用户名: 密码: 验证码:
基于微机械薄膜变形镜的像差校正技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学技术是近年来发展迅速的一门新兴综合性技术,将其应用到人眼眼底的显微观察中,可以准确、快速的对人眼像差进行实时测量、控制和校正,提高眼底成像系统的分辨率,为人类眼科疾病及其它全身性疾病的诊断和治疗提供新的手段。论文以自适应光学理论、视光学理论为基础,深入研究基于微机械薄膜变形镜的人眼像差校正理论及其技术,为低成本高精度活体人眼视网膜成像系统的研发提供理论支持和工程应用的新途径。主要内容包括:
     (1)详细介绍了人眼眼球的结构,定义了人眼波前像差,建立了以Zernike多项式为基函数的人眼像差表达模型,系统研究了基于Hartmann-Shack波前传感器的人眼波前像差重建原理和方法,提出了基于奇异值分解的人眼波前像差重建算法,为人眼像差的校正奠定了基础。
     (2)详细介绍了微机械薄膜变形镜的结构和原理,理论分析和实验验证了微机械薄膜变形镜镜面形变和驱动电极控制信号之间的关系,建立了以影响函数矩阵为基础的变形镜控制信号和待补偿像差模式系数之间的关系模型,分析了微机械薄膜变形镜对Zernike模式像差的拟合能力和校正范围,为基于微机械薄膜变形镜的像差补偿算法设计提供了理论依据。
     (3)建立了基于微机械薄膜变形镜空间域像差补偿问题的模型,在开环校正模式下,提出了的基于乘子罚函数方法和基于有效约束集方法的控制信号求解算法,前者通过乘子向量和罚函数将原问题逐步转化为一个无约束的最优化问题,后者通过有效约束集方法将原问题转化为等式约束问题,两种方法具有速度快、精度高等优点,特别适用于系统误差较小、影响函数标定准确的的系统。
     (4)在闭环校正模式下,提出了基于奇异值分解的控制信号求解算法,构建了微机械薄膜变形镜可校正像差模式空间,详细分析了系统对构造正交基模式像差的校正特性和算法通过模式选择校正以提高变形镜校正能力的原理,通过计算机仿真和模拟眼校正实验,分析了模式像差选择对校正效果的影响,确立基于奇异值分解以实现校正模式滤除的像差补偿算法为最优的人眼像差校正算法。
     (5)总结了人眼像差的动态特性,建立了自适应光学系统的控制模型,推导了系统的传递函数,以提高控制系统的带宽为优化目标,对比分析了积分控制算法和Smith控制算法下系统的性能,提出了基于Smith控制和奇异值分解的波前校正算法,为基于微机械薄膜变形镜的人眼像差实时校正提供了算法支持。
     (6)根据论文理论研究成果,设计了国内首套基于微机械薄膜变形镜的视网膜细胞显微镜硬件系统和软件系统,设备具有人眼像差实时测量、校正和视网膜细胞成像功能,通过模拟眼和人眼校正实验,成功拍摄到高清晰度模拟眼眼底图像和活体人眼视网膜细胞图像,目前仪器已顺利通过杭州医疗器械质量监督检验中心的检测。
As an emerging comprehensive technology which is growing rapidly in recent years, in the application of human fundus microscopic observation, adaptive optics provides a new way of diagnosis and treatment for human ophthalmology diseases and other systemic diseases because of the advantages of exact and rapid real time measurement, control and correction of human aberration, which can improve resolution of imaging system. On the basis of adaptive optics and visual optics theory, this thesis carries out a further research on human aberration correction theory and technology based on micromachined membrane deformable mirror, which can provide theoretical support and engineering practice guidance for the development of low-cost high precision living human retina imaging system. The content of this thesis mainly includes:
     (1) The human eyeball structure is described in detail. The human wavefront aberration is defined, and its representation model is established on the basis of Zernike polynomial. The principle and method of Hartmann-Shack wavefront sensor based human wavefront aberration reconstruction is systematically studied, and a wavefront aberration reconstruction algorithm of human eyes based on singular value decomposition is put forward, which lays the foundation for human aberration correction.
