用户名: 密码: 验证码:
若干以自然纤维素物质为模板的功能材料制备和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球的经济与工业正在飞快地发展,对材料和能源的需求和消耗也随之逐年增长。由此导致的煤、石油以及天然气等不可再生资源的过度消耗和日益严重的环境污染等问题使人们致力于以环境友好的方法开发高性能的功能材料,而其中一个有效途径是利用天然物质本身的性质。纤维素物质是自然界中最为丰富资源之一,具有良好的无毒性、生物降解性、生物相容性以及其独特天然结构产生的多孔性、柔韧性和高机械强度。在自然纤维素物质模板导向下组装客体材料,可简便而有效地将源自天然结构的独特特性引入到新人工材料中,可实现环境友好的先进功能材料。
     本文以自然纤维素物质为模板,根据天然纤维素物质的表面性质引导客体无机氧化物分子、有机单分子、聚合物链以及蛋白质分子等客体材料进行自组装,将纤维素的宏观、微观、纳米层次的独特功能结构与客体材料所涉及的特异性能相结合,从而开发出各种高性能纳米结构材料。主要内容如下:
     (1)尺寸可控超精细金红石相二氧化钛/二氧化硅复合物:基于纤维素表面羟基与醇盐的共价作用,通过表面溶胶凝胶法在滤纸的纳米纤维表面沉积夹有二氧化钛超薄凝胶分层的二氧化硅超薄凝胶膜后丁烷火焰燃烧,得到了尺寸可控的超精细金红石相二氧化钛/二氧化硅复合材料。纤维素网络结构减少了相邻二氧化钛之间的接触和聚集,加上快速火焰燃烧和二氧化硅凝胶膜对二氧化钛的紧密包裹抑制了二氧化钛在高温相转变过程中的晶体生长,所得金红石相二氧化钛晶体尺寸可在3.3-16.0nm范围内以平均颗粒直径2.4nm每二氧化钛凝胶层沉积循环次数的精度可控。当晶体大小16.0nm时该超精细金红石相二氧化钛/二氧化硅复合材料催化效率最佳,甚至超过纤维素衍生的纳米管状锐钛矿相二氧化钛材料。通过该方法以纳米精度控制二氧化钛晶体尺寸可开拓晶体二氧化钛的潜在性质。
     (2)纤维素衍生天然多层次纳米管状聚合物薄片材料:基于纤维素表面羟基以及聚乙烯醇中羟基与钛醇盐的共价作用,在滤纸的纳米纤维表面依次交替层层自组装二氧化钛超薄凝胶层和聚乙烯醇层,再用氢氧化钠/尿素溶液选择性溶解除去纤维素成分,得到具有纤维素衍生天然多层次结构的纳米管状聚合物薄片材料,实现了仿生聚合物材料。所形成的宏观薄片状聚合物材料继承了滤纸原有纤维状物交织而成的层次状网络和对极性溶剂的特有溶胀性质。进一步对该薄片材料进行酸处理可除去二氧化钛成分获得具有天然多孔结构的纯聚合物材料。
     (3)纤维素衍生多功能纳米管状聚合物复合材料:基于沉积了二氧化钛超薄层的纤维素的活性表面,引导了多种聚合物类客体材料的自组装,形成了各种纳米管状聚合物复合材料。利用二氧化钛表面电负性,在纳米纤维表面通过静电作用交替层层自组装阳离子型聚电解质和阴离子型聚电解质;利用二氧化钛表面羟基,则可在纳米纤维表面通过共价作用沉积肝素或肝素/聚乙烯醇混合物薄膜。经过氢氧化钠/尿素溶液除去纤维素成分,得到了具备纤维素原有结构和溶胀性的纳米管状聚合物复合材料,同时还保留了客体材料的性质如肝素的抗凝血性。
     (4)基于天然纤维素物质的氨气比色传感器:基于纤维素表面羟基与苯胺分子的氢键作用,导向苯胺分子在纤维素纳米纤维表面吸附和聚合形成聚苯胺薄膜,得到了高灵敏度比色传感器。所沉积的聚苯胺超薄膜(-10nm厚)完好地保留了纤维素的多孔性和柔韧性,结合聚苯胺对氨气由绿色到蓝色的显著显色变化,实现了超灵敏、可重复使用的氨气比色传感器。在室温条件下,其对氨气和氨蒸气的肉眼观察灵敏度分别达到了100ppm和10ppm,可重复使用至少50次。
     (5)纤维素引导低温化学法合成石墨烯:基于纤维素结晶区域的表面羟基与苯胺单体分子的氢键作用,导向形成整齐聚苯胺链的超分子结构,促使聚苯胺链在氢氧化钠/尿素溶液处理中随纤维素的溶解而脱氮,实现了低温合成高质量多层石墨烯纳米片。所得石墨烯纳米片即使在多孔状态下导电率也达3.47S m-1
     (6)超顺磁性仿生宏观片状材料:基于纤维素表面包裹的二氧化硅薄膜层的生物亲和性及其表面羟基与蛋白质的共价作用,在用表面溶胶凝胶法包裹了二氧化硅凝胶层的纳米纤维表面自组装固定铁蛋白分子,经过蛋白质的三价铁核重组为二价铁核、进一步二氧化硅薄膜包裹蛋白质与纳米纤维表面以及空气中500℃煅烧,得到了具有天然层次状结构的宏观成块超顺磁性材料。纤维素多层次网络带来的高比表面积保证了大铁蛋白固定量,并且蛋白质壳和二氧化硅薄膜包裹抑制了铁氧化物的晶体转相,所形成的稳定磁性γ-Fe2O3纳米颗粒单独分离且尺寸控制在~10nm,将纳米物质独有的强超顺磁性引入到了宏观片状材料中。
The global human society keeps developing at an astonishing pace even at the current moment, which accompanies with increasing demand for functional materials as well as growing consumptions of non-renewable resources such as coal,petroleum and natural gas and causes serious environmental pollusions. This severe problem drives people to explore environmental friendly approaches to design and develop advanced functional materials. One effective strategy is to take advantage of the natural species. Cellulose is one of the most widely available natural substances in the world, which possesses a series of advantages such as non-toxity, bio-degradability, bio-compatibility, and natural structure derived high porosity, flexibility, and strong mechanical property. By transcribing the unique natural cellulose structures into man-made materials, the structure-related functions of cellulose are readily introduced to the guest species, realizing environmentally benign advanced functional materials.
     Herein, the unique surface properties of natural cellulose substrances are applied to direct the self-assembly of guest substrates such as inorganic oxides, organic molecules, polymer chains, and protein molecules. Thus, the macro-scale, micro-level, and nanoscopic unique functional morphology and structure of natural cellulose substances are combined with the designed functions of the guest species, resulting in a great variety of advanced functional nanostructured materials. The details are described as following:
     (1) Size tunable ultrafine rutile titania/silica hybrids:Based on the covalent bonding between the surface hydroxyl groups of cellulose nanofibers and alkoxide, titania gel layer sandwiched thin silica gel film was deposited coating each cellulose nanofiber surface and then flame burned in air, resulting in crystallite size controllable ultrafine rutile titania/silica hybrid. The cellulose network, rapid flame burning, and tight silica film enwrapping on titania inhibited the crystallite growth of titania upon phase transition at high temperature,and the average diameter of the rutile titania nanocrystallites formed is adjusted in from3.3nm to16.0nm at a crystallite growth rate of-2.4nm per titania gel layer deposition step. Through the crystallite size regulation, the nanotubular ultrafine rutile titania/silica hybrids with rutile titania nanocrystallite size of16.0nm is found to show the highest photocatalytic activity, which is superior to the cellulose derived anatase titania material. Moreover, this approach is also suitable for the crystallite control of anatase titania to enhance the photocatalytic behavior.
     (2) Cellulose derived natural hierarchical nanotubular polymeric sheet:Based on the covalent bonding between the surface hydroxyl groups of cellulose nanofibers and poly(vinyl alcohol) with alkoxide, thin titania/polyvinyl alcohol composite layers were layer-by-layer assembled on each cellulose nanofiber surface of filter paper. Then, the cellulose component was selectively dissolved away from the as-prepared composite sheet by applying sodium hydroxide/urea aqueous solution,forming bulk structured nanotubular titania/poly(vinyl alcohol)hybrid sheet with cellulose templated natural morphological hierarchy. The resulting polymeric hybrid sheet not only attained the randomly cross-linked network of filter paper, but also inherited the unique swelling property of cellulose. This polymeric hybrid sheet was further treated with acidic solution to remove titania component, leading to the natural porous structurd pure poly(vinyl alcohol) material.
