用户名: 密码: 验证码:
原子转移自由基聚合合成两种功能化高分子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过原子转移自由基聚合合成了两种分布较窄的功能化高分子。
     首先,通过原子转移自由基聚合(ATRP)制备端基为8-羟基喹啉基团的聚合物。将5-氯甲基-8-羟基喹啉乙酰化得到5-氯甲基-8-乙酰氧基喹啉,以CuCl/5-氯甲基-8-乙酰氧基喹啉/联吡啶(bpy)为引发体系引发苯乙烯,得到端基为8-羟基喹啉基团的聚苯乙烯。将聚合物水解后与三乙基铝反应得到聚合物金属铝配合物。利用FT-IR,UV-Vis,RF,GPC和1HNMR对上述聚合物和聚合物配合物的结构进行了表征。利用TGA对聚合物和聚合物配合物的热性能进行了研究。进一步以聚合物金属铝配合物作为发光层制作了有机电致发光器件,测试了其电致发光和光致发光性能。结果表明:(1)得到分子量分布较窄的含8-羟基喹啉基团的聚合物:Mn=5923,Mw=7479,D=1.26。(2)聚合物及聚合物金属铝配合物热稳定性较好,聚合物金属铝配合物在二氯甲烷、四氢呋喃等常规溶剂中有较好的溶解度,能很好地成膜。(3)金属铝配合物在400~600nm之间出现一个有一定强度的荧光发射峰,峰值为512nm。(4)聚合物E单独成膜制作器件时,发光很弱;与PVK制成1∶4混合膜,当有PVK空穴传输层时,器件的最大亮度约为280Cd /m~2;而没有PVK空穴传输层时,器件的最大亮度约为150Cd/m~2。
     另外,聚甲基丙烯酸丙炔醇酯的侧基为炔基,可以和叠氮化合物1,3-偶极环加成合成1,2,3-三唑五元杂环化合物,是一种很好的“链接”化学中间体。也正是由于甲基丙烯酸丙炔醇酯含有炔基,聚合时容易交联,目前的一些聚合方法转化率和分子量分布并不理想。因此,找到一种合适的聚合体系,以提高单体的转化率和分子量的可控性显得很有意义。本文分别以氯化苄、对甲苯磺酰氯、氯乙酰化7-羟基-4-甲基香豆素、α-溴代异丁酸乙酯为引发剂,用原子转移自由基聚合的方法考察了引发剂对聚合的影响。并分别以对甲基苯磺酰氯/CuCl/联吡啶、α-溴代异丁酸乙酯/CuBr/联吡啶为引发体系,四氢呋喃(THF)为溶剂,成功地实现甲基丙烯酸丙炔醇酯的ATRP。实验结果表明:聚合温度(60~90℃)对聚合结果影响很小,聚合时间延长、单体浓度增大都导致分散系数增大。
In this paper, two polymers with low polydispersion index was synthesized by atom transfer radical polymerization(ATRP) method.
     First, 8-hydroxyquinoline-end-capped polystyrene was obtained by ATRP. The initiator, 5-chloromethyl-8-acetoxyquinoline was prepared by acetylation of 5-chloromethyl-8-hydrox -yl quinoline with acetic anhydride under reflux. Styrene was polymerized by ATRP with the initiator system consisting of CuCl/5- chloromethyl- 8-acetoxy-quinoline/2,2′-Bipyridine. The end-capped polystyrene with free 8-hydroxyquinoline group was obtained by hydrolysis in aqueous THF with dilute NaOH solution. The purified polymer was coordinated with the ions of Aluminum, to prepare the polymeric complexes. The chemical structure of the polymer and the polymeric complexes were characterized by FT-IR, UV-Vis, RF, GPC and 1HNMR. The thermal performance of the polymers and the polymeric complexes were studied by thermogravimetry analysis. The electroluminescent device using polymeric complex as emitting element have been fabricated. The photoluminescence of the film and the electroluminescence of the device were investigated. The experimental results indicate:(1) 8-hydroxyquinoline-end-capped polystyrene with low polydispersity index(1.26) is obtained. (2) All polymers have excellent thermal stability under nitrogen atmosphere and initial weight-loss temperature higher than 300℃. The polymeric complexes can dissolve in dichloromethane, tetrahydrofuran and other common organic solvent and this dissolubility will facilitate the device-making procedure.(3) Strong fluorescent emission at 512nm was observed of polymeric complexes when the polymeric complexes were irradiated with ultraviolet rays. The polymeric complexes might be potential photoluminescent or electroluminescent materials with excellent film-forming property. (4) The device using polymeric complex as emitting element and PVK as hole transportation materials at the ratio of 1∶4 has the brightness about 280Cd/m~2.