     (2) The structure and principle of micromachined membrane deformable mirror is described in detail, and the relationship between micromachined membrane deformable mirror deformation and driving electrode control signal is analyzed theoretically and verified experimentally. On the basis of influence function matrix, the relationship model between deformable mirror control signal and the mode parameter of aberration to be compensated is built, and the micromachined membrane deformable mirror fitting ability and correcting range of Zernike model aberration is analyzed, which provides theoretical basis for the design of aberration compensation algorithm based on micromachined membrane deformable mirror.
     (3) The spatial domain aberration compensation model based on micromachined membrane deformable mirror is built. In the open-loop correction mode, two control signal solving algorithms based on multiplier penalty function method and effective constraint sets method respectively are put forward. The first method converts the original problem into an unconstrained optimization problem by multiplier vector and penalty function. The second method converts the original problem into an equality constrainted problem. The two methods both have the advantages of high speed and precision, which are very suitable for the system with small system error and a high-accuracy influence function matrix.
     (4) In the close-loop correction mode, a control signal solving algorithm based on singular value decomposition is proposed, by which the correctable aberration mode space of the micromachine membrane deformable mirror is constructed. The system correction characteristic for the constructed orthogonal basis modes and the principle of improving the deformable mirror correctable ability by selecting aberration correction modes are analyzed in detail. Through computer simulation and model eye correction experiments, the influence of selecting aberration modes is analyzed. At last, the aberration compensation algorithm which can realize aberration modes fitering based on singular value decomposition is determinated as the optimal human eye aberration correction algorithm.
     (5) The dynamic characteristics of human eye aberration are summarized. The control model of adaptive optics is established and the system transfer function is derived. Taking the improvement of control system bandwidth as the optimization objective, system performance of integral control algorithm and smith control algorithm are comparative analyzed, and a wavefront correction algorithm based on smith control and singular value decomposition is proposed, which offers an appropriate method for human eye aberration correction based on micromachined membrane deformable mirror.
     (6) According to theoretical research results in this thesis, the hardware system and software system of the first domestic retina cell microscope based on micromachined membrane deformable mirror is designed, which can realize real time measurement and correction of human aberration and acquire retina cell images. By the correction experiments of model eye and human eye, the high definition model eye fundus images and the living human eye retina cell images are obtained successfully. At present, the microscope has successfully passed the test from Supervising and Testing Center of Hangzhou Zhejiang Institute for the control of Medical Device.
引文
[1]王大珩.现代仪器仪表技术与设计.北京:科学出版社, 2002:1049~1055.
    [2]郭华东.感知天地—信息获取与处理技术.北京:科学出版社,2000:132~139.
    [3] Tyson R K. Principles of Adaptive Optics, Academic Press, 1991:3~5.
    [4] Babcock H W. The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, 1953, 65(386):229~236.
    [5]游璞,于国萍.光学.北京:高等教育出版社,2003:144~145.
    [6] Albert D M, Edwards D D. The ophthalmoscope and retina vitreous surgery. Blackwell Science, Cambridge, Mass., Chap.1996, 10: 177~202.
    [7]吕帆.眼视光器械学.北京:人民卫生出版社. 2004:64~92.
    [8]虞启琏.医用光学仪器.天津:天津科学技术出版社. 1988: 548~589.
    [9] Zeimer R, Shahidi M, Mori M, et al. A new mothod for rapid mapping of the retinal thickness at the posterior pole. Invest Opthalmol Vis Sci, 1996, 37(10):1994~2001.梁博13
    [10]罗振坤,王秋华.共焦激光扫描显微镜技术进展.光学技术,1994,6: 4~8.
