用户名: 密码: 验证码:
正常成人视神经、视神经管径线测量及其对视神经病变的诊断价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:视神经为视路的重要组成部分,视神经管是视神经通向颅内的最狭窄部位,视神经管病变可直接累及视神经。视神经病变为眼科常见病变部位之一,临床上往往表现为视力下降或失明,影响患者的生活及生存质量,早期发现和正确诊断视神经病变为正确治疗和提高疗效的关键。既往虽有部分学者对视神经及视神经管的正常影像表现及对视神经病变的影像诊断作了探讨,但相互间认识并不一致,方法并不统一,且在视神经测量对视神经病变的影像诊断意义方面甚少论及。目前影像技术的快速发展也需要对既往的认识和理论进行新的补充和修改。故本研究采用多层螺旋CT和MRI扫描方法,研究视神经及视神经管解剖形态和测量其径线,建立正常成人视神经各段及视神经管的径线测量标准;并在建立正常径线标准基础上,探讨视神经及与视神经相关病变的解剖形态及径线变化的影像学表现,提高影像学检查及视神经测量在临床诊断中的应用价值。
     材料与方法:(1)资料随机选择60例无眼部及颅内疾患、无视力障碍的健康成年志愿者进行CT、MRI扫描,其中男性40例,女性20例;年龄为18至60岁,平均年龄38.5岁。同时对同期50例有眼科症状疑为视神经病变的患者进行CT、MRI检查,年龄为18岁至69岁,病程为发病后1小时至发病后3个月。42例患者以首发视力障碍就诊,8例为先有其它临床症状,后出现眼科症状;视力不同程度下降38例,失去光感12例;眼球突出6例;头疼、呕吐7例。50例患者中外伤病人21例,视神经脑膜瘤5例,视神经胶质瘤3例,颅内高压7例,视神经萎缩5例,眶内肿瘤累及视神经6例,视神经炎3例。(2)方法CT检查选用GE/Light Speed PlusCT/4i多层螺旋CT机,MRI选用德国西门子公司生产1.0T超导型磁共振成像仪。CT、MRI扫描基线横段面以AB线为基准定位;冠状位扫描时以AB线的垂线为基线。对视神经管采用HRCT横断、冠状位扫描,扫描参数:120KV,240mA,2.5mm 3.75mm/s HS,矩阵512×512。视神经用标准算法重建,视神经管采用骨算法重建,然后以层厚1.25mm,层间隔1.25mm图像重建后传至AW4.0工作站;MRI采用SE序列,常规行横段、冠状面及矢状面扫描,扫描参数:层厚3mm,成像野230mmX230mm,矩阵256X256,T1WI:TR/TE=450/15ms,T2WI:TR/TE=6000/90ms,平均采集次数2次;冠状面扫描另加Fs-TSE-T2序列,参数:层厚3mm,成像野250X250mm,矩阵256X256,TR/TE=5000/119ms,平均采集2次。(3)在多层螺旋CT扫描后的轴位和冠状位、重建矢状图像上利用游标卡尺(精确到0.02mm)测量视神经管各壁的长度、厚度及计算视神经眶口、中部、颅口的面积(椭圆面积公式S=πab a代表1/2长径,b代表1/2短径)。在MRI横断和矢状位T1WI上利用游标卡尺测量视神经各段的横径和上下径,测量点分别为球后8mm、管内段和颅内段;在冠状位FS-TSE-T2上测量眶内段视神经纤维(ONF)及视神经(ON)上下径,以球后4mm、8mm及眶尖点为测量点,并计算眶内段ONF/ON的比值。(4)应用相同CT、MRI扫描序列和扫描参数对疑视神经及视神经管病变进行者进行CT、MRI扫描并分析其影像表现。影像测量及影像表现分析均采用双盲法进行。
     结果:(1)视神经管中部是视神经管最狭窄的部位,其横径为4.57±0.44mm,横截面积为18.05±3.74mm~2;管壁最薄之处在内壁中部,其厚度为0.58±0.37mm;内侧壁最长,其长径为11.76±2.54mm。(2)视神经各段不等粗,球后4mm处为5.21±0.27mm,球后8mm为4.43±0.23mm,眶尖处为3.47±0.28mm,管内段为3.46±0.36mm,颅内段为3.92±0.41mm。(3)在MRI冠状Fs-TSE-T2序列测量眶内段视神经纤维及视神经直径,ONF/ON两径线比值从前到后逐渐增大,球后4mm处为0.57±0.03,球后8mm处为0.58±0.04,眶尖处为0.62±0.05。性别和年龄组间无显著性差异(P>0.05)。(4)视神经管骨折13例,5例骨折片突入视神经管致管径变小、面积减少,视神经呈离断或挤压征,其余视神经管骨折无视神经管的管径、面积变化,均合并视神经挫伤。单纯眶内段视神经挫伤8例,CT、MRI均表现为视神经增粗,大于5.5mm;3例蛛网膜下腔增宽,ONF/ON值减小到0.52以下,5例视神经纤维肿胀致蛛网膜下腔变窄,ONF/ON值大于0.63。视神经脑膜瘤5例均有视神经增粗,其内的视神经纤维形态和径线未见改变,蛛网膜下腔形态均不规则、宽窄不均,ONF/ON减小,其中1例小于0.47。视神经胶质瘤3例视神经呈梭形或条形增粗,MRI显示病变部位视神经纤维形态不规则,病变段蛛网膜下腔不规则变窄致ONF/ON比值均明显增大。颅内高压7例均可见视神经增粗,MRI显示双侧视神经蛛网膜下腔均匀扩大,由于视神经明显增粗,而视神经纤维未见变化,ONF/ON值均小于0.55。视神经萎缩5例,其中2例视神经粗细无改变,3例萎缩变细,由于视神经纤维变细,蛛网膜下腔值相对增大,ONF/ON变小。3例视神经炎视神经均增粗,MRI表现为视神经纤维不均匀增粗,蛛网膜下腔变细,ONF/ON增大。6例眶内病变中转移瘤、血管瘤、眶内血肿和炎性假瘤累及视神经,表现为视神经受压变细,MRI见蛛网膜下腔受压,ONF/ON增大。