     (3) Cellulose derived functional nanotubular polymeric hybrid materials:Based on the chemically active surface of titania pre-coated cellulose nanofiber, the self-assembly of various guest polymeric species was induced, giving versatile nanotubular structured polymeric hybrid material. Cationic polyelectrolyte (e.g., poly(diallyldimethylammonium chloride), polyethylenimine, and Poly(allylamine hydrochloride)) and anionic polyelectrolyte poly(styrene sulfonate) were alternatively layer-by-layer assembled on the nanofiber surface through electrostatic force by using the surface electronegativity of titania, while heparin or heparin/poly(vinyl alcohol) composite layers were formed on the nanofiber surface via covalent bonds.Finally, the cellulose component was dissolved away through sodium hydroxide/urea aqueous solution treatment, leaving nanotubular polymeric hybrid materials with faithfully copied natural cellulose structures. Meanwhile, the resultant materials retained the properties of the original guest species such as the anticoagulative activity of heparin.
     (4) Cellulose based colorimetrie detector towards gaseous ammonia:On the basis of the hydrongen bondings between the surface hydroxyl groups of cellulose and aniline monomers, the aniline molecules adsorbed onto the cellulose nanofiber surface and formed thin polyaniline film covering the cellulose nanofibers through further in-situ oxidative polymerization process. The ultrathin nature of the as-deposited polyaniline film (-10nm) perfectly reserved the high porosity as well as flexibility of cellulose and the obvious color change of polyaniline from green to blue in the presence of ammonia, realizing sensitive, reusable ammonia colorimetric detector. The respective detection limit of the as-prepared detector by the naked eye observation achieved100ppm for ammonia gas and10ppm for ammonia vapor at room temperature, and the detector endured repeated ammonia sensing for at least50times.
     (5) Cellulose induced mild chemical synthesis of graphene:On the basis of the hydrogen bondings between surface hydroxyl groups of crystalline cellulose region and aniline monomer, the aniline molecules were guided to align and polymerized into ordered polyaniline chains along with the crystalline region of cellulose through the in-situ oxidative polymerization process. The unique supermolecular structure facilitated the denitrogenation of polyaniline chains during sodium hydroxide/urea aqueous solution treatment, and the benzene units remained linked with each other, realizing synthesis of high quality graphene nanosheets at low temperature. This mild chemical approach avoided high temperature which would damage the graphene, and achieved electrical conductivity of3.47S m-1even at the porous state.
     (6) Bio-inspired superparamagnetic bulk sheet:On the basis of high biological affinity and covalent links between silica pre-coated cellulose and protein molecules, ferritin was immobilized on to the ultrathin silica film pre-coated cellulose nanofiber. The initial Fe(Ⅲ) cores of ferritin was substituted with Fe(Ⅱ) ones, and then silica film was further coated on the surface of each ferritin molecule and nanofiber surface. The as-prepared composite sheet was finally calcined in air at500℃, yielding natural hierarchical structured bulk material with superparamagnetism. The large surface area of natural cellulose network guaranteed high amount of protein immobilized, and the silica film stabilized the y state iron oxide even at500℃. Furthermore, due to the protection by the protein shell and the ultrathin silica film, the formed magnetic nanoparticles were well-isolated and the size was controlled to be~7nm, achieving stong superparamagnetism.With this method, bulk structured sheets are endowed with the unique specific nano-functions.
引文
[1]Kumar, R.; Liu, D.; Zhang, L.J. Biobased Mater. Bioenergy,2008,2,1-24.
    [2]Sanchezl, C.; Arribart, H.; Guille, M. M. G. Nat. Mater.,2005,4,277-288.
    [3]Pouget, E.; Dujardin, E.; Cavalier, A.; Moreac, A.; Valcry, C.; March-Artzner, V.; Weiss, T.; Renault, A.; Paternostre, M.; Artzner, F. Nat. Mater.,2007,6, 434-439.
    [4]Davis, S. A.;Burkett, S. L.; Mendelson, N. H.; Mann, S. Nature,1997,385, 420-423
    [5]Anderson, M. W.; Holmes, S. M.; Manif, N.; Cundy, C. S. Angew. Chem.,Int. Ed.,2000,39,2707-2710.
    [6]Chia, S.; Urano, J.; Tamanoi, F.; Dunn, B.; Zink, J.I.J. Am. Chem. Soc.,2000, 122,6488-6489.
    [7]Meldrum, F. C.; Seshadri, R. Chem. Commun.,2000,29-30.
    [8]Yang, D.; Qi, L.; Ma, J.Adv. Mater.,2002,14,1543-1546.
    [9]Shin, Y.; Liu, J.; Chang, J. H.; Nie, Z.; Exarhos, G. J. Adv. Mater,2001,13, 728-732.
    [101 Dong, A.; Wang, Y.; Tang, Y.; Ren, N.; Zhang, Y.; Yue, Y.; Gao, Z. Adv. Mater.,2002,14,926-929.
    [11]Kim, Y. Biomacromolecules,2003,4,908-913.
    [12]Hall, S. R.;Bolger, H.; Mann, S. Chem. Commun.,2003,2784-2785.
    [13]Huang, J.; Wang, X.; Wang, Z. Nano. Lett.,2006,6,2325-2331.
    [14]Cook, G.; Timms, P. L.; Goltner-Spickermann, C. Angew.Chem., Int. Ed.2003, 42,557-559
    [15]Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z.; Abernathy, H. W. Ⅲ; Summers, C. J.; Liu, M.; Sandhage, K. H. Nature,2007,446,172-175.
    [16]Caruso, R. A.; Antonietti, M. Chem. Mater.,2001,13,3272-3282.
    [17]Huang, J.; Kunitake,T.J. Am. Chem. Soc.,2003,125,11834-11835.
    [18]Caruso, R. A. Angew. Chem., Int. Ed.2004,43,2746-2748.
    [19]Huang, J.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N.; Kunitake, T. Chem. Mater.,2005,17,3513-3518.
    [20]Aoki, Y.; Huang, J.; Kunitake, T.J. Mater. Chem.,2006,16,292-297.
    [21]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2005,1717-1719.
    [22]Huang, J.; Kunitake, T.; Onoue, S. Chem. Commun.,2004,1008-1009.
    [23]Huang, J.; Ichinose, I.; Kunitake, T. Angew. Chem., Int. Ed.2006,45, 2883-2886.
    [24]Heuser, E. The chemistry of cellulose, (1944) Wiley & Sons, Inc., New York.
    [25]Peng, L.; Kawagoe, Y.; Hogan, P.; Delmer, D. Science,2002,295,147-150.
    [26]Yang, L. Microbiology,2003,30,95-98.
    [27]高洁,汤烈贵,纤维素科学,(1996)科学出版社,北京.
    [28]Slavin, J. L.; Brauer, P. M.; Marlett, J. A. J. Nutr.,1981,111,287-297.
    [29]Mohanty, A. K.; Misra, M.; Drzal, L. T.J. Polym. Environ.,2002,10,19-26.
    [30]Kondo, T. J. Polym. Sci. Part B Polym. Phys.,1997,35,717-723.
    [31]Zugenmaier, P. Prog. Polym. Sci.,2001,26,1341-1417.
    [32]Isogai, A.; Usuda, M.; Kato, T.; Uryu, T.; Atalla, R. H. Macromolecules,1989, 22,3168-3172.
    [33]Kono, H.; Numata, Y.; Erata, T.; Takai, M. Macromolecules,2004,37, 5310-5316.
    [34]Langan, P.; Nishiyama, Y.; Chanzy, H. Biomacromolecules,2001,2,410-416.
    [35]Sarko, A. J.; Southwick, J.; Hayashi, J. Macromolecules,1976,9,851-857.
    [36]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Angew. Chem., Int. Ed.2005, 44,3358-3393.
    [37]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2002,2070-2071.
    [38]Huang, J.; Ichinose, I.; Kunitake, T.; Nakao, A. Langmuir,2002,18, 9048-9053.
