Per-Ludvig Normark, Christian Stahlberg. A High-Performance Real-Time GNSS Software Receiver and its Role in Evaluating Various Commercial Front End ASICs[C]. Proceedings of the ION GPS 2002, 2002.9: 2554-2560
    [54] Kenn Gold and Alison Brown. A Software GPS Receiver Application for Embedding in Software Definable Radios [C]. Proceedings of the ION GPS/GNSS 2003, 2003.9: 2524-2531
    [55] SPIRIT GPS+GLONASS Baseband Software: DuoStar[EB/OL]. www.spiritdsp.com/ datasheets. 2008
    [56]王先毅,孙越强,刘正廷,杜起飞,白伟华. GPS软件接收机结构与仿真实现[J].科学技术与工程, 2007, 7(11): 2484-2487
    [57]刘海涛.高灵敏度GPS/Galileo双模导航接收机的研究与开发[D].长沙:国防科技大学研究生院, 2006.
    [58]刘海涛,史清.基于LBS的Galileo/GPS双模导航接收机技术现状与关键技术[J]. GNSS World of China, 2006,3: 34-38
    [59]廖炳瑜.星载双频软件GPS接收机研究[D].北京:中科院, 2006.
    [60]沈锋,文睿,姜利.数字化DS/BPSK导航接收机设计与实现[J].弹箭与制导学报, 2007,27(2):313-316
    [61] Liu,C.L. and Layland,J.W.1973. Scheduling algorithms for multiprogramming in a hard real-time environment [J]. Journal of the ACM 20(1): 40–61.
    [62] Lehoczky, J.; Sha, L.; Ding, Y. The rate monotonic scheduling algorithm: exact characterization and average case behavior[C]. Real Time Systems Symposium, 1989: 166-171.
    [63] Katcher, D.I.; Sathaye, S.S.; Strosnider, J.K. Fixed priority scheduling with limited priority levels[J]. IEEE Transactions on Computers 1995: 1140-1144.
    [64] Enrico Bini, Giorgio C. Buttazzo. Schedulability Analysis of Periodic Fixed Priority Systems[J]. ACM, 2004: 1-12.
    [65] Enrico Bini, Marco Di Natale, Giorgio Buttazzo. Sensitivity analysis for fixed-priority real-time systems[J]. Real-Time System, 2008(39): 5-30.
    [66]伍微,倪少杰,刘小汇.一种优先级受限系统中可调度判定方法[J].计算机工程与应用, 2009,4.
    [67] Krumrieda K,Madhani P,Cloman C.A Complete IF Software GPS Receiver: a Tutorial about the Details[C]. Proceedings of ION GPS2001.Salt Lake City, USA, 2001,9:789-811.
    [68] Ledvina B M,Powell S P,Kintner P.M. A 12-channel Real-time GPS L1 Software Receiver[C]. Proceedings of ION NTM Anaheim, 2003,1:767-782.
    [69]齐治昌.数值分析及其应用(第二版)[M].国防科技大学出版社, 1996.4: 131~133
    [70] Lehoczky JP, Sha L. Performance of real-time bus scheduling algorithms. In: Proc. of the’86 ACM SIGMETRICS Joint Int’l Conf. on Computer Performance Modeling, Measurement and Evaluation. New York: ACM Press, 1986. 44?53.
    [71] Cayssials R, Orozco J, Santos J, Santos R. Rate monotonic scheduling of real-time control systems with the minimum number of priority levels. In: Proc. of the 11th Euromicro Conf. on Real Time Systems. Oakland: IEEE Computer Society Press, 1999. 54?59.
    [72]宾雪莲,杨玉海,金士尧.一种有限优先级的静态优先级分配算法[J].软件学报, 2004,15(6):815~822.
    [73]邢建生,王永吉,刘军祥,曾海涛, NASRO Min-Allah.一种静态最少优先级分配算法[J].软件学报, 2007,18(7):1844~1854.