    [11] Huang L N, Swanson E A , Lin C P, et al. Optical Coherence Tomography.Science, 1991, 254(5035): 1178.
    [12] Iskander D R, Member S, Collins M J. Analyzing the Dynamic Wavefront Aberrations in the Human Eye. IEEE Transactions on biomedical engineering, 2004, 51(11): 1969~1980.
    [13]王杨,王肇圻,郭欢庆等.人眼的高级像差对视功能的影响.光学学报,2005,25(11): 1519~1525.
    [14]朱全林,牛晋川,朱苏雷等.现代激光工程应用技术.北京:国防工业出版社,2008:108~110.
    [15] Sichelstiel B A, Waters W M, Wild T A. Self-focusing Array Research Model. IEEE Trans on Antennas and Propagation, 1964, 12(2):150~154.
    [16] Hardy J W. Active optics: A New technology for the control of light, Proc IEEE, 1978, 66(6): 651~697.
    [17] Shack R V, Platt B C. Production and use of a lenticular Hartmann screen . J. Opt. Soc. Am. A, 1971,61:656.
    [18] Fried D L, Least-square fitting a wave-front distortion estimate to an array of phase-differencemeasurements. J Opt Soc Am, 1977, 67(3): 370~375.
    [19] Fried D L. Optical resolution throught a randomly inhomogeneous medium for very long and very short exposures, J. Opt. Soc. Am, 1966,56(10):1372~1379.
    [20] Cubalchini R. Model wavefront estimation from phase derivative measurements. J Opt Soc.Am, 1979,69(7):972~977.
    [21] Hardy J W. Adaptive optics: a progress review. Proc. SPIE, 1991, 1542:2~17.
    [22] Roddier F. Status of astronomical adaptive optics developments. ESO Conference on High-Resolution Image by InterferrometryⅡ, 1991, 571~574.
    [23] Roddier F, Graves J E, McKenna D, et al. University of Hawaii adaptive optics system: General approach. Proc.SPIE, 1991,1542:248~253.
    [24]周仁忠.自适应光学.北京:国防工业出版社,1996: 1~9.
    [25] Merkle F, Hubin N. Adaptive optics for the European very large telescope. Proc.SPIE, 1991,1542: 283~292.
    [26] Genetron E, Cuby J G, Rigaut F, et al..Come-On-Plus project: an upgrade of the Come-On adaptive optics prototype system, Proc. SPIE, 1991,1542:298~307..
    [27] Rousset G, Madec P Y, Beuzit J L, et al..The COME-ON-PLUS adaptive optics system-Result and performance. International Commission for Optical, Conference on Active and Adaptive Optics, 1993: 123~131.
    [28] Becker J M. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics, Conference on Very Large Telescope and their Instrumentation, 1988:693~698.
    [29] Parenti R, Sasiela R J. Laser-guide-star systems for astronomical applications. J. Opt. Soc. Am. A., 1994,11(1): 288~309.
    [30] Jiang W H, Li H G. Hartman-Shack wavefront sensing and wavefront control algorithm. Proc. SPIE, 1990,1271:103~106.
    [31] Vdovin G, Loktev M, Simonov A. Adaptive correction of human-eye aberrations in a subjective feedback loop. Opt. lett, 2005, 30(7): 795~797.
    [32] Lucie B, Prieur C, Fabien G, et al..Robust control of a bimorph mirror for adaptive optics systems. Applied Optics, 2008, 47(20): 3637~3645.
    [33] Liu X Y, Tang M X, John H F. shape reconstruction by genetic algorithm and artifical neural networks. Engineering Computations, 2003, 20(2):129~151.
    [34] Guo H, Korablinova N, Ren Q, et al..Wavefront reconstruction with artificial neural networks.Optics Express, 2006, 14(14): 6456~6462.
    [35] Mansell J D, Henderson B, Wiesner B, et al.. A Low-Cost Compact Metric Adaptive Optics System. Proc. SPIE, 2007,6711:6711ok.