     In addition, Poly(propargyl methacrylate), containing 2-propynyl side group which can undergo 1,3-dipolar cycloaddition reaction with azides acts as a excellent intermediate in“click”chemistry. But the radical polymerization of propargyl methacrylate always obtained a crosslinked product due to crosslinking reaction of propargyl side group even under low percent conversion of monomer. Thus, it is quite significant to find a suitable polymerization system which can enhance the monomer conversion and molecular weight controllability.
     In this paper, the effects of reaction conditions on polymerization of propargyl methacrylate(PgMA) by ATRP were studied. Benzyl chloride, tosyl chloride(TsCl), 7-chloroacetoxy-4-methylcoumarin and ethylα-bromoisobutyrate(EBB) was used as initiators, bipyridine as the chelating agent and tetrahydrofuran as solvent. The experiment results indicated that polymerization temperature (60~90℃) has little effect on polymerization, and the prolongation of polymerization time and the increase of monomer concentration will broaden the molecular weight distribution.
引文
[1] Szwarc M., Levy M., Milkovich R. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers[J]. Journal of the American Chemical Society, 1956, 78: 2656~2657
    [2] Wang J. S., Matyjaszewski K. Control1ed/"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes[J]. Journal of the American Chemical Society, 1995, 117: 5614~5615
    [3] Coessens V., Pintauer T., Matyjaszewski K. Functional polymers by atom transfer radical polymerization[J]. Progress in Polymer Science, 2001, 26: 337~377
    [4] Wang J. S., Matyjaszewski K.“Living”/Controlled Radical Polymerization Transition- Metal Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator[J]. Macromolecules, 1995, 28: 7572~7573
    [5] Zhu C. Y., Sun F., Zhang M., et al. Atom transfer radical suspension polymerization of methyl methacrylate catalyzed by CuCl/bpy[J]. Polymer, 2004, 45: 1141~1146
    [6] Jousset S., Qiu J., Matyjaszewski K., et al. Atom Transfer Radical Polymerization of MethylMethacrylate in Water-Borne System[J]. Macromolecules, 2001, 34(19): 6641~ 6648
    [7] Gaynor S. G., Qiu J., Matyjaszewski K. Controlled/"Living" Radical Polymerization Applied to Water-Borne Systems[J]. Macromolecules, 1998, 31: 5951~5954
    [8] Xia J. H., Johnson T., Gaynor S. G., et al. Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide[J]. Macromolecules, 1999, 32:4802~4805
    [9]罗宁,应圣康.原子转移自由基聚合的原理和特点[J].合成橡胶工业, 1996, 19(5): 299~302
    [10]汤志忠,高保娇.原子转移自由基聚合及其研究进展[J].华北工学院学报, 2004, 25(4):271~276
    [11]郑璇,张立武.可控活性自由基聚合的研究进展[J].高分子材料科学与工程, 2006, 22(2):16~19
    [12] Percec V., Kim H. J., Barboiu B. Disulfonyl Chlorides:A Universal Class of Initiators for Metal-Catalyzed "Living" Diradical Polymerization of Styrene(s) Methacrylates and Acrylates[J]. Macromolecular Rapid Communications, 1997, 30 (21): 6702~6705
    [13]王文俊,董宇平,李前树.甲基丙烯酸丁酯的反向ATRP“活性”/可控自由基聚合研究[J].高分子学报, 2001, 12(6): 793~795
    [14] Masar B., Janata M., Vicek P., et al. Atom transfer radical polymerization grafting of highly functionalized polystyrene and poly(4-methylstyrene) mcroinitiators with tert-butyl acrylate[J]. Journal of Applied Polymer Science, 2002, 86(12): 2930~2936
    [15] Wang J. S., Matyjaszewski K..“Living”Controlled Radical Polymerization Transition- Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator [J]. Macromolecules, 1995, 28 (22): 7572~7573
    [16] Patten T. E., Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials[J]. Advanced Materials, 1998, 10: 901 ~ 915