    [39]Huang, J.; Ichinose, I.; Kunitake, T.; Nakao, A. Nano. Lett.,2002,2,669-672.
    [40]Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Chem. Mater.,1997,9,857-862.
    [41]Liu, S.; Gan, L.; Liu, L.; Zhang, W.; Zeng, H. Chem. Mater.,2002,14, 1391-1397.
    [42]Caruso, R. A.; Schattka, J.H.; Greiner, A. Adv. Mater.,2001,13,1577-1579.
    [43]Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir,1998, 74,3160-3163
    [44]Chen, Q.; Zhou, W.; Du, G.; Peng, L.Adv. Mater.,2002,14,1208-1211.
    [45]Schattkam, J. H.; Wong, E. H, M.; Antonietti, M.; Caruso, R. A.J. Mater. Chem.,2006,16,1414-1420.
    [46]Kemell, M.; Pore, V.; Ritala, M.; Leskela, M. Chem. Vap. Deposition.,2006,12, 419-422.
    [47]Kemell, M.; Ritala, M.; Leskela, M.; Groenen, R.; Lindfors, S. Chem. Vap. Deposition.,2008,14,347-352.
    [48]Imai, H.; Iwaya, Y.; Shimizu, K.; Hirashima, H. Chem. Lett.,2000,29, 906-907.
    [49]Jur, J. S.; Sweet, W. J. Ⅲ; Oldham, C. J.; Parsons, G. N. Adv. Funct. Mater, 2011,21,1993-2002.
    [50]Hyde, G. K.; Scarel, G.; Spagnola, J. C.; Peng, Q.; Lee, K.; Gong, B.; Roberts, K. G.; Roth, K. M.; Hanson, C. A.; Devine, C. K.; Stewart, S. M.; Hojo, D.; Na, J. S.; Jur, J. S.; Parsons, G. N. Langmuir,2010,26,2550-2558.
    [51]Hyde, G. K.; Park, K. J.; Stewart, S. M.; Hinestroza, J. P.; Parsons, G. N. Langmuir,2007,23,9844-9849.
    [52]Li, J.; Kwong, F.; Ng, D. H. L.J. Am. Ceram. Sot.,2008,91,1350-1353.
    [53]Dutta, M.; Basak, D. Nanolechnology,2009,20,475602.
    [54]Ercolessi, F.; Andreoni, W.; Tosatti, E. Phys. Rev. Lett.,1991,66,911-914.
    [55]Fullam, S.; Cottell, D.; Rensmo, H.; Fitzmaurice, D. Adv. Mater.,2000,12, 1430-1432.
    [56]Niu, T.; Gu, Y.; Huang, J.J. Mater. Chem.,2011,21,651-656.
    [57]Hwang, S.-H; Moorefield, C. N.; Wang, P.; Jeong, K.-U.; Cheng, S. Z. D.; Kotta, K. K.;Newkome, G. R. Chem. Commun.,2006,3495-3497.
    [58]Small, A. C.; Johnston, J.H. Curr. Appl. Phys.,2008,8,512-515.
    [59]Liu, X.; Zong, C.; Lu, L. Analyst,2012,137,2406-2414.
    [60]Ding, Z.; Wei, P.; Chitnis, G.; Ziaic, B. J. Microeleclromech. Sysl.,2011,20, 59-64.
    [61]Cady, N. C.; Behnke, J. L.; Strickland, A. D. Adv. Fund. Mater,2011,21, 2506-2514.
    [62]Gimenez, A. J.; Yanez-Limon, J. M.; Seminario, J. M.J. Phys. Chem. C,2011, 115,282-297.
    [63]Ghule, K.; Ghule, A. V.; Chen, B. J.; Ling, L. Y. Green. Chem.,2006,8, 1034-1041.
    [64]Sun, Q.; Schork, F. J.; Deng, Y. Compos. Sci. Technol,2007,67,1823-1829.
    [65]Rida, A.; Yang, L.; Vyas, R.; Tentzeris, M. M. IEEE Antenn. Propag. M.,2009, 51,13-23. [66] Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S.Anal. Chem.,2011,83,4273-4280.
    [67]Pelton, R.; Geng, X. L.; Brook, M. Adv. Colloid Interface Sci.,2006,127, 43-53.
    [68]Mahltig, B.; Fiedler, D.; Bottcher, H. J. Sol-Gel Sci. Tech.,2004,32,219-222.
    [69]Hou, A.; Shi, Y.; Yu, Y. Carbohydr. Polym.,2009,77,201-205.
    [70]Xie, K.; Yu, Y.; Shi, Y. Carbohydr. Polym.,2009,78,799-805.
    [71]Bayer,1. S.; Fragouli, D.; Attanasio, A.; Sorce, B.; Bertoni, G.; Brescia, R.; Corato, R. D.; Pellegrino, T.; Kalyva, M.; Sabella, S.; Pompa, P. P.; Cingolani, R.; Athanassiou, A.ACSAppl. Mater. Interfaces,2011,3,4024-4031.
    [72]Fragouli, D.; Bayer,1. S.; Corato, R. D.; Brescia, R.; Bertoni, G.; Innocenti, C.; Gatteschi, D.; Pellegrino, T.; Cingolani, R.; Athanassiou, A. J. Mater. Chem., 2012,22,1662-1666.
    [73]He, J.; Kunitake, T.; Watanabe, T. Chem. Commun.,2005.795-796.
    [74]He, J.; Kunitake, T.; Nakao, A. Chem. Mater.,2003,15,4401-4406.
    [75]Sharifi, N.; Tajabadi, F.; Taghavinia, N. Int. J. Hydrogen Energy,2010,35, 3258-3262.
    [76]Padalkar, S.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Won, Y.-H.; Stanciu, L. A.; Moon, R. J. Langmuir,2010,26,8497-8502.
    [77]Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; Mantia, F. L.; Cui, L.-F.; Cui, Y. Proc. Natl. Acad. Sci. U. S. A.,2009,106,21490-21494.
    [78]Hu, L.; Pasta, M.; Mantia, F. L.; Cui, L.-F.; Jeong, S.; Deshazer, H. D.; J. W. Choi, Han, S. M.; Cui, Y.Nano Lett.,2010,10,708-714.
    [79]Hu, L.; Wu, H.; Mantia, F. L.; Yang, Y.; Cui, Y.ACS Nano,2010,4,5843-5848.
    [80]Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. U. S. A., 2007,104,13574-13577.
    [81]Gimenez, A. J.; Yanez-Limon, J. M.; Seminario, J. M.J. Phys. Chem. C,2011, 115,18829-18834.
    [82]Nie, Z.; Nijhuis, C. A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A. W.; Narovlyansky, M.; Whitesides, G. M. Lab Chip,2010,10,477-483.
    [83]Weng, Z.; Su, Y.; Wang, D.-W.; Li, F.; Du, J.; Cheng, H.-M.Adv. Energy Mater., 2011,7,917-922.
    [84]Anderson, R. E.; Guan, J.; Ricard, M.; Dubey, G.; Su, J.; Lopinski, G.; Dorris, G. J. Mater. Chem.,2010,20,2400-2407.
    [85]Zheng, G.; Hu, L.; Wu, H.; Xie, X.; Cui, Y. Energy Environ. Sci.,2011,4, 3368-3373.
    [86]Nystrom, G.; Razaq, A.; Strφmme, M.; Nyholm L.; Mihranyan, A. Nano Lett., 2009,9,3635-3639.
    [87]Callone, E.; Fletcher, J. M.; Carturan, G.; Raj, R. J. Mater. Sci.,2008,43, 4862-4869.
    [88]Li, S.; Wei, Y.; Huang, J. Chem. Lett.,2010,39,20-21.
    [89]Cappelletto, E.; Callone, E.; Campostrini, R.; Girardi, F.; Maggini, S.; della Volpe, C.; Siboni, S.; Maggio, R. D.J. Sol-Gel Sci. Technol.,2012,62, 441-452.
    [90]Yuan, H.;Nishiyama, Y.; Kuga, S. Cellulose,2005,12,543-549.
    [91]Jin, C.; Yan, R.; Huang, J. J. Mater. Chem.,2011,21,17519-17525.
    [92]Hu, W.; Liu, S.; Chen, S.; Wang, H. Cellulose,2011,18,655-661.