    [36] Ling N, Zhang Y D, Rao X J. Small table-top adaptive optical systems for human retinal imaging. High-Resolution Wavefront Control: Methods, Device, and ApplicationsⅣ. Proc. SPIE. 2002, 4825: 99~108.
    [37] Mark L P, Pierre R B, David W R. Compact adaptive optical system based on blind optimization and a micromachined membrane deformable mirro. Applied Optics, 2001, 40(3): 327~330.
    [38] Bartsch D U, Zhu L J, Freeman W R. Retinal imaging with a low-cost micromachined membrane deformable mirror. Journal of Biomedical Optics, 2001, 7(3): 451~456.
    [39] Dayton D, Restaino S, Gonglewski J, et al.. Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics. Optical Communications, 2000, 176: 339~345.
    [40] Roggemann M C, Lee D J. Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere. Applied Optics, 1998, 37(21): 4577~4585.
    [41] Wizinowich P L, Le Mignant D, Bouchez A H,et al..The W. M. Keck Observatory laser guide star adaptive optics system: Overview. Publication of the Astronomical Society of the Pacific, 2006.118(840): 297~309.
    [42] Hammer D X, Ferguson R D, Bigelow C E, et al..Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope. Proc. SPIE, 2006, 6138: 13811~13816.
    [43] Tyson R K, Bit-error rate for free-space adaptive optics laser communications. J.Opt.Soc.Am.A, 2002,19(4): 753~758.
    [44] Levine B M, Martinsen E A, Wirth A, et al. Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications. Applied Optics, 1998, 37(21): 4553~4560.
    [45] Fusco T, Conan J M, Mugnier L M. Characterization of adaptive optics point spread function for anisoplanatic imaging. Application to stellar field deconvolution. Astronomy and Astrophysics Supplement Series, 2000, 142(1): 149~156.
    [46] Chui T Y P, Song H X, Burns S A. Adaptive-optics imaging of human cone photoreceptor distribution. J.Opt.Soc.Am.A, 2008, 25(12): 3021~3029.
    [47] Liang J, Grimm B, Goelz S, et al. Objective measurement of the wave aberrations of the humaneye with the use of Hartmann-Shack wavefront sensor. J. Opt. Soc. Am. A, 1994, 11(7): 1949~1957.
    [48] Liang J, Williams D R. Aberrations and retinal image quality of the normal human eye. J.Opt.Soc.Am.A, 1997, 14(11): 2873~2883
    [49] Liang J, William D.R, Miller D.T. Supernormal vision and high resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A, 1997,14:2884~2892.
    [50] Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator. Appl. Opt,.1997,36(7):1517~1524.
    [51] Zhu L, Sun P C, Bartsch D U, et al.. Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation. Appl. Opt., 1999,38(1):168~176.
    [52] Vargas M F, Prieto P, Artal P. correction of the aberrations in the human eye with liquid crystal spatial light modulator: limits to the performance. J. Opt. Soc. Am. A, 1998,15(9): 2552~2562.
    [53] Hofer H, Chen L, Yoon G Y, et al.. Performance of the Rochester 2nd generation adaptive optics system for the eye. Optics Express, 2001,8:631~643.
    [54] Merino D, Dainty C. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Optics Express, 2006, 14(8): 3345~3343.
    [55] Pircher M, Baumann B, Goetzinger E. Simultaneous SLO OCT imaging of the human retina with axial eye motion correction. Optics Express, 2007, 15(25): 16922~16932.
    [56] Roorda A, Borja F B, Donnelly W J.Adaptive optics scanning laser ophthalmoscopy. Optics Express, 2002, 10(9): 405~462.
    [57] Hammer D X, Ferguson R D, Bigelow C E.Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. Optics Express, 2006, 14(8):3354~3367.
    [58] Hermann B, Fernandez E J, Unterhuber A et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett, 2004, 29(18): 2142~2144.