    [17] Ando T., Kamigaito M., Sawamoto M. Iron(II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate[J]. Macromolecules, 1997, 30(16): 4507~4510
    [18] Granel C., Dubois P., Jerome R., et al. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides[J]. Macromolecules, 1996, 29(27): 8576~8582
    [19] Kato M., Kamigaito M., Sawamoto M., et al. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization[J]. Macromolecules,1995, 28(5): 1721~1723
    [20] Kotani Y., Kamigaito M., Sawamoto M. Re(V)-Mediated Living Radical Polymerization of Styrene:1 ReO2I(PPh3)2/R-I Initiating Systems[J]. Macromolecules, 1999, 32(8): 2420~2424
    [21] Lecomte P., Drapier I., Dubois P., et al. Controlled Radical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate, Triphenylphosphine, and Carbon Tetrachloride[J]. Macromolecules, 1997, 30: 7631~7633
    [22] Cheng G. L., Hu C. P., Ying S. K. A novel initiator system of atom transfer radical polymerization for styrene [J]. China Synthesis. Rubber Industry, 1997, 20: 116~118
    [23] Cheng G. L., Hu C. P., Ying S. K. Controlled radical polymerization of methyl- methacrylate in the presence of CuX/phen complexes and alkylhalides[J]. Polymer, 1999,4 0: 2167~ 2168
    [24] Cheng G. L., Hu C. P., Ying S. K. Kinetics of heterogeneous atom transfer radical polymerization of styrene by using bis(1,10-phenanthroline) copper bromide[J]. Macromolecular Rapid Communications, 1999, 20: 303~305
    [25] Wang X. L., Ying S. K. Living radical bulk polymerization catalyzed by Cu/BDE[J]. China Synthesis. Rubber Industry. 1999, (1): 53~54
    [26] Takahashi T., Ando T., Kamigaito M., et al. Ruh( PPh3) 4:an active catalyst for living radical polymerization of methylmethacrylate at or above room temperature[J]. Macromolecules, 1999, 32: 6461~6466
    [27] Kotani Y., Kamigaito M., Sawamoto M. FeCp (CO) 2Ⅰ:A phosphinefree half- metallocene type iron (Ⅱ)catalyst for living radical polymerization of styrene[J]. Macromolecules, 1999, 32: 6877~6879
    [28] Kotani Y., Kamigaito M., Sawamoto M. Living radical polymerization of styrene by half-metallocene iron carbonyl complexes[J]. Macromolecules, 2000, 33: 3543~3545
    [29] Matyjaszewski K., Nakagawa Y., Jasteezek C. B. Polymerization of n-Butyl Acrylate by Atom Transfer Radical Polymerization. Remarkable Effect of Ethylene Carbonate and Other Solvents[J]. Macromolecules, 1998, 31: 1535~1541
    [30] Sawamoto M., Kamigation M. Transition metal-mediated living radical polymerization: recent advances[J]. Polymer Chemistry Preparation, 1997, 38 (1) : 740~741
    [31]王晓松,罗宁,应圣康. CuX/bpy催化体系中甲基丙烯酸甲酯的原子转移自由基聚合[J].功能高分子学报, 1998, (1): 1~8
    [32] Kathryn L., Beers, Sohyun B., et al. Atom transfer radical polymerization of 2- hydro- xyethyl methacrylate [J]. Macromolecules, 1999, 32: 5772 ~ 5776
    [33]万小龙,应圣康. Cu /2, 2′-联吡啶/CCl4和CuCl2 /2,2′-联吡啶/偶氮二异丁腈催化引发体系中的苯乙烯“活性”自由基乳液聚合研究[J].高分子学报, 2000, (1):27~28
    [34] Burguiere C., Chassenieux C., Charleux B. Characterization of aqueous micellar solutions of amphiphilic block copolymers of poly ( acrylic acid) and polystyrene prepared via ATRP. toward the control of the number of particles in emulsion polymerization [J]. Polymer, 2003, 44: 509~518
    [35] Okubo M., Minami H., Zhou J. Preparation of block copolymer by atom transfer radical seeded emulsion polymerization[J]. Colloid Polymer Science, 2004, 282: 747~752