    [93]Jin, C.; Jiang, T.; Niu, T.; Huang, J.J. Mater. Chem.,2012,22,12562-12567.
    [94]Kong, F.; Ni, Y. Water Sci. Technol.,2009,60,3083-3089.
    [95]Kong, F.; Ni, Y. BioResources,2009,4,1088-1097.
    [96]Zhang, X.;Huang, J. Chem. Commun.,2010,46,6042-6044.
    [97]Xiao, W.;Hu, H.; Huang, J.Sens. Actuators, B,2012,171-172,878-885.
    [98]Sarrazin, P.; Valecce, L.; Bcncventi, D.; Chaussy, D.; Vurth, L.; Stephan, O. Adv. Mater.,2007,19,3291-3294.
    [99]Mukhopadhyay, S. M.; Joshi, P.; Datta, S.; Zhao, J. G.; France, P. J. Phys. D, 2002,55,1927-1933.
    [100]Vaswani, S.; Koskinen, J.; Hess, D. W. Surf. Coat. Technol.,2005,195, 121-129.
    [101]Mukhopadhyay, S. M.; Joshi, P. Datta, S.; Macdaniel, J.Appl. Surf. Sci.,2002, 207,219-226.
    [102]Kim, J. H.; Liu, G.; Kim, S. H. J. Mater. Chem.,2006,16,977-981.
    [103]Tan, I. H.; da Silva, M. L. P.; Demarquette, N. R. J. Mater. Chem.,2001,11, 1019-1025.
    [104]Egusa, S.; Yokota, S.; Tanaka, K.; Esaki, K.; Okutani, Y.; Ogawa, Y.; Kitaoka, T.; Goto, M.; Wariishi, H. J. Mater. Chem.,2009,19,1836-1842.
    [105]Brumer, H.; Zhou, Q.; Baumann, M. J.; Carlsson, K.; Teeri, T. T. J. Am. Chem. Soc.,2004,126,5715-5721.
    [106]Gustavsson, M. T.; Persson, P. V.; Iversen, T.; Martinelle, M.; Hult, K.; Teeri, T. T.; Brumer, H. Biomacromolecules,2005,6,196-203.
    [107]Xu, M.; Bunes, B. R.; Zang, L.ACS Appl. Mater. Interfaces,2011,3,642-647.
    [108]Kwon, H.; Samain, F.; Kool, E. T. Chem. Sci.,2012,3,2542-2549.
    [109]Balu, B.; Berry, A. D.; Hess, D. W.; Breedveld, V. Lab Chip,2009,9, 3066-3075.
    [110]Martinez, A. W.; Phillips, S. T.; Butte, M. J.; Whitesides, G. M.Angew. Chem., Int. Ed.,2007,46,1318-1320.
    [111]Martinez, A. W.; Phillips, S. T.; Carrilho, E.; Thomas, S. W.; Sindi, H.; Whitesides, G. U.Anal. Chem.,2008,80,3699-3707.
    [112]Martinez, A. W.; Phillips, S. T.; Whitesides, G. M. Proc. Natl. Acad. Sci. U. S. A.,2008,105,19606-19611.
    [113]Martinez, A. W.; Phillips, S. T.; Wiley, B. J.; Gupta, M.; Whitesides, G. M. Lab Chip,2008,5,2146-2150.
    [114]Martin, C. R. Science,1994,266,1961-1966.
    [115]Carswell, A. D. W.; O'Rear, E. A.; Grady, B. P. J. Am. Chem. Soc.,2003,125, 14793-14800.
    [116]Huang, J.; Kaner, R. B.J. Am. Chem. Soc.,2004,126,851-855.
    [117]Zhang, X.; Goux, W. J.; Manohar, S. K.J. Am.Chem. Soc.,2004,126, 4502-4503.
    [118]Olsson, H.; Carlsson, D. O.; Nystrom, G.; Sjodin, M.; Nyholm, L.; Strφmme, M. J. Mater. Sci.,2012,47,5317-5325.
    [119]Zakirov, A. S.; Yuldashev, S. U.J. Korean Phys. Soc.,2012,60,1526-1530.
    [120]Razaq, A.; Nystrom, G.; Strφmme, M.; Mihranyan, A.; Nyholm,L. PLoS ONE, 2011,6, e29243.
    [121]Bhat, N. V.; Seshadri, D. T.; Nate, M. M.; Gore, A. V.J. Appl. Polym. Sci.,2006, 102,4690-4695.
    [122]Dutta, D.; Sarma, T. K.; Chowdhury, D.; Chattopadhyay, A.J. Colloid Interface Sci.,2005,283,153-159.
    [123]Jagadeesan, K. K.; Kumar, S.; Sumana, G. Eleclrochem. Commun.,2012,20, 71-74.
    [124]Johnston, J. H.; Kelly, F. M.; Burridge, K. A.; Borrmann, T. Int.J. Nanotechnol., 2009,6,312-328.
    [125]Nystrom, D.; Lindqvist, J.; Ostmark, E.; Hult, A.; Malmstrom, E. Chem. Commun.,2006,3594-3596.
    [126]Aied, A.; Zheng, Y.; Pandit, A.; Wang, W.ACS Appl. Mater. Interfaces,2012,4, 826-831.
    [127]Carlmark, A.;Malmstrom, E. E.J.Am.Chem. Soc.,2002,124,900-901.
    [128]Carlmark, A.;Malmstrom, E. E.Biomacromolecules,2003,4,1740-1745.
    [129]Lonnberg, H.; Zhou, Q.; Brumer, H.; Teeri, T. T.; Malmstrom, E.; Hult, A. Biomacromolecules,2006,7,2178-2185.
    [130]Ibrahim, K.; Salminen, A.; Holappa, S.; Kataja, K.; Lampinen, H.; Lofgren, B.; Laine, J.J. Appl. Polym. Sci.,2006,102,4304-4313.
    [131]Roy, D.; Knapp, J. S.; Guthrie, J. T.; Perrier, S. Biomacromolecules,2008,9, 91-99.
    [132]Li, S.; Xie, H.; Zhang, S.; Wang, X.Chem. Commun.,2007,4857-4859.
    [133J Li, S.; Zhang, S.; Wang, X. Langmuir,2008,24,5585-5590.
    [134]Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Fu, Y.; Wang, Z. Q.; Jiang, L.; Li, X. Y. J. Am. Chem. Soc.,2004,126,3064-3065.
    [135]Lingstrom, R.; Wagberg, L.; Larsson, P. J. Colloid Interface Sci.,2006,296, 396-408.
    [136]Lingstrom, R.; Notley, S. M.; Wagberg, L. J. Colloid Interface Sci.,2007,314, 1-9.
    [137]Samyn, P.; Schoukens, G.; Van den Abbeele, H.; Vonck, L.; Stanssens, D. J. Coat. Technol. Res.,2011,8,363-373.
    [138]Stanssens, D.; Van den Abbeele, H.; Vonck, L.; Schoukens,G.; Deconinck, M.; Samyn, P. Mater. Lett.,2011,65,1781-1784.
    [139]Gu, Y.; Liu, X.; Niu, T.; Huang, J. Mater. Res. Bull.,2010,45,536-541.
    [140]Ichinose,I.; Kunitake, T.Adv. Mater.,1999,11,413-415.
    [141]Makela, T.; Jussila, S.; Vilkman, M.; Kosnen, H.; Korhonen, R. Synth. Met., 2003,135-136,41-42.
    [142]Zhou, J.; Fukawa, T.; Shirai, H.; Kimura, M. Macromol. Mater. Eng.,2010, 295,671-675.
    [143]Winther-Jensen, B.; Clark, N.; Subramanian, P.; Helmer, R.; Ashraf, S.; Wallace, G.; Spiccia, L.; Mac-Farlane, D. J. Appl. Polym. Sci.,2007,104, 3938-3947.
    [144]Xiao, W.; Huang, J. Langmuir,2011,27,12284-12288.
    [145]Koga, H.; Kitaoka, T.; Isogai, A. J. Mater. Chem.,2012,22,11591-11597.
    [146]Koga, H.; Kitaoka, T.; Isogai, A. J. Mater. Chem.,2011,21,9356-9361.
    [147]Lu, P.; Hsieh, Y.-L.J. Membr. Sci.,2010,348,21-27.
    [148]Liu, X.; Gu, Y.; Huang, J. Chem. Eur.J.,2010,16,7730-7740.