    [59] Fernandez E J, Hermann B, Povazay B. Threee dimensional adaptive optics ultrahigh resoution optical coherence tomograph using a liuid crystal spatial light modulator. Vision Research, 2005,45:3432~3444.
    [60] Zawadzki R J, Jones S M, Olivier S S. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Optics Express, 2005,13(21):8532~8546.
    [61] Jungtae R, Ravi S J, Karen E T et al. Adaptive optics flood-illumination camera for high speed retinal imaging. J. Opt. Soc. Am. A, 2006, 14(10): 4552~4569.
    [62] Zhang Y, Rha J, Jonnal R S, et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina, Optics Express, 2005,13(12): 4792~4811.
    [63] Y. Zhang, B. Cense, J. Rha J et al. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography, Optics Express, 2006, 14(10): 4380~4394.
    [64]姜文汉.动态波前误差的自适应光学实时校正.光学学报,1988,8(5): 441~447.
    [65]姜文汉,严佩英,李明全等.自适应光学实时大气湍流补偿实验.光学学报,1990,10(6): 558~564.
    [66]姜文汉,严佩英,戴子昌.激光发射自适应光学校正大气湍流的初步实验.强激光与粒子束,1990,2(1): 111~113.
    [67]姜文汉.光电技术研究所的自适应光学技术.光电工程,1995,22(1): 1~12.
    [68]姜文汉,黄树辅,吴旭斌.爬山法自适应光学波前校正系统.中国激光,1988,15(1): 17~21.
    [69]杨华峰.用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术研究,[博士学位论文].湖北长沙:国防科学技术大学,2008.
    [70]姜文汉,王春红,凌宁等. 61单元自适应光学系统.量子电子学报,1998,15(2): 193~199.
    [71] Tang G M, Rao C H, Sheng F, et al. Performance and test results of a 61-element adaptive optics system on the 1.2m telescope of Yunan Observatory, Proc. SPIE 2002, 4926:13~19.
    [72]饶长辉,姜文汉,张雨东等.云南天文台1.2m望远镜61单元自适应光学系统.量子电子学报,2006,23(3): 295~302.
    [73]凌宁,张雨东,饶学军等.用于活体人眼视网膜观察的自适应光学成像系统.光学学报, 2004, 24(9):1153~1158.
    [74]姜文汉.激光武器系统中的自适应光学技术.系统工程与电子技术,1987,6: 1~17.
    [75]姜文汉,李明全,汤国茂等.星体目标自适应光学成象补偿.光电工程, 1995,22(1): 23~30.
    [76]中科院光电技术研究所太阳自适应光学技术研究取得新突破.研究动态,2009:34~35.
    [77]周仁忠,阎吉祥.自适应光学理论.北京:北京理工大学出版社,1996.
    [78]叶嘉雄,余永林.自适应光学.武汉,华中理工大学出版社,1992.
    [79]许晓慧,冯艳,刘爽等. MEMS变形镜用PZT厚膜致动器阵列的制备及性能表征.纳米技术与精密工程,2007,5(4): 261~264.
    [80]汪超,余洪斌,陈海清.基于MEMS技术的新型变形反射镜.光电工程,2005,32(4): 90~93.
    [81]杨慧珍、蔡冬梅、陈波等.无波前传感自适应光学技术及其在大气光通信中的应用.中国激光,2008,35(5): 680~684.
    [82]张晓芳、俞信、阎吉祥.多层共轭自适应光学的进展与展望.纳米技术与精密工程,2004,2(1): 76~80.
    [83]李新阳,姜文汉.哈特曼-夏克传感器的泽尼克模式波前复原误差.光学学报,2002,22(10): 1236~1240.
    [84]吴毅,王英俭.哈特曼波前探测及波前校正的仿真与误差分析.光学学报,1995,15(4): 473~479.