     结论
     1.正常成人视神经管以中部最狭窄、内侧壁最薄,此处容易发生视神经管骨折而影响视神经管的管径和面积,导致管内段视神经损伤。
     2.眶内段视神经以球后4mm最粗,此后逐渐变细。
     3.MRI冠状位Fs-TSE-T2序列可以分辨视神经轮廓、视神经纤维和蛛网膜下腔,眶内段视神经纤维和视神经的比值(ONF/ON)由前向后逐渐变大。
     4.视神经挫伤、视神经脑膜瘤、视神经胶质瘤、视神经炎、颅内高压、视神经萎缩及视神经受压等疾病均可见ONF/ON的变化,结合其它影像表现,可以为其诊断提供帮助。
     创新点
     1.依据MRI冠状位Fs-TSE-T2序列建立了正常成人眶内段视神经纤维与视神经的比值,完善了视神经径线测量的方式。
     2.探讨了视神经挫伤、视神经脑膜瘤、视神经胶质瘤、颅内高压、视神经萎缩、视神经炎等不同病变的视神经纤维与视神经比值的变化的诊断价值。
Background and Objective: Optic nerve (ON) was an important part of optic pathway, optic canal (OC) was the narrowest part of ON to cranial cavity, so pathological changes in OC could affect directly ON. ON was one of the most common pathological changes positions, they often showed clinically vision decrease or blindness, which affecting the life and live quality of patients. For right treatment for ON pathological changes and improving efficiency, it was the key to find early and diagnose correctly. Some studier researched the normal MRI findings of ON and OC and diagnosis for ON pathological changes early, but their results and their methods were different, and they discussed little about imaging diagnostic value about the measurement of ON pathological changes. At present, when imaging technology high-speed developing, acknowledged and theories should be renewed and updated. We researched ON and OC dissection conformation and diameter measurement using multi-slice CT (MSCT) and MRI scanning method to set up standard for diameter measurement for every segment in normal adult ON and OC, and discuss imaging findings of dissection conformation and diameter changes for ON and disease related to ON on the basis of standard for diameter measurement, in order to improve CT examine and ON measurement application value in clinical diagnoses.