    [149]Shin, Y.; Li, X. S.; Wang, C.; Coleman, J. R.; Exarhos, G. J. Adv. Mater.,2004, 16,1212-1215.
    [150]Kyotani, M.; Matsushita, S.; Kimura, S.; Akagi, K. J. Anal. Appl. Pyrol,2012, 95,14-20.
    [1]Wang, C.-C.; Ying, J. Y. Chem. Mater.,1999,11,3113-3120.
    [2]Chen, X.; Mao, S. S. Chem. Rev.,2007,107,2891-2959.
    [3]Xia, Y.; Whitesides, G.M.Angew. Chem., Int. Ed.,1998,37,550-575.
    [4]Liu, B.; Aydil, E. S. J. Am. Chem. Soc.,2009,131,3985-3990.
    [5]Yurdakal, S.; Palmisano, G.; Loddo, V.; Augugliaro, V.; Palmisano, L. J. Am. Chem. Soc.,2008,130,1568-1569.
    [6]Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr. Chem. Rev.,1995,95,735-758.
    [7]Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A.; Mul, G. J. Phys. Chem. C,2011, 115,2211-2217.
    [8]Wang, Y.; Zhang, L.; Deng, K.; Chen, X.; Zou, Z. J. Phys. Chem. C,2007,111, 2709-2714.
    [9]Li, X.; Xiong, Y.; Li, Z.; Xie, Y.Inorg. Chem.,2006,45,3493-3495.
    [10]Ge, M.; Li, J. W.; Liu, L.; Zhou, Z. Ind. Eng. Chem. Res.,2011,50,6681-6687.
    [11]Iwabuchi, A.; Choo, C.; Tanaka, K.J. Phys.Chem. B,2004,108,10863-10871.
    [12]Andersson, M.; Kiselev, A.; Osterlund, L.; Palmqvist, A. E. C.J. Phys. Chem. C,2007,111,6789-6797.
    [13]Zhang, J.; Lian, J.; Namavar, F.; Wang, J.; Haider, H.; Garvin, K.; Ewing, R. C. J. Phys. Chem. C,2011,115,22755-22760.
    [14]Dessombz, A.; Chiche, D.; Davidson, P.; Panine, P.; Chaneac, C.; Jolivet, J.-P. J. Am. Chem. Soc.,2007,129,5904-5909.
    [15]Ding, K.; Miao, Z.; Hu, B.; An, G.; Sun, Z.; Han, B.; Liu, Z. Langmuir,2010, 26,10294-10302.
    [16]Kolmakova,N.; Kolmakov, A.J. Phys. Chem. C,2010,114,17233-17237.
    [17]Weatherspoon, M. R.; Cai, Y.; Crne, M.; Srinivasarao, M.; Sandhage, K.11. Angew. Chem., Int. Ed,2008,47,7921-7923.
    [18]Fan, X.; Fei, H.; Demaree, D. H.; Brennan, D. P.; John, J. M. St.; Oliver, S. R. J. Langmuir,2009,25,5835-5839.
    [19]Zhao, J.;Gu, Y.; Huang,J.Chem. Commun.,2011,47,10551-10553.
    [20]Schimmoeller, B.; Pratsinis, S. E.; Baiker, A. ChemCatChem,2011,3, 1234-1256.
    [21]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Angew. Chem., Int. Ed.,2005, 44,3358-3393.
    [22]Zhang, H.; Banfield, J. F.J. Phys. Chem. B,2000,104,3481-3487.
    [23]Rashkeev, S. N.; Dai, S.; Overbury, S. H.J. Phys. Chem. C,2010,114, 2996-3002.
    [24]Gu, Y.; Liu, X.; Niu, T.; Huang, J. Chem. Commun.,2010,46,6096-6098.
    [25]Ranade, M. R.; Navrotsky, A.; Zhang, H. Z.; Banfield, J. F.; Elder, S. H.; Zaban, A.; Borse, P.H.; Kulkarni, S. K.; Doran, G. S.; Whitficld, H. J. Proc. Natl. Acad. Sci. U.S.A.,2002,99,6476-6481.
    [26]Huang, J.; Kunitake, T.J. Am. Chem. Soc.,2003,125,11834-11835.
    [27]Gu, Y.; Huang, J.J. Mater. Chem.,2009,19,3764-3770.
    [28]Fakhrullin, R. F.; Lvov, Y. M.ACS Nano,2012,6,4557-4564.
    [29]Jia, Y.; Cui, Y.; Fei, J.; Du, M.; Dai, L.; Li, J.; Yang, Y. Adv. Funct. Mater., 2012,22,1446-1453.
    [30]Caruso, R. A.; Antonietti, M. Chem. Mater.,2001,13,3272-3282.
    [31]Su, R.; Bechstein, R.; Sφ, L.; Vang, R. T.; Sillassen, M.; Esbjornsson, B.; Palmqvist, A.; Besenbacher, F. J. Phys. Chem. C,2011,115,24287-24292.
    [32]Li, X.; John, V. T.; Zhan, J.; He, G.; He, J.; Spinu, L. Langmuir,2011,27, 6252-6259.
    [33]Porto, S. P. S.; Fleury, P. A.; Damen, T. C. Phys. Rev.,1967,154,522-526.
    [34]Liu, X.; Smith, M. E.; Tse, S. D.Appl. Phys. B,2010,100,643-653.
    [35]Zhang, Y.; Wu, L.; Zeng, Q.; Zhi, J. Mater. Chem. Phys.,2010,121,235-240.
    [36]Li, G.; Liu, F.; Zhang, Z. J. Alloys Compd.,2010,493, L1-L7.
    [37]Fujita, K.; Oya, A.; Benoit, R.; Beguin, F. J. Mater. Sci.,1996,31,4609-4615.
    [38]Ren, S.; Zhao, X.; Zhao, L.; Yuan, M.; Yu, Y.; Guo, Y.; Wang, Z.J. Solid State Chem.,2009,182,312-316.
    [39]Wang, P. D.; Zeng, H. C. Chem. Mater.,2009,21,4811-4823.
    [40]Tada, H.; Nishio, O.; Kubo, N.; Matsui, H.; Yoshihara, M.; Kawahara, T.; Fukui, H.; Ito, S. J. Colloid Interface Sci.,2007,306,274-280.
    [41]Narisawa, M.; Ukon, H.; Okamura, K.; Shimada, S.; Kamiyama, T. J. Ceram. Soc. Jpn.,2002,110,518-523.
    [42]Sacaliuc-Parvulescu, E.; Friedrich, H.; Palkovits, R.; Weckhuysen, B. M.; Nijhuis, T. A. J. Catalysis,2008,259,43-53.
    [43]Liu, X.; Gu, Y.; Huang, J. Chem. Eur. J.,2010,16,7730-7740.
    [44]Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G. Q.; Cheng, H.-M.J. Phys. Chem. C,2009,113,21784-21788.
    [45]An, H.; Li, J.; Zhou, J.; Li, K.; Zhu, B.; Huang, W. J. Mater. Chem.,2010,20, 603-610.
    [46]Zhang, Z.; Wang, C. C.; Zakaria, R.; Ying, J. Y. J. Phys. Chem. B,1998,102, 10871-10878.
    [47]Kibombo, H. S.; Zhao, D.; Gonshorowski, A.; Budhi, S.; Koppang, M. D.; Koodali, R. T.J. Phys. Chem. C,2011,115,6126-6135.
    [48]Lee, J. H.; Yang, Y. S. Mater. Chem. Phys.,2005,93,237-242.
    [49]Gu, Y.; Liu, X.; Niu, T.; Huang, J. Mater. Res. Bull.,2010,45,536-541.
    [1]Caruso, R. A.Angew. Chem. Int. Ed.,2004,43,2746-2748.
    [2]Wang, Y.; Angelatos, A. S.; Caruso, F. Chem. Mater.,2008,20,848-858.
    [3]Jang, J.; Li, X.; Oh, J. H. Chem. Commun.,2004,794-795.
    [4]Watanabe, J.; Shen, H.; Akashi, M.Acta. Biomaterialia.,2008,4,1255-1262.
    [5]Liang, Z.; Susha, A. S.; Yu, A.; Caruso, F.Adv. Mater.,2003,15,1849-1853.