    [85]杨平,敖明武,刘渊等.基于泽尼克模式系数的自适应光学遗传算法.中国激光,2008,35(3): 367~372.
    [86]江月松,王森,赵达遵.微型自适应光学系统闭环控制算法.光学技术,2001,27(3): 211~213.
    [87] Ling Ning, Rao Xuejun, Wang Lan et al.. Characteristic of a novel small deformable mirror. Proc. of the 2nd International Workshop on Adaptive Optics for Industry and Medicine. 1999,129~136.
    [88]屈军乐, Miller D T,牛憨笨,等.高空间分辨视网膜成像技术研究.深圳大学学报理工版, 2005, 22(2):121~126.
    [89]梁春,廖文和,沈建新.自适应光学在眼科医疗中的应用.应用激光,2007,27(3):237~240.
    [90]屈军乐, Jonnal R S, Thorn K E, et al..基于自适应光学的视网膜单细胞光学相干层析成像技术.生物物理学报, 2004, 20(2):104~108.
    [91]程少园,胡立发,曹召良等.液晶自适应光学在人眼眼底高分辨率成像中的应用.中国激光,2009,36(10): 2524~2527.
    [92]何守志.临床眼科学[M].天津:天津科学技术出版社,2002:15~41.
    [93]韩军,刘钧.工程光学[M].西安:西安电子科技大学出版社,2007:114~118.
    [94]康辉.映象光学[M].天津:南开大学出版社,1996:156~163.
    [95]张以谟.应用光学[M].北京:机械工业出版社,1988:354~372.
    [96]游璞,于国萍.光学[M].北京:高等教育出版社,2003:29~33
    [97]王子余.几何光学和光学设计[M].杭州:浙江大学出版社,1989:278~299
    [98]李耀宇.眼波前引导的屈光手术学.北京:人民军医出版社,2009:10~17.
    [99]曹正林.人眼波前像差测量与矫正关键技术的研究,[博士学位论文].江苏南京:南京航空航天大学,2007.
    [100] Thibos L N, Applegate R A, Schwiegerling J T, et al..Standards for reporting the optical aberrations of eyes. Refract Surg, 2002,18(5):652~660.
    [101] Thibos L N. Wavefront data reporting and terminology. Refract Surg, 2001, 17(5):578~583.
    [102]张运海,廖文和,沈建新等.波前像差引导的激光眼屈光手术中角膜切削模型.东南大学学报(自然科学版), 2004, 34(5):585~588.
    [103] Donal R M. A Generalization of the radial polynomials of F.Zernike. SIAM Journal on Applied Mathematics, 1966, 14(3):476~489.
    [104] Thibos L N, Applegate R A,Schwiegerling J T, et al. Standards for reporting the optical aberrations of eye. Refract Surg, 2002,18(5):652~660.
    [105]梁春,廖文和,沈建新等. Hartmann-Shack波前传感器的自适应质心探测方法.中国激光,2009,36(2):430~434.
    [106]文世鹏.应用数值分析.北京:石油工业出版社,2001:151~165.
    [107]吴福朝.计算机视觉中的数学方法.北京.科学出版社,2008:150~154.
    [108]徐树方.矩阵计算的理论与方法.北京大学出版社,1995:170~178.
    [109]刘钦圣.最小二乘问题计算方法.北京:北京工业大学出版社,1989:14~16
    [110]曹荣.解线性最小二乘问题的正交化方法及应用.太原师范学院学报(自然科学版),2008,7(1):35~38.
    [111]李祺.物探数值方法导论.北京:地质出版社,1991:101~107.
    [112]饶伏波,乔大勇,苑伟政.自适应光学系统MEMS微变形镜的研究.纳米技术与精密工程,2004,2(4):288~293.
    [113]韩杏子,俞信.微变形镜在自适应光学中的应用与发展.光学技术,34(6):836~840.
