用户名: 密码: 验证码:
光束整形和相位校正相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光光束质量和近场强度分布是高能激光技术研究者比较关注的两个方面。激光光束质量由于受到激光器本身和传输过程中诸多因素的影响而变差,一般采用自适应光学系统对其进行控制。其中,常规共轭式自适应光学系统在光束控制中得到了较为广泛的应用。理论研究表明,严格意义上的相位共轭是该系统波前畸变得到完全校正的关键,但实际系统的校正效果受到多方面条件限制。近场强度的非均匀分布在影响激光远场能量集中度的同时,带来非均匀的热变形和较严重的波前畸变,需要对光束强度进行整形,基于随机并行梯度下降算法(SPGD)的自适应光束整形是实现此目标的一种有效方法,但整形效果与目标光束尺寸有关。
     本文工作主要包括两大部分:相位校正的理论模拟和实验研究;基于SPGD算法的光束整形改进研究。
     第一部分工作主要是分析各因素对常规共轭式系统像差校正效果的影响,并提出改进方案。此部分主要包括以下内容:对常规共轭式系统的像差校正理论进行了推导和分析,讨论了影响像差校正效果的多种因素,并进行了数值计算验证;在此基础上,提出了一种波像差校正的改进方案,通过数值模拟,对比分析了相同像差条件下两种方案的校正效果;搭建了相应实验平台,采用双液晶空间光调制器,分别作为波前畸变产生器件和相位校正器件,通过实验初步验证了不同方案的校正效果,并与理论计算结果进行了对比。
     第二部分工作主要是基于SPGD算法的光束整形改进研究。此部分主要包括以下内容:针对目前基于SPGD算法的自适应光束整形系统存在的不足设计了改进方案;通过数值模拟和实验研究了改进系统的光束整形效果和对目标光束尺寸的适用性。研究结果表明:此系统在实际目标光束尺寸和最佳目标光束尺寸相差一定范围内均能得到较为理想的整形效果,改进整形系统基本达到了预期的目的。
The quality of laser beam and profile of near field intensity are the two fields which are the focus of attention for the high energy researcher. As the quality of laser beam is influenced by a lot of factors which come from the laser itself and the propagation, the adaptive optics(AO) system is the common means to control the beam. The study of theory reveals that the perfect phase conjugate is the key of system to correct aberration completely. However, the correct effect of real system is limited by a lot of reasons. Nonuniform near-field not only have a influence on laser far-field concentration ratio but also result in Nonuniform heat distortion and serious wave-front distortion. The AO system based on SPGD algorithm is a easy and effective method to accomplish this target, but the effect of beam shaping is influenced by aperture of the target beam.
     The dissertation’s main works are listed as follows: the theoretical and experiment studies of phase correct and the improvement of the beam shaping system based on SPGD algorithm.
     The first part of this paper mainly analyzes the correct effect of conventional conjugate AO systems which are influenced by a lot of factors. The content mainly includes several sections as following: the derivation and analysis on aberration correction theory of conventional conjugate AO systems; we studied the correct effect of conjugate AO systems which are influenced by several factors, and offered an improved solution of correcting aberration. The two means of effect on correcting aberration were simulated. At the same time, we accomplished the light path basing on dual liquid crystal spatial lighter modulators(LC-SLM), preliminarily verifying the analysis of theory and effect of analogy.
     The second part of this paper mainly analyses and improves the beam shaping system based on SPGD algorithm. It includes several sections as following: improve the beam shaping system to overcome the defect of original one. The beam shaping effect of improving system and the applicability to target beam aperture were simulated and also relevant experiments were carried out. The results reveal that the improved system could have a fantasy beam shaping effect when the realistic and required target beam far away from the best target aperture, and it reaches the expected goal.