    [6]Ai, S.; Lu, G.; He, Q.; Li, J. J. Am. Chem. Soc.,2003,125,11140-11141.
    [7]Mann, S.Angew. Chem. Int. Ed.,2008,47,5306-5320.
    [8]Kemell, M.; Pore, V.; Ritala, M.; Leskela M.;Linden, M.J. Am. Chem. Soc. 2005,127,14178-14179.
    [9]Archibald, D. D.; Mann, S. Nature,1993,364,430-433.
    [10]Baral, S.; Schoen, P. Chem. Mater.,1993,5,145-147.
    [11]Wong, K. K. W.; Mann, S.Adv. Mater.,1996,8,928-932.
    [12]Wong, K. K. W.; Douglas, T.; Gider, S.; Awschalom, D. D.; Mann, S. Chem. Mater.,1998,10,279-285.
    [13]Holmstrom, S. C.; King, P. J. S.; Ryadnov, M. G.; Butler, M. F.; Mann, S.; Woolfson, D. N.; Langmuir,2008,24,11778-11783.
    [14]Shenton, W.; Pum, D.; Sleytr, U.; Mann, S. Nature,1997,389,585-587.
    [15]Davis, S. A.; Burkett, S. L.; Mendelson, N. H.; Mann, S. Nature,1997,385, 420-423.
    [16]Douglas, T.; Young, M. Nature,1998,393,152-155.
    [17]Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Adv. Mater.,1999, 11,253-256.
    [18]Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H. Nanotechnology, 2006,17,840-844.
    [19]Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H. Microporous Mesoporous Mater.,2006,92,227-233.
    [20]Valtchev, V. P.; Smaihi, M.; Faust, A. C.; Vidal, L. Chem. Mater.,2004,16, 1350-1355.
    [21]Collins, A. M.; Skaer, N. J. V.; Gheysens, T.; Knight, D.; Bertram, C.; Roach, H. I.; Oreffo, R. O. C.; Von-Aulock, S.; Baris, T.; Skinner, J.; Mann, S.Adv. Mater., 2008,20,1-4.
    [22]Cao, B.; Mao, C. Langmuir,2007,23,10701-10705.
    [23]Caruso, R. A.; Antonietti, M. Chem. Mater.,2001,13,3272-3282.
    [24]Huang, J.; Kunitake, T. J. Am. Chem. Soc.,2003,125,11834-11835.
    [25]He, J.; Kunitake, T.; Watanabe, T. Chem. Commun.,2005,795-796.
    [26]Aoki, Y.; Huang, J.; Kunitake, T. J. Mater. Chem.,2006,16,292-297.
    [27]Huang, J.; Kunitake, T.; Onoue, S. Chem. Commun.,2004,1008-1009.
    [28]Guo, Y.; Hu, J.; Liang, H.; Wan, L.; Bai, C. Adv. Fund. Mater.,2005,15, 196-202.
    [29]Hock, C. W. J. Polym. Sci.,1952,8,425-434.
    [30]Huang, J.; Ichinose, I.; Kunitake, T. Angew. Chem., Int. Ed.,2006,45, 2883-2886.
    [31]Xiao, R.; Cho, S. Il; Liu, R.; Lee, S. B.J. Am. Chem. Soc.,2007,129, 4483-4489.
    [32]Hassani, A.; Dupuis, A.; Skorobogatiy, M. Opt. Express,2008,16,6340-6351.
    [33]Welbes, L. L.; Borovik, A. S.Acc. Chem. Res.,2005,38,165-114.
    [34]El-Zahab, B.; Jia, H.; Wang, P. Biotechnol. Bioeng.,2004,87,178-183.
    [35]Han, R.; Xing, X.; Wang, Y.; Long, Y.; Sun, Y.; Zhao, Z.; Mi,H.J. Chromalogr. B,2008,873,113-118.
    [36]Lin, X.; Blake, A. J.; Wilson, C.; Sun, X.; Champness, N. R.; George, M. W.; Hubberstey, P.; Mokaya, R.; Schroder, M.J. Am. Chem. Soc.,2006,128, 10745-10753.
    [37]Tanaka, D.; Higuchi, M.; Horike, S.; Matsuda, R.; Kinoshita, Y.; Yanai, N.; Kitagawa, S. Chem. Asian J.,2008,3,1343-1349.
    [38]Morris R. E.; Wheatley, P. S.Angew. Chem., Int. Ed.,2008,47,4966-4981.
    [39]Shan, D.;He, Y.; Wang, S.; Xue, H.; Zheng, H. Anal. Biochem.,2006,356, 215-221.
    [40]Ekanayake, E. M. I. M.; Preethichandra, D. M. G.; Kaneto, K.; Biosens. Bioelectron.,2007,23,107-113.
    [41]Perez, G. P.; Crooks, R. M.Anal. Chem.,2004,76,4137-4142.
    [42]Li, Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S.H.; Chin, V.; Bhatia, S. N.; Sailor, M. J. Science,2003,299,2045-2047.
    [43]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2005,1717-1719.
    [44]Cai, J.; Zhang, L. Macromol. Biosci.,2005,5,539-548.
    [45]Zhou, J.; Chang, C.; Zhang, R.; Zhang, L.Macromol. Biosci.,2007,7,804-809.
    [46]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B.Adv. Mater.,2007,/9,821-825.
    [47]Utley, W. A.; Cummings, A.; Parbrook, H. D.J. Sound Vibral.,1969,9,90-96.
    [48]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A.Angew. Chem., Int. Ed.,2005,44, 3358-3393.
    [49]Huang, J.; Kunitake, T. J. Mater. Chem.,2006,16,4257-4264.
    [50]Huang, J.; Ichinose, I.; Kunitake, T.; Nakao, A. Langmuir,2002,18,9048-9053.
    [51]Zohuriaan-Mehr, M. J.; Kabiri, K. Iran. Polym. J.,2008,17,451-477.
    [1]Wang, Y.; Angelatos, A. S.; Caruso, F. Chem. Mater.,2008,20,848-858.
    [2]Jang, J.; Li, X.; Oh, J. H. Chem. Commun.,2004,794-795.
    [3]Liang, Z.; Susha, A. S.; Yu, A.; Caruso, V.Adv. Mater.,2003,15,1849-1853.
    [4]Ai, S.; Lu, G.; He, Q.; Li, J. J. Am. Chem. Soc.,2003,125,11140-11141.
    [5]Hou, S.; Harrell, C. C.; Trofin, L.; Kohli, P.; Martin, C. R. J. Am. Chem. Soc., 2004,126,5674-5675.
    [6]Hou, S.; Wang, J.; Martin, C. R.J. Am. Chem. Soc.,2005,127,8586-8587.
    [7]Hou, S.; Wang, J.; Martin, C. R. Nano Lett.,2005,5,231-234.
    [8]Baral, S.; Schoen, P. Chem. Mater.,1993,5,145-147.
    [9]Holmstrom, S. C.; King, P. J. S.; Ryadnov, M. G.; Butler, M. F.; Mann, S.; Woolfson, D.N. Langmuir,2008,24,11778-11783.
    [10]Shenton, W.; Pum, D.; Sleytr, U.; Mann, S. Nature,1997,389,585-587.
    [11]Davis, S. A.; Burkett, S. L.; Mendelson, N. H.; Mann, S. Nature,1997,385, 420-423.
    [12]Wong, K. K. W.; Mann, S.Adv. Mater.,1996,8,928-932.
    [13]Wong, K. K. W.; Douglas, T.; Gider, S.; Awschalom, D. D.; Mann, S.Chem. Mater.,1998,10,279-285.
    [14]Douglas, T.; Young, M. Nature,1998,393,152-155.
    [15]Shenton, W.;Douglas, T.; Young, M.; Stubbs, G.; Mann, S.Adv. Mater.,1999, 11,253-256.
    [16]Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H. Nanotechnology, 2006,17,840-844.
    [17]Valtchev, V. P.; Smaihi, M.; Faust, A. C.; Vidal, L. Chem. Mater.,2004,16, 1350-1355.
    [18]Zhang, W.; Zhang, D.; Fan, T.; Ding, J.; Guo, Q.; Ogawa, H. Microporous Mesoporous Mater.,2006,92,227-233.
    [19]Archibald, D. D.; Mann, S. Nature,1993,364,430-433.