    [114] Perreault J A, Bifano T G, Levine M B, et al.. Adaptive optic correction using microelectromechanical deformable mirrors.Opt.Eng.,2002:41(3):561~566.
    [115] Zhou Y P, Bifano T. Adaptive Optics Using a MEMS Deformable Mirror[J].Proc. SPIE, 2005, 6018: 601817
    [116]郭华东.感知天地—信息获取与处理技术.北京:科学出版社, 2000:146~148.
    [117]张巍.微光学自适应系统中基于PZT薄膜的微反射镜单元工艺研究,[硕士学位论文].杭州浙江:浙江大学,2006.
    [118]王大珩.现代仪器仪表技术与设计.北京:科学出版社, 2002:1080~1083.
    [119]郁道银,谈恒英.工程光学.北京:机械工业出版社,1999:4.
    [120] R. K. Tyson, Adaptive optics Engineering Handbook, Marcel Dekker Inc,New York, 2000.
    [121] Eriksson E. Low-order aberration correction with a membrane deformable mirror for adaptive optics. Goteborg, Photonics Laboratory Chalmers University of Technology, 2004:19~20.
    [122]方迪,称海清,李俊,等.微变形反射镜主要性能测试研究.光学仪器,2005,27(3):21-26.
    [123] YAN Jinliang,ZHAO Yinnv,YU Fen,et al. Theory and simulation of MEMS deformable mirror. Proc. SPIE(S0277-786X),2006,6032:135-141.
    [124] Vogel C R, Yang Q. Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror. Journal of the Optical Society of America A-optics image science and vision, 2006,23(5):1074-1081.
    [125]程少园,曹召良,胡立发等.开环双波段人眼视网膜成像液晶自适应光学系统设计.激光与光电子学进展,2010,47(021101):1~6
    [126]何旭初,孙麟平.约束最优化方法.南京:南京大学出版社,1986:9~10
    [127] Starikov F A, Aksenov V P, Atuchin W, et al.. Wave front sensing of an optical vortex and its correction in the close-loop adaptive system with bimorph mirror. Optics in atmospheric propagation and adaptive systems X, 2007,6747(67470P):1~8.
    [128]宁禹,余浩,周虹等. 20单元双压电片变形镜的性能测试与闭环校正实验研究.物理学报,2007,58(7):4717~4723.
    [129]孙文瑜,徐贤成,朱德通.最优化方法.北京:高等教育出版社,2004:112~113.
    [130]张贤达.矩阵分析与应用,北京:清华大学出版社,2004,9:354~355.
    [131] He J C, Burns S A, Marcos S. Monochromatic Aberrations in the Accommodated Human Eye. Vision Research. 2000: 40: 41–48.
    [132] Artal P, Fernández E J , Manzanera S. Are Optical Aberrations during Accommodation a Signifi cant Problem for Refractive Surgery? Journal of refractive surgery. 2002;18(5): S563–S566.
    [133] Karen M H, Carl P. Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control. J.Opt.Soc.Am, 2006,23(5): 1082-1088.
    [134] Charman W N, Heron G. Fluctuations in accommodation: a review. Ophthalmic Physiological. 1988, 8(2):153-164。
    [135]全薇.人眼波前像差特性和校正分析,[博士学位论文].天津:南开大学,2004.
    [136] Porter J,Queener H, Lin J, et al..Adaptive optics for vision science.2006: 407-409.
    [137] Diaz-Santana L, Torti C, Munro I, et al..Benefit of higher closed-loop bandwidths in ocularadaptive optics. Optics Express,2003,11(20):2597-2605.
    [138]李新阳,姜文汉.自适应光学控制系统的有效带宽分析.光学学报,1997,17(12):1697~1702.
    [139]胡寿松.自动控制原理简明教程.北京:科学出版社,2003:197~208.
    [140]陈宗海,杨晓宇,王雷.计算机控制工程.合肥:中国科学技术大学出版社,2008,6:195~197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700