     Material and method: (1) Data: Choosing random 60 adult and healthy volunteers without eye and encephalic disease and without eyesight impediment, carrying out CT and MRI scanning, including 40 males and 20 female; 18 to 60 years old; mean age, 38.5 years. At the same time carrying out CT and MRI scanning for 50 patients with ophthalmic symptoms suspected ON disease; 18 to 69 years old; with 1 hour to 3 months course of diseases. 42 patients was treated for sight impediment for the first time, 8 patients were with other clinical symptoms at first, then emerged ophthalmic symptoms; 38 patients with different degree of eyesight decline, 12 patients losing light feeling, 6 patients with exophthalmos, 7 patients with headache and vomit.
     There were 21 patients with trauma, 5 patients with ON meningioma, 3 patients with glioma, 7 patients with intracranial hypertension, 5 patients with ON atrophy, 6 patients ON implicated by inner socket tumour, and 3 patients with optic neuritis in 50 patients. (2) Method: Using GE/ Light Speed PlusCT/4i multi-slice spiral CT device and German Siemens MRI device. The base line for CT and MRI cross section image built up on the basis of AB line; vertical line of AB line was taken as coronal scanning base line. OC scanning used HRCT cross section and coronal scanning, scanning parameters: 120KV, 240mA, 2.5mm, 3.75mm/s HS, matrix 512×512. ON was reconstruction using standard arithmetic, OC was reconstruction using bone arithmetic, then was transferred to AW4.0 workstation with a section thickness of 1.25mm, interval gap of 1.25mm, MRI used SE sequence, regular row cross section, coronal and sagittalis surface scanning with the parameters of a section thickness of 3mm, imaging limit of 230mm×230mm, matrix 256×256, T1WI: TR/TE=450/15ms, T2WI: TR/TE=6000/90ms, and average twice collection. Coronal surface scanning added Fs-TSE-T2 sequence in addition with the parameters of a section thickness 3mm, imaging limit 250×250mm, matrix 256×256, TR/TE=5000/119ms, and average twice collection. (3) Measured the length and thickness of all wall of OC with vernier caliper (exact to 0.02mm) on axes and coronal site and reconstruction sagittalis image attained from multi-slice spiral CT scanning, and calculated the area of ON socket ora, central section and skull ora (the calculation formula for ellipse area is S=πab a is 1/2 long dia, b is 1/2 short dia). Measured the cross dia and up and down dia on all stages of ON with vernier caliper on MRI cross section and sagittalis T1W1, measured point was 8 mm behind ball and canal inner stage and encephalic stage. Measured dia of inner socket ONF (optic nerve fiber) and ON on coronal position FS-TSE-T2, measured point was 4 mm and 8 mm behind ball and socket tip, and calculated the ratio of ONF/ON inner socket. (4) Carried out CT and MRI scanning for staring nerves and OC pathological changes using the same CT and MRI scanning sequence and scanning parameters, and analyzed images. Carried out image measurement and imagine analysis with double blind method.