    [20]Collins, A. M.; Skaer, N. J. V.; Gheysens, T.; Knight, D.; Bertram, C.; Roach,H. I.; Oreffo, R. O. C.; Von-Aulock, S.;Baris, T.; Skinner, J.; Mann, S.Adv. Mater., 2009,21,75-78.
    [21]Huang, J.; Kunitakc, T.J. Am. Chem. Soc.,2003,125,11834-11835.
    [22]Klemm, D.; Hcublein, B.; Fink, H. P.; Bohn, A.Angew.Chem., Int. Ed.,2005,44, 3358-3393.
    [23]Caruso, R. A.Angew.Chem., Int. Ed.,2004,43,2746-2748.
    [24]Caruso, R. A.; Antonietti, M. Chem. Mater.,2001,13,3272-3282.
    [25]Huang, J.; Ichinosc, I.; Kunitake, T. Angew. Chem., Int. Ed.,2006,45, 2883-2886.
    [26]Huang, J.; Kunitake, T.; Onoue, S. Chem. Commun.,2004,1008-1009.
    [27]He, J.; Kunitake, T.; Watanabe, T. Chem. Commun.,2005,795-796.
    [28]Aoki, Y.; Huang, J.; Kunitake, T.J. Mater. Chem.,2006,16,292-297.
    [29]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2005,1717-1719.
    [30]Torsi, L.; Farinola, G. M.; Marinelli, F.; Tanese, M. C.; Omar, O. H.; Valli, O. H. L.; Babudri, F.; Palmisano, F.; Zambonin, P. G.; Naso, F. Nat. Mater.,2008,7, 412-117.
    [31]Lee, S. B.; Mitchell, D. T.; Trofin, L.;Nevanen, T. K.; Soderlund, H.; Martin, C. R. Science,2002,296,2198-2200.
    [32]Xin, H.; Woolley, A. T. J. Am. Chem. Soc.,2003,125,8710-8711.
    [33]Pourjavadi, A.; Soleyman, R.; Barajee, G. R. Starch/Staerke,2008,60,467-475.
    [34]Ono, T.; Sugimoto, T.; Shinkai, S.; Sada, K. Nat. Mater.,2007,6,429-433.
    [35]Crisp, M. T.; Kotov, N. A. Nano Lett.,2003,3,173-177.
    [36]Lakshmi, B.; Martin, C. R. Nature,1997,388,758-760.
    [37]George, P. M.; La Van, D. A.; Burdick, J. A.; Chen, C.; Liang, E.; Langer, R.Adv. Mater.,2006,18,577-581.
    [38]Salick, D. A.; Kretsinger, J. K.; Pochan, D. J.; Schneider, J. P. J. Am. Chem. Soc., 2007,129,14793-14799.
    [39]Pantarotto, D,; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.-P.; Prato, M.; Kostarelos, K.; Bianco, A.Angew. Chem., Int. Ed.,2004,43,5242-5246.
    [40]Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H.J. Am. Chem. Soc.,2004, 726,6850-6851.
    [41]Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature, 2001,412,169-172.
    [42]Klem, T. M.; Resnick, D. A.; Gilmore, K.; Young, M.; Idzerda, Y. U.; Douglas, T. J. Am. Chem. Soc.,2007,129,197-201.
    [43]Azamian, B. R.; Davis, J. J.; Coleman, K. S.; Bagshaw, C. B.; Green, M. L. H. J. Am. Chem. Soc.,2002,124,12664-12665.
    [44]Jang, J.; Oh,J.Adv. Mater.,2004,16,1650-1653.
    [45]Gu, Y.; Huang, J.J. Mater. Chem.,2009,19,3764-3770.
    [46]Dubas, S. T.; Farhat, T. R.; Schelenoff, J. B. J. Am. Chem. Soc.,2001,123, 5368-5369.
    [47]Ichinose, I.; Kawakami, T.; Kunitake, T.Adv. Mater.,1998,10,535-539.
    [48]Huang, J.; Ichinose, I.; Kunitake, T.; Nakao, A. Langmuir,2002,18,9048-9053.
    [49]Huang, J.; Kunitake, T. Chem. Commun.,2005,2680-2682.
    [50]Huang, J.; Kunitake, T. J. Mater. Chem.,2006,16,4257-4264.
    [51]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2002,2070-2071.
    [52]Watanabe, H.; Vendamme, R.; Kunitake, T. Dull. Chem. Soc. Jpn.,2007,80, 433-440.
    [1]Yoo, K.-P.; Kwon, K.-H.; Min, N.-K.; Lee, M. J.; Lee, C. J. Sens. Actuators B, 2009,143,333-340.
    [2]Timmer, B.; Olthuis, W.; Van den Berg, A. Sens. Actuators B,2005,107, 666-677.
    [3]Bai, H.; Shi, G. Sensors,2007,7,267-307.
    [4]Li, D.; Huang, J.; Kaner, R. B.Acc. Chem. Res.,2009,42,135-145.
    [5]Rajesh; Ahuja, T.; Kumar, D. Sens. Actuators B,2009,136,275-286.
    [6]Gong, J.; Li, Y.; Hu, Z.; Zhou, Z.; Deng, Y. J. Phys. Chem. C,2010,114, 9970-9974.
    [7]Chen, J.; Yang, J.; Yan, X.; Xue, Q. Synt. Met.,2010,160,2452-2458.
    [8]Liu, P.; Zhang, L. Crit. Rev. Solid State,2009,34,75-87.
    [9]Matsuguchi, M.; Asahi, T. Sens. Actuators B,2011,160,999-1004.
    [10]Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B.J. Am. Chem. Soc.,2003,125, 314-315.
    [11]Ding, B.; Wang, M.; Yu, J.; Sun, G. Sensors,2009,9,1609-1624.
    [12]Janata, J.; Josowicz, M. Nat. Mater.,2003,2,19-24.
    [13]Gerard, M.; Chaubey, A.; Malhotra, B. D. Diosens. Bioelectron.,2002,17, 345-359.
    [14]Stamenov, P.; Madathil, R.; Coey, J. M. D. Sens. Actuators B,2012,161, 989-999.
    [15]Crowley, K.; Morrin, A.; Hernandez, A.; O'Malley, E.; Whitten, P. G.; Wallace, G. G.; Smyth, M. R.; Killard, A. J. Talanta,2008,77,710-717.
    [16]Crowley, K.; O'Malley, E.; Morrin, A.; Smyth, M. R.; Killard, A. J. Analyst, 2008,133,391-399.
    [17]Weng, B.; Shepherd, R. L.; Crowley, K.; Killard, A. J.; Wallace, G. G. Analyst, 2010,135,2779-2789.
    [18]Wojkiewicz, J. L.; Bliznyuk, V. N.; Carquigny, S.; Elkamchi, N.; Redon, N.; Lasri, T.; Pud, A. A.; Reynaud, S. Sens. Actuators B,2011,160,1394-1403.
    [19]Li, X.; Gao, Y.; Gong, J.; Zhang, L.; Qu, L.J. Phys. Chem. C,2009,113,69-73.
    [20]Gao, Y.; Shan, D.; Cao, F.; Gong, J.; Li, X.; Ma, H.; Su, Z.; Qu, L.J. Phys. Chem. C,2009,113,15175-15181.
    [21]Liu, H.; Kameoka, J.; Czaplewski, D. A.; Craighead, H. G. Nano Lett.,2004,4, 671-675.
    [22]Lobotka, P.; Kunzo, P.; Kovacova, E.; Vavra, I.; Krizanova, Z.; Smatko, V.; Stejskal, J.; Konyushenko, E. N.; Omastova, M.; Spitalsky, Z.; Micusik, M.; Krupa, I. Thin Solid Films,2011,519,4123-4127.
    [23]Huang, J.; Kaner, R. B. Chem. Commun.,2006,367-376.
    [24]Dutta, D.; Sarma, T. K.; Chowdhury, D.; Chattopadhyay, A.J. Colloid Interf. Sci.,2005,283,153-159.
    [25]Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Angew. Chem., Int. Ed.,2005, 44,3358-3393.
    [26]Zhang, X.; Huang, J. Chem. Commun.,2010,46,6042-6044.
    [27]Huang, J.; Ichinose, I.; Kunitake, T. Angew. Chem., Int. Ed,2006,45, 2883-2886.
    [28]Xiao, W.; Huang, J. Langmuir,2011,27,12284-12288.