引文
[1] C.A.Primmermen, T.R.Price, R.A.Humphreys et al. Atmospheric compensation experiments in strong-scintillation conditions[J]. Appl. Opt., 1995, 34(12): 208l~2088
    [2]王英俭,吴毅,汪超等.激光实际大气传输湍流效应相位校正一些实验结果[J].量子电子学报, 1998, 15(2): 164~169
    [3]王小林,刘泽金,赵伊君等. SPGD算法光束净化中光强起伏对校正效果的影响研究[J].光学学报, 2009, 30(5): 1936~1941
    [4] Li Qiang, Shen Mangzuo. Measurement of telescope aberrations using phase diversity method[J]. ACTA OPTICA SINICA, 2007, 27:1553~1557
    [5]王三宏,于起峰等.基于随机并行梯度下降方法的动态光束净化实验研究[J].光学学报, 2009, 29(1): 97~101
    [6] David L. Shealy and John A. Hoffnagle. Laser beam shaping pro?les and propagation[J]. APPLIED OPTICS, 2005, 45(21): 5118~5130
    [7]杨华峰.用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术研究[D].国防科技大学博士学位论文(2008)
    [8]鞠有伦等.运动目标激光跟踪瞄准中的闭环研究[J].中国激光. 2002. Vol.29 (增刊): 642~ 643
    [9]周仁忠,阎吉祥,俞信等.自适应光学[M].北京,国防工业出版社, 1996
    [10] Hardy J. W, et al. J Opt. Soc Am, 1971, 651: 656
    [11] J.D.Barchers, D.L.Fried, D.J.Link. Evaluation of the performance of hartmann sensors in strong scintillation [J]. Appl. Opt., 2002, 41(6): 1012~1021
    [12] M.Vorontsov, J.Riker, G.Carhart et al. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63m telescope [J]. Appl. Opt., 2009, 48(1): A47~A57
    [13] T.Weyrauch, M.A.Vorontsov. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications [J]. Appl. Opt., 2005, 44(30): 6388~6401
    [14] Babcock H W. The possibility of astronomical seeing. Publ Astron Soc Pac,1953
    [15] J.W.Hardy. Active optics: A new technology for the control of light. Proc. IEEE, 1978, 66(6): 651~679
    [16] D.P.Greenwood, C.A.Primmerman. Adaptive optics research at Lincoln Laboratory. The Lincolon Labortory Journal, 1992, 5(1): 3~24
    [17] Rodddier F. Status of astronomical optics development .ESO conference, 1991
    [18] Merkle F et al. Adaptive optics for the Europen very large telescope. SPIE, 1542: 283, 1991
    [19] C.Boyer, V.Michon, G.Rousset. Adaptive optics: interaction matrixs measure -ment and real time control algorithms for the come-on project. Proc. SPIE, 1237: 64, 1990
    [20] Neal D.R. et al. Astigmaic unstable resonator with an intracaviy deformable mirror. SPIE,1542: 449, 1991
    [21] P.J.Lena. daptive Optics for the Euiropean very large telescope. Proc. SPIE, Vol.1542, 1991, 283~292
    [22]侯静.自适应光学波前探测新概念研究.国防科技大学博士学位论文(2002)
    [23]张强.氧碘化学激光器光束净化.四川大学博士学位论文(1999)
    [24] J.W.Hardy. Active Optics: a progress review. SPIE, Vol.1542, 2~17, 1991
    [25] J.Thaddeus Salmon et al. Real time wave-front correction system using a zonal deformable mirror and a Hartmann sensor. SPIE, Vol.1542,459~467,1991
    [26]中科院光电研究所自适应光学技术专辑.光电工程, Vol.22, No 1~2, 1995
    [27]姜文汉.光电技术研究所的自适应光学技术.光电工程, 1995, 22(1): 1
    [28] W.H.Jiang. Adaptive optical image compensation experiments on stellar objects. Opt.Eng., 1995, 34(1): 7
    [29]范承玉,王英俭,龚知本等.强湍流效应下不同信标波长的自适应光学校正. 2003, Vol.23, No.12
    [30] Kanev F, Makenova N, Lukin V. Amplitude-phase control of a laser beam in a two-mirror adaptive system. Proceedings of SPIE 2004, Vol.5572