     Result (1) OC central section was narrowest for OC, its cross dia was 4.57+0.44 mm, cross section area was 18.05±3.74mm2. Inner wall of OC central section was thinnest, its thickness was 0.58±0.37mm. Inner side wall of OC was longest, its long dia was 11.76±2.54mm. (2) The dia of every section of ON was different, it was 5.21±0.27 mm behind 4 mm of ball, it was 4.43±0.23 mm behind 8 mm of ball, it was 3.47±0.28 mm on socket tip, intracanalicular optic nerve was 3.46±0.36 mm, intracraial optic nerve was 3.92±0.41 mm. (3) MRI coronal Fs-TSE-T2 sequence measured the ida of inner socket ONF and ON, it was found that suburalhoid became thinner from front to back, it was narrowest on socket tip. The ratio of ONF/ON dia was become bigger from front to back, it was 0.57±0.03 behind 4 mm of ball and 0.58±0.04 behind 8 mm of ball, and 0.62±0.05 at socket tip. There was no significant difference between sex and age group (P>0.05). (4) Among 13 patients with OC fracture, 5 patients' fracture slice went in OC resulting canal dia and area becoming small and ON appearing break or extrusion symptom, and the other OC fracture without change of canal dia and area, which was incorporated into ON contusion. 8 patients with simply inner socket ON contusion, CT and MRI findings appeared ON becoming thicker, more than 5.5 mm, 3 patients with suburalhoid becoming bigger and the ratio of ONF/ON decreasing to 0.52, 5 patients with ONF swelling resulting in suburalhoid becoming thinner and the ratio of ONF/ON increasing to 0.63. 5 patients with ON meningioma all appeared ON becoming thicker, but its ONF configuration and dia line not changed, suburalhoid configuration and width abnormity, ONF/ON minishing, 1 patients' ratio less than 0.47. For 3 patients with ON glioma, their ON became thicker on the shape of shuttle or bar; MRI showed that ONF configuration abnormity on pathological changes sites, suburalhoid of pathological changes sites became narrower in abnormality resulting in the ratio of ONF/ON increased distinctly. 7 patients with intracranial hypertension all showed ON becoming thicker, MRI showed double side suburalhoid both enlarged, due to ON becoming thicker apparently, ONF wasn't found changes, the ratio of ONF/ON less than 0.55. Among 5 patients with optic nerve atrophy, 2 patients' ON didn't change on dia, 3 patients' atrophy thinner, but due to ONF becoming thin, the value of suburalhoid increase relatively, and ONF/ON becoming small. All optic nerves become thick in 3 cases of optic neuritis, MRI findings are ONF became thicker with asymmetry, suburalhoid became thinner, and ONF/ON increased. Transfer lump, haemangioma, inner socket haematoma and inflammative fake lump affect ON in 6 cases of inner socket pathological changes, it will appear that ON become thin under pressure, that suburalhoid under pressure in MRI findings and that ONF/ON increase.
     Conclusion:
     1. The middle part of optic canal of normal adult was narrowest, and its inner side wall was thinnest, so it was easy to arouse optic canal fracture and affect canal dia and area, that resulted in inside canal optic nerves damage.
     2. The stage of 4 mm behind ball of orbital optic nerve was thickest, it tapered off behind that.
     3. MRI coronal section Fs-TSE-T2 sequence could distinguish optic nerve figure, optic nerve fiber and suburalhoid. The ratio of ONF/ON became large gradually from front to bake in orbital optic nerve.
     4. It could be found that the ratio of ONF/ON became large in optic nerve contusion, meningioma of optic nerve, optic nerve glioma, intracranial hypertension, optic nerve atrophy, optic neuritis and etc. Considering the other MRI findings, it should help to diagnose.
     Innovation:
     1. TO set up the ratio of optic nerve fiber and optic nerve inside orbit of normal adult on the basis of the MRI coronal section Fs-TSE-T2 sequence, to perfect optic nerve pathway measurement method.
     2. TO discuss diagnostic value on change of ratio of optic nerve fiber and optic nerve in pathological changes, such as optic nerve contusion, meningioma of optic nerve, glioma, intracranial hypertension, optic nerve atrophy, optic neuritis and etc.
引文
[1] 赵恒珂,李光中,鞠学红,等.视神经管显微解剖学研究.解剖科学进展,2002,8(3):205-208.
    [2] 徐明,方平,陆地红.鼻内窥镜下视神经管段的解剖及临床应用.中国内鏡杂志,2006,12(2):143-145.
    [3] 陶存山,卢亦成,楼美清,等.视神经管的显微外科解剖.中国微侵袭神经外科杂志,2005,10(8):363-365.