    [29]Kemell, M.; Pore, V.; Ritala, M.; Leskela, M.; Linden, M.J. Am. Chem. Soc., 2005,127,14178-14179.
    [30]Zampetti, E.; Pantalei, S.; Scalese, S.; Bearzotti, A.; De Cesare, F.; Spinella, C.; Macagnano, A. Biosens. Bioelectron.,2011,26,2460-2465.
    [31]Yang, Y.; Yan, X.; Cui, Y.; He, Q.; Li, D.; Wang, A.; Fei, J.; Li, J. J. Mater. Chem.,2008,18,5731-5737.
    [32]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2005,1717-1719.
    [33]Kukla, A. L.; Shirshov, Y. M.; Piletsky, S. A.Sens. Actuators B,1996,37, 135-140.
    [34]Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Su, Y.; Li, J. J. Mater. Chem.,2009,19, 3263-3267.
    [35]Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Wang, K.; Li, J. ACS Nano,2009,3, 3714-3718.
    [36]Macagnano, A.; Zampetti, E.; Pantalei, S.; De Cesare, F.; Bearzotti, A.; Persaud, K. C. Thin Solid Films,2011,520,978-985.
    [37]Zheng, Y.; Pan, Z.;Zhang, R. Int. J. Agric.& Biol. Eng,2009,2,51-68.
    [1]Moothi, K.; Iyuke, S. E.; Meyyappan, M.; Falcon, R. Carbon,2012,50, 2679-2690.
    [2]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A.Angew. Chem., Int. Ed., 2009, 48,1152-1111.
    [3]Takami, T.; Ogawa, S.; Sumi, H.; Kaga, T.; Saikubo, A.; Ikegawa, E.; Sato, M.; Nihei, M.; Takakuwa, Y. e-J. Surf. Sci. Nanotech., 2009, 7, 882-890.
    [4]McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Chem. Mater., 2007,19, 4396-4404.
    [5]Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett., 2008, 8, 3498-3502.
    [6]Sun, G.; Li, X.; Yan, H.; Qiu, J.; Zhang, Y. Carbon, 2008, 46, 476-481.
    [7]Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett., 2008, 8, 902-907.
    [8]Li, D.; Kaner, R. B. Science, 2008, 320, 1170-1171.
    [9]Geim, A. K.; Novoselov, K. S.Nat. Mater., 2007, 6, 183-191.
    [10]Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat. Nanotech., 2008, 3, 563-568.
    [11]Park, S.; Ruoff. R. S. Nat. Nanotech., 2009, 4, 217-224.
    [12]Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Nano Lett., 2009, 9, 4268-4272.
    [13]Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; De Heer, W. A. Science, 2006,312, 1191-1196.
    [14]Chen, W.; Yan, L. Nanoscale, 2010, 2, 559-563.
    [15]Wu, J.; Pisula, W.; Mullen, K. Chem. Rev., 2007, 107, 718-747.
    [16]Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S. Nature, 2010, 466, 470-473.
    [17]Shen, J.-M.; Xu, L.; Liu, Y.-G.; Lu, C.-L.; Hou, W.-H.; Zhu, J.-J. Chem. Mater., 2008,20,3034-3041.
    [18]Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev., 2010, 110, 132-145.
    [19]Viculis, L. M.; Mack, J. J.; Kaner, R. B. Science, 2003, 299, 1361.
    [20]Milev, A. S.; Tran, N. H.; Kannangara, G. S. K.; Wilson, M. A. Phys. Chem. Chem. Phys.,2010,12,6685-6691.
    [21]Huang, J.; Ichinose, I.; Kunitake, T. Chem. Commun.,2005,1717-1719.
    [22]Yang, Y.; Yan, X.; Cui, Y.; He, Q.; Li, D.; Wang, A.; Fei, J.; Li, J.J. Mater. Chem.,2008,18,5731-5737.
    [23]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Angew. Chem., Int. Ed,2005, 44,3358-3393.
    [24]Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Rader, N. J.; Mullen, K.J. Am. Chem. Soc.,2008,130,4216-4217.
    [25]Zhang, Z.; Wei, Z.; Wan, M. Macromolecules,2002,35,5937-5942.
    [26]Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Wang, K.; Li, J. ACS Nano,2009,3, 3714-3718.
    [27]Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Su, Y.; Li, J.J. Mater. Chem.,2009,19, 3263-3267.
    [28]Zhu, D.; Pignatello, J. J. Environ. Sci. Technol.2005,39,2033-2041.
    [29]Atalla, R. H.; VanderHart, D. L. Science,1984,223,283-285.
    [30]Kosynkin, D. V. Nature,2009,458,872-877.
    [31]Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; MacDiarmid, A. G. Macromolecules,1991,24,779-789.
    [32]Yang, X.; Gong, B.Angew. Chem., Int. Ed. 2005,44,1352-1356.
    [33]Cai, J.; Zhang, L. Macromol. Biosci.2005,5,539-548.
    [34]Xu, Y.; Sheng, K.; Li, C.; Shi, G.ACS Nano,2010,4,4324-4330.
    [35]Tang, Z.; Shen, S.; Zhuang, J.; Wang, X. Angew. Chem., Int. Ed.,2010,49, 4603-4607.
    [36]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff,E. S. Nature,2006,442, 282-286.
    [37]Williams, G.; Seger, B.; Kamat, P. V.ACS Nano,2008,2,1487-1491.
    [38]Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai,H. Nat. Nanotech., 2008,3,538-542.
    [I]Leslie-Pelecky, D. L.; Rieke, R. D. Chem. Mater.,1996,8,1770-1783.
    [2]Tartaj, P. Eur. J. Inorg. Chem.,2009,333-343.
    [3]De Silva, C. R.; Smith, S.; Shim, I.; Pyun, J.; Gutu, T.; Jiao, J.; Zheng, Z.J. Am. Chem. Soc.,2009,131,6336-6337.
    [4]Baik, J. M.; Lee, J. Adv. Mater.,2005,17,2745-2748.
    [5]Mao, C.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.;Hayhurst, A.; Georgiou, G.; Inerson, B.; Belcher, A. M. Science,2004,303,213-216.
    [6]Fuertes, A. B.; Sevilla, M.; Alvarez, S.; Valdes-Solis, T.; Tartaj, P. Adv. Funct. Mater.,2007,17,2321-2327.
    [7]Hu, F.; MacRenaris, K. W.; Waters, E. A.; Schultz-Sikma, E. A.; Eckermann, A. L.; Meade, T. J. Chem. Commun.,2010,46,73-75.
    [8]Meldrum, F. C.; Heywood, B. R.; Mann, S. Science,1992,257,522-523.
    [9]Klem, M. T.; Resnick, D. A.; Gilmore, K.; Young, M.; Idzerda, Y. U.; Douglas, T.J. Am. Chem. Soc.,2007,129,197-201.
    [10]Gass, J.; Poddar, P.; Almand, J.; Srinathl, S.; Srikanth, H. Adv. Funct. Mater., 2006,16,71-75.
    [11]Buchanan, K. S.; Zhu, X.; Meldrum, A.; Freeman, M. R. Nano Lett.,2005,5, 383-387.
    [12]Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. Chem. Soc. Rev.,2009,38,2532-2542.
    [13]Huang, J.; Kunitake, T. J. Am. Chem. Soc.,2003,125,11834-11835.
    [14]Caruso, R. A.Angew. Chem., Int. Ed.,2004,43,2746-2748.
    [15]Uchida, M.; Klem, M. T.; Allen, M.; Suci, P.; Flenniken, M.; Gillitzer, E.; Varpness, Z.; Liepold, L. O.; Young, M.; Douglas, T. Adv. Mater.,2007,19, 1025-1042.
    [16]Ennas, G.; Marongiu, G.; Musinu, A.; Falqui, A.; Balliraro, P.; Caminiti, R. J. Mater. Res.,1999,14,1570-1575.
    [17]Chamritski, I.; Burns, G.J. Phys. Chem. B,2005,109,4965-4968.
    [18]Li, D.; Teoh, W. Y.; Selomulya, C.; Woodward, R. C.; Amal R.; Roche, B. Chem. Mater.,2006,18,6403-6413.
    [19]Gu, Yu.; Huang, J.J. Mater. Chem.,2009,19,3764-3770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700