    [31] Kanev F, Makenova N, Lukin V. Phase and amplitude-phase control of a laser beam propagating in the atmosphere. Quantum Electronics, 2004, 34(9): 825-832
    [32]季家镕.高等光学教程(非线性光学)[M].科学出版社,2008, 125~127
    [33]张晓芳,俞信,阎吉祥.多层共轭自适应光学的进展与展望[J].纳米技术与精密工程. 2004, 2(1): 76~80
    [34]卢新然,张洪涛,王树洁.分层共轭自适应光学系统扩大校正视场的方法研究[J].长春理工大学学报. 2006, 29(1): 32~34
    [35]阎吉祥,俞信,姜爱民.大气相位畸变的分层模型及模拟探测实验[J].光学技术. 2000, 26(1): 56~58
    [36]杨慧珍.无波前探测自适应光学随机并行梯度下降算法及应用研究[D].中国科学院研究生院,2008
    [37]李有宽,陈栋泉,杜祥琬.双变形镜自适应光学全场补偿模拟[J].强激光与粒子束,2000,16(6):665~669
    [38]李有宽,杜祥琬,陈栋泉.信标光波长对全场补偿的影响[J].强激光与粒子束,2001,13(5):541~544
    [39]王三宏.随机并行梯度下降自适应光学技术在光束净化中的应用[D].国防科技大学,2009
    [40]马浩统.基于优化式自适应光学的光束全场整形研究[D].国防科技大学,2011
    [41]余湛.基于液晶空间光调制器光束整形理论算法和实验研究[D].国防科技大学,2010
    [42]吕百达.激光光学:光束描述、传输变化与光腔技术物理[M].北京:高等教育出版社, 2003
    [43] R.J.Noll. Zernike polynomials and atmospheric turbulence [J]. J. Opt. Soc. Am., 1976, 66(3): 207~211
    [44]郝尔齐克著,周海宪,王永年,程云芳等译.微光学元件、系统和应用[M].北京:国防出版社, 2002
    [45] H.Kogelnik. Laser beams and resonators [J]. Appl.Opt, 1966, 5(10): 1550~1567
    [46] R.Sacks, J.Auerbach et al.. Application of adaptive optics for controlling the NIF laser performance and spot size [C]. Proc. of SPIE, 1999, 3492: 344~354
    [47] J.W.Ogland. Mirror system for uniform beam transformation in high-power annular lasers[J]. Appl. Opt. 1978, 17: 2917~2913
    [48] D.Shafer. Gaussian to flat-top intensity distributing lens[J]. Opt. Laser Technol. 1982, 3:159~160
    [49] N.C.Roberts. Multilevel computer-generated holograms with separable phase functions for beam shaping[J]. Appl. Opt. 1992, 31(7): 3198~3120
    [50]曾志革,凌宁,姜文汉. He-Ne激光束的焦斑形态控制[J].强激光与粒子束, 1998, 10(4): 581~586
    [51]曾志革,凌宁,姜文汉.用于ICF焦斑形态控制的能动反射镜拟合波面能力研究[J].强激光与粒子束, 1998,10(1): 1~5
    [52] K.Nemoto, T.Fujii, N.Goto et al.. Transformation of a laser beam intensity profile by a deformable mirror[J]. Opt. Lett. , 1996, 21(3): 168~170
    [53] Yang Ping, Liu Yuan et al.. An adaptive laser beam shaping technique based on a genetic algorithm[J]. Chinese Optics Letters, 2007, 5(9): 497~500
    [54] J.A.Hoffnagle. Design and performance of a refractive optical system that converts a Gaussian to a flattop beam [J]. Appl. Opt, 2000, 39(30): 5488~5499
    [55] Haotong Ma, Zejin Liu, Xiaojun Xu. Near-diffraction-limited flattop laser beam adaptively generated by stochastic parallel gradient descent algorithm [J]. Opt. Lett, 2010, 35(17): 2973~2975
    [56] Haotong Ma, Xiaojun Xu, Zejin Liu. Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators [J]. Opt. Express, 2010, 18(8): 8251~8260
    [57] Haotong Ma, Xiaojun Xu, Zejin Liu. Adaptive conversion of multimode beam to near-diffraction-limited flattop beam based on dual phase-only liquid-crystal spatial light modulators [J]. Opt. Express, 2010, 18(26): 27723~27730
    [58] R. El-Agmy, H. Bulte, A. H. Greenaway, et al. Adaptive beam profile control using a simulated annealing algorithm [J]. Opt. Express, 2005, 13(16): 6085~6091
    [59] Ping Yang, Yuan Liu, Wei Yang, et al. An adaptive laser beam shaping technique based on a genetic algorithm [J]. Chin. Opt. Lett, 2007, 5(9), 798~500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700