    [4] 胡胜望,胡松林,宋铁山.100例中国人颅骨视神经管及其周围关系与测量.解剖学杂志,1993,16(1):572.
    [5] 李健,廖建春,陆书昌.视神经管区的临床应用解剖.解剖学杂志,1994,17(2):98-101.
    [6] 陶海,马志中,姜荔.视神经管的显微外科解剖及其临床意义.中国临床解剖学杂志,2000,18(4):296-298.
    [7] 毛清,田伟,杨亚英,等.正常成人脑外段视神经的MRI研究.中国CT和MRI杂志,2004,2(4):4-6.
    [8] 王振常,鲜军舫,吴恩惠,等.正常成人眶尖的CT和MRI研究.中国CT和MRI杂志,2004,2(1):3-7.
    [9] 刘旭林,周承涛,张光辉,等.健康人视神经管CT测量及临床意义.中华耳鼻喉科杂志,2000,35(4):275-277.
    [10] 李志海,高起学,蔡志毅,等.视神经管区多层螺旋CT三维成像研究.临床耳鼻喉头颈外科杂志,2007,21(1):7-9.
    [11] 鲜军舫,王振常,满凤媛,等.正常成人活体视神经的MRI研究.中国医学影像技术研究,2003,19(4):405-407.
    [12] Jeam CT, Youssef G C. Atalasof regional antomy of the brain usibg MRI with functional correlations. Berlin: Springer-VerlagBerlin Heidelberg, 2000. 269.
    [13] 史大鹏,李舒茵,石玉发,主编.眼科影像诊断学.郑州:河南医科大学出版社,1997:9.
    [14] 宋国祥.主编.眼眶病学.北京:人民卫生出版社,1999:7.
    [15] Lam B, Glasier CM, Feuer W. Subarachnoid fluid of the optic nerve in normal adults. Ophthalmology, 1997. 104(10): 1629-1633.
    [16] 梁长虹,黄彪,黄美萍,等.视神经磁共振成像方法研究.现代临床生物工程学杂志,2002,8(3):191-193.
    [17] 陈金华,张伟国,谭勇,等.视神经MR扫描图像质量控制:扫描方式的研究.中国医学影像技术学,2003,19(4):484-486
    [18] 温生贵,张伟国,龚水根,等.正常成人眶内段视神经的MRI测量研究.实用放射学杂志,2000,16(9):556-559.
    [19] 黄彪,梁长虹.健康成人视神经MRI检查.解剖学报,1998,29(增刊):54-55.
    [20] 林贤,蔡兆明,陈瑞华.眶尖结构的临床应用解剖学研究.解剖学杂志,2001,24(24):374-377.
    [21] 刘津平,靳颖,李云生.视神经的断层解剖学研究及其临床意义.中国临床解剖学杂志,2003,21(5):454-456.
    [22] 孙兴怀,主编.临床眼科诊治进展.上海:上海科学技术文献出版社,1996:367.
    [23] 王振常,宋维贤,鲜军舫,等.眼眶外伤后失明原因的CT研究.中华放射学杂志,1996,30(2):98-99.
    [24] Kline LB, Morawetz RB, Swaid SN. Indirect injury of the optic nerve. Neurosurgery, 1984, 14: 756.
    [25] 马万辉,张毅,刘先军,等.视神经管骨折HRCT检查的临床意义.放射学实践,2001,16(5):315-317.
    [26] 刘晚萍,高剑波王培武.螺旋CT对视神经管骨折HRCT检查的技术探讨.医药论坛,2005,26(12):12-13.
    [27] 鲜军舫,王振常,安裕志,等.视神经鞘脑膜瘤影像学研究.中华放射学杂志,2004,38(9):952-955.
    [28] 田其昌,鲜军舫,王振常,等.脂肪抑制和增强技术在诊断眼眶疾病中的应用.中华放射学杂志,1999,33:395-399.
    [29] Tied RD, Chu PK, Hesselink JR. et al. Intra and paraorbrital lesions: value of fat-suppression MR imaging with paramagnetic contrast enhancement. AJNR, 1991, 12: 245-253.