    [74] Chia-Tai Chan, Shuo-Cheng Hu, Pi-Chung Wang, Yaw-Chung Chen. A FIFO-based buffer management approach for the ATM GFR services [J]. Communications Letters, IEEE, 2000: 205-207.
    [75] Datta, A., Mukherjee, S., Viguier, I.R.. Buffer management in real-time active database systems [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 1999, 29(2): 216-224.
    [76] Logan Scott, Dorothy E. Denning. Location Based Encryption & Its Role In Digital Cinema Distribution[C]. Proceedings of the ION GPS/GNSS 2003, 2003.9: 288-297
    [77]程光明,廖明宏,吴翔虎.小卫星星载计算机及其外围设备的管理[J].哈尔滨工业大学学报. 2002, 34(2): 201-210
    [78] Azzedine Boukerche, Jing Feng. Buffer Management for 3D Image-based Rendering over Wireless Network with QoS Adaptation[C]. The 31st Annual IEEE Conference on Local Computer Networks , 2006: 55-62.
    [79]胡海峰,史忠科,徐德文.三帧缓冲策略及其在实时DSP视频系统中的实现[J].计算机工程, 2004, 30(14): 141-142.
    [80] AD J. Van De Goor, Using march tests to test SRAMs [J]. IEEE Design & Test of Computers, 1993.
    [81] A.J. van de Goor, and G.N. Gaydadjiev.. An analysis of (linked) address decoder faults [J]. IEEE 1997: 13–20.
    [82] Chi-Feng Wu, Chih-Tsun Huang, Kuo-Liang Cheng, and Cheng-Wen Wu. Simulation-based test algorithm generation for random access memories[J]. IEEE, 2000.
    [83] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto. An Optimal Algorithm for the Automatic Generation of March Tests [C]. IEEE Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE’02), 2002.
    [84] V. N. Yarmolik, Yu. V. Klimets, A. J. van de Goor, S. N. Demidenko. RAM diagnostic tests[J]. IEEE, 1996: 100-102
    [85] Curtis A. Shively. Derivation of Acceptable Error Limits For Satellite Signal Faults in LAAS[C]. Proceedings of the ION GPS 1999, 1999.9: 761-770
    [86] Keith Schmidtke, Randy Reuter. A Comparison of RAIM Fault Detection Availability Using Optimal 24 and Yuma GPS Almanacs[C]. Proceedings of the ION GPS 1999, 1999.9: 1835-1842
    [87] Laurence H. Mutuel, Jason L. Speyer. Fault-Tolerant GPS/INS Navigation System with Application to Unmanned Aerial Vehicle[C]. Proceedings of the ION GPS 2000, 2000.9: 1552-1560
    [88] Pandya, M. and Malek, M. Minimum achievable utilization for fault-tolerant processing of periodic tasks[J]. IEEE Transactions on Computers 1998, 47(10): 1102–1112.
    [89] Sunondo Ghosh, Rami Melhem, Daniel Mosse, and Joydeep Sen Sarma. Fault-Tolerant Rate-Monotonic Scheduling[J]. Real-Time Systems, 1998, 15: 149–181
    [90] Punnekkat S, Burns A and Davis R. Analysis of checkpointing for real-time systems[J].Real-Time Systems,2001,20(1): 83-102.
    [91] George M A and Burns A. An optimal fixed-priority assignment algorithm for supporting fault-tolerant hard real-time systems[J]. IEEE Transactions on computers, 2003,52(10): 1332-1346.
    [92] N.Audsley, A.Burns, M.Richardson, K.Tindell, A.J.Wellings. Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling[J]. Software Engineer Journal, 1993, 8(5): 284-292.
    [93] Minsoo Ryu and Seongsoo Hong. Deterministic and Statistical Deadline Guarantees for a Mixed Set of Periodic and Aperiodic Tasks[C]. Real-time and embedded computing systems and applications International conference, 2004: 72~87
    [94] Sorin Manolache, Petru Eles, and Zebo Peng. Task Mapping and Priority Assignment for Soft Real-Time Applications under Deadline Miss Ratio Constraints[J]. ACM Transactions on Embedded Computing Systems, 2008, 7(2): 1~35
    [95] Audsley NC. Deadline monotonic scheduling. Technical Report, YCS 146, University ofYork, 1990.
    [96] Houssine Chetto and Maryline Chetto. Some Results of the Earliest Deadline Scheduling Algorithm[J]. IEEE Transactions On Software Engineering. 1989.10.
    [97] M Spuri, G C Buttazzo, and F. Sensini. Robust Aperiodic Scheduling under Dynamic Priority Systems[J]. Proc. IEEE Real-Time Systems Symp., Pisa, Italy, 1995, 12.
    [98] Giorigio C. Buttazzo, and Fabrizio Sensini. Optimal deadline assignment for scheduling soft aperiodic tasks in hard real-time environments[J]. IEEE Transactions On Computers. 1999, 48(10)
    [99] Tindell KW, Burns A, Wellings A. An extendible approach for analyzing fixed priority hard real-time tasks. The Journal of Real-Time Systems, 1994,6(2):133?152.
    [100] Walter Cedeno, Phillip A. Laplante. An Overview of Real-time Operating Systems[J]. Journal of the Association for Laboratory Automation, 2007, 1(12): 40-45.
    [101]王保进,李明树,王志刚.优先级有限时的单处理器静态优先级调度[J].软件学报. 2006.17(3): 602~610.
    [102]伍微,刘小汇,李峥嵘,王飞雪.实现定点DSP汇编层反正切函数的差分进化算法[J].系统工程与电子技术. 2005.5(27).: 926~928.
    [103] Don Morgan. Numerical Methods Real-Time and Embedded Systems Programming[M]. M&T Publishing, 1992.
    [104]伍微,王礼亮,刘小汇. C6000系列DSP带加解密的bootloader研究与应用[J].舰船电子工程. 2005.2.
    [105]史万明,吴裕树,刘玉树.反正切函数的快速计算方法[J].北京理工大学学报. 1995.11. 15(5): 6~9
    [106]熊洪允,曾绍标,毛云英.应用数学基础[M].天津大学出版社, 1998.3: 283~304
    [107]云庆夏.进化算法[M].冶金工业出版社, 2000.5
    [108] Storn, R. and Price, K., Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces [C]. Technical Report TR-95-012, ICSI, 1995.3
    [109] Feoktistov, V. and Janaqi, S., Generalization of the Strategies in Differential Evolution[C]. Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International , 2004.4: 165~170
    [110] Storn, R. and Price, K., Minimizing the Real Functions of the ICEC’96 Contest by Differential Evolution[C]. Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 1996.5: 842~844
    [111]翟捷,王春峰,李光泉.基于差分进化方法的投资组合管理模型[J].天津大学学报:自然科学与工程技术版. 2002.5. 35(3): 304~308
    [112] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck.著,刘树棠等译. Discrete-Time Signal Processing (离散时间信号处理(第二版))[M].西安交通大学出版社, 2001,9.
    [113]李素芝,万建伟.时域离散信号处理[M].国防科技大学出版社, 2000,6.
    [114] Saowanee Saewong and Ragunathan Rajkumar. Practical Voltage-Scaling for Fixed-Priority RT-Systems[C]. Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium, 2003.
    [115]雷霆,胡潇,周学海.一种新的静态优先级在线节能调度算法[J].中国科学技术大学学报. 2006.1. 36(2): 219~214.
    [116] TMS320C6000 Tools: Vector Table and Boot ROM Creation[EB/OL]. Texas Instruments Inc. 2004.4
    [117] Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code Composer Studio 2.2[EB/OL]. Texas Instruments Inc. 2004.2
    [118] TMS320C620x/C670x DSP Boot Modes and Configuration Reference Guide[EB/OL]. Texas Instruments Inc. 2003.7
    [119] Bruce Schneier. Applied Cryptography: protocols, algorithms, and source code in C(2nd)[M]. John Wiley & Sons, Inc., 2000.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700