    [30] Mafee MF, Gooduin J, Dorodi S. Optic nerve sheath meningiomas: role of MR imaging. Radiol Clin North Am, 1999, 37: 37-58.
    [31] Weber AL, Klufas R, Pless M. Imaging evalucation of the optic nerve and visual pathway including cranial nerves affecting the visual pathway(Review). Neuroimaging Clin N Am, 1996, 6: 143-177
    [32] Silva MM, Goldman S, Keating G, et al. Optic pathway hypothalamic Gliomas in children under three years of age: the role of chemotherapy. Pediar Neurosurg, 2000, 33(3): 151-158.
    [33] 周荣先,潘宇澄,周明舜,等.视神经胶质瘤的CTNMRI表现.临床放射学杂志,2003,22(10):831-833.
    [34] 鲜军舫,王振常,安裕志,等.眼眶海绵状血管瘤的影像学表现和意义.中华放射学杂志,1999,33(6):440.
    [35] 李振芝,王晓华,王振福,等.眶内段视神经蛛网膜下腔扩张的MRI表现及临床意义.医学影像杂志,2002,14(3):175-177.
    [1] Chou PI, Sadun AA, Lee H. Vasculature and Morphometry of the optic canal and intracanalicular optic nerve. J Neuro Ophthalmol, 1995, 15(3): 186-190.
    [2] Delano MC, Fun FY, Zinreich SJ. Relationship of the optic nerve to the posterior paranasal sinuses: ACT anatomic study. Am J Neuroradiol, 1996, 17(12): 669-675.
    [3] 廖建春,李健,范建平,等.鼻外筛.蝶窦进路视神经减压术的几个临床解剖问题.中国临床解剖学杂志,1996,14(2):90-91.
    [4] 姚艺文,翟文杰,张青,等.视神经管及周围鼻窦的影像解剖学测量.中国医师进修杂志,2006,29(6):15-17.
    [5] 刘旭林,周承涛,张光辉,等.健康人视神经管CT测量及临床意义.中华耳鼻喉科杂志,2000,35(4):275-277.
    [6] 王振常,鲜军舫,吴恩惠,等.正常成人眶尖的CT和MRI研究.中国CT和MRI杂志,2004,2(1):3-7.
    [7] 赵恒珂,李光中,鞠学红,等.视神经管显微解剖学研究.解剖科学进展,2002,8(3):205-208.
    [8] 胡胜望,胡松林,宋铁山.100例中国人颅骨视神经管及其周围关系与测量.解剖学杂志,1993,16(1):572.
    [9] Maniscalco JE. Microanatomy of optic canal. Neursurg, 1978, 48: 402-406.
    [10] 李健,吕光宇,陶书昌,等.后组筛窦及其比邻结构的解剖学研究.中华耳鼻咽喉科杂志,1991,26(3):138.
    [11] 张玉忠,胡连源,周丽娟,等.蝶筛区域解剖结构的CT评价及对功能性内窥镜鼻窦外科的指导意义.中国医学影像杂志,2000,8(6):415.
    [12] Tandon DA, Thakar A, Mahapatra AK. Trans-ethmoidal optic nerve decompression,. Clin Otolaryngol, 1994, 19: 98.
    [13] 沙素红,韩卉,石献忠.视神经管内结构的显微解剖学研究.四川解剖学杂志,2003,11(4):13-14.
    [14] Govsa F, Kayalioglu G, Erturk M, et al. The superior or b-ital fissure and its contents[J]. Surg Radiol Anat: 1999; 21(3): 1811-185.
    [15] 刘丰春,姜成瑛,孟庆兰.眶尖部CT解剖及其临床意义.中国临床解剖学杂志.1999,17(4):293-294.
    [16] Natori Y, Rhoton Al Jr. Microsurgery anatomy of the superior orbital fissure. Neurosurgery, 1995, 36: 762-775.
    [17] Morard M, Txherekayer V, De tribolet N. The superior or b-ital fissure: A microanatomical study. Neurosurgery, 1994, 35: 1087-1093.
    [18] 田继辉,于春江,孙涛等.眶上裂区显微解剖学研究.中华神经外科杂志.1999,15(4):200-204.
    [19] Daniels DL, Yu S, Pech P, et al. Computed tomography and magnetic resonance imaging of the orbital apex. Radiol Clin North Am, 1987, 25(4): 803-807.
    [20] 廖建春,李健,陆书昌,等.鼻外筛一蝶窦进路视神经管减压术的临床解剖问题.中国临床解剖学杂志.1996,14(2):90-91.
    [21] 李源,许庚,杨月如,等.蝶筛区域与视神经管和颈内动脉的毗邻关系.中华耳鼻喉科杂志.1995,30(2):87-90.
    [22] Winckler G. Anatomy of the orbit and its relationship with the adjacent cavities[J]. Confin Neurol 1996; 28(3): 165-173.
    [23] 崔摸,张朝佑.中国人骨性眼眶测量与观察(第一部分).中华眼科杂志.1959,9(3):208-210.
    [24] 范静平,章松勤,廖建春,等.内窥镜视神经管减压术应用解剖.中国临床解剖学杂志.1996,14(2):92-94
    [25] Jeam CT, Youssef G C. Atalasof regional antomy of the brain usibg MRI with functional correlations. Berlin: Springer-VeflagBerlin Heidelberg, 2000: 269.
    [26] 史大鹏,李舒茵,石玉发,主编.眼科影像诊断学.郑州:河南医科大学出版社,1997:9.
    [27] 宋国祥.主编.眼眶病学.北京:人民卫生出版社,1999:7.
    [28] 李健,廖建春,陆书昌.视神经管区的临床应用解剖.解剖学杂志,1994,17(2):98-101.
    [29] 陶海,马志中,姜荔.视神经管的显微外科解剖及其临床意义.中国临床解剖学杂志,2000,18(4):296-298.
    [30] Maniscalco JE, Habal MB, Microanatomy of optic canal. J Neurosurg, 1978, 48: 402-406.
    [31] 陶存山,卢亦成,楼美清,等.视神经管的显微外科解剖.中国微侵袭神经外科杂志,2005,10(8):363-365.
    [32] 林贤,蔡兆明,陈瑞化.眶尖结构的临床应用解剖研究.解剖学杂志,2001,24(4):374-375.
    [33] 刘丽庭,仇沂洲,刘丹,等.蝶窦、视神经管多层螺旋CT三维重建后的影像解剖学测量.山东大学耳鼻喉眼学报,2006,20(4):296-299.
    [34] 黄彪,梁长虹.健康成人视神经MRI检查.解剖学报,1998,29(增刊):54-55
    [35] 李志海,高起学,蔡志毅,等.视神经管区多层螺旋CT扫描三维成像研究.临床耳鼻咽喉头颈外科杂志,2007,21(1):7-9.
    [36] 韩卉,庞刚,胡玉婷,等.眶尖区多层螺旋CT解剖学.解剖学杂志,2005,28(2):198-200.
    [37] 郭晓东,马志中,宋学坤,等.HRCT和3D重建对视神经管骨折的临床应用价值.中国医学影像技术,2000,16(4):280—282.
    [38] 马万辉,张毅,刘先军,等.视神经管骨折HRCT检查的临床意义.放射学实践,2001,16(5):315-317.
    [39] 刘晚萍,高剑波,王培武.螺旋CT对视神经管骨折HRCT检查的技术探讨,医药论坛,2005,26(12):12-13.
    [40] 黄立新.视神经管HRCT扫描基线的探讨.中国临床医学影像技术,2004,15(8):472-473.
    [41] 温生贵,张伟国,龚水根,等.正常成人眶内段视神经的MRI测量研究.实用放射学杂志,2000,16(9):556-55.
    [42] 鲜军舫,王振常,满凤媛,等.正常成人活体视神经的MRI研究.中国医学影像技术,2003,19(4):405-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700