    [36] Matyjaszewski K., Nakagawa Y., Gaynor S.G. Synthesis of well-defined azido and amino-endfunctionalized polystyrene by atom transfer radical polymerization[J]. Macromolecular Rapid Communications. 1997, 18:1057~1066
    [37] Gaynor S. G., Edelman S., Matyjaszewski K. Synthesis of Branched and Hyperbranch- ed polystyrenes[J]. Macromolecules, 1996, 29: 1079~1081
    [38]曹健.原子转移自由基聚合基本原理及最新进展[J].长春理工大学学报, 2005, 28(3): 92~99
    [39] Zhang X., Xia J. H., Matyjaszewski K. End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization[J]. Macromolecules, 2000, 33: 2340 ~2345
    [40] Deng G. H., Chen Y. M. A Novel Way To Synthesize Star Polymers in One Pot by ATRP of N-[2-(2-Bromoisobutyryloxy)ethyl]maleimide and Styrene [J]. Macro- molecules, 2004, 37: 18~26
    [41] Gao C., Yan D. Hyperbranched polymers: from synthesis to applications[J]. Progress in Polymer Science, 2004, 29(3): 183~275
    [42]牛余忠,陈厚,陈健,等.原子转移自由基聚合与高分子构筑[J].高分子通报, 2006, (8): 70~78
    [43] Tang C. W., Vanslykes S. A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913~915
    [44] Ladmiral V., Giuseppe M., Guy J., et al. Synthesis of Neoglycopolymers by a Combination of“Click Chemistry”and Living Radical Polymerization. Journal of the American Chemical Society, 2006, 128(14): 4823~4830
    [45] Cheng J. A., Chen C. H., Liao C. H. Solution-Processible Small Molecular Organic- Emitting Diode Material and Devices Based on the Substitued Aluminum Quinolate[J]. Chemistry Material, 2004, 16: 2862~2868
    [46] Adachi C., Tokito S., Tsutsui T., et al. Electro-luminescence in Organic Films with Three-Later Structure, Journal of Applied Physics, 1998, 27: 269~274
    [47]马於光,唐建国,沈家骢,等. 8-羟基喹啉铝掺杂聚乙烯基咔唑薄膜的光致发光及电致发光[J].高等学校化学学报, 1994, 15(6): 935~936
    [48] Hamaya T., Hiratani K.,Ohashi K. Preparation of Water Soluble Polymer with 8-Quinolinol Group and Its Specific Reactivity with Cd(II)[J]. Chemistry Letter, 1994: 615~620
    [49] Hamaya T., Hiratani K. Ultraviolet spectrophtometric studies of the reactivity of a water-soluble polymer contanining pendant 8-hydroxyquiniline moieties with metal ions[J]. Macromolecular Chemistry and Physics, 1994: 2739~2746
    [50] Duann Y. F., Liao Y. J., et al., The characteristic of photoluminescence of tris- (7-substituded-8-hydroxyquinoline) aluminum complexes and polymeric-complexes[J], Applied Organic Chemistry, 2003, 17: 952~957
    [51] Takayama T., Kitamura M., et al., Soluble polymer complexes having AlQ3-typependent groups[J]. Macromolecular Rapid Communications, 2004, 25: 1171~1174
    [52] Amy M., Marcus W. Design and Synthesis of Alq3-Functionalized Polymers[J], Macromolecules, 2003, 36: 1766~1768
    [53] Amy M., Marcus W. Solution and Solid-State Characterization of Alq3-Functionalized Polymers[J], Chemistry Material, 2003: A~F
    [54]梅群波,杜乃婴,吕满庚.含8-羟基喹啉铝配合物的高分子聚合物的合成与表征[J],化学学报, 2003, 20: 2113~2117
    [55]杜乃婴,梅群波,吕满庚.含有Alq3和Znq2的可交联聚合物的合成与表征.化学通报, 2005, 1: 49~53
    [56] Du N. Y., Tian R. Synthesis and Photophysical Characterization of the Free-Radical Copolymerization of Metaloquinolate-Pendant Monomers with Methyl Methacrylate, Journal of Polymer Science, 2005, 43: 397~406
    [57] Gibson G. J., Packham D. I. Chelating polymers derived from polyvinyl alcohol and cellulose[J]. Journal of Applied Chemistry, 1966, 16: 50~57
    [58]周建萍,谭松庭,赵斌,等.高分子化8-羟基喹啉锌配合物的制备与表征[J].湘潭大学自然科学学报. 2001, 23(4): 74~77
    [59]余海湖,陈小么,胡伟达,等.高分子化8-羟基喹啉及其Cu配合物的制备与光谱性质[J].合成化学, 2004, (3): 283~286
    [60] Lu J. P., Antisa R., Hill, et al. Synthesis and Characterization of a Novel AlQ3-Contain -ing Polymer[J]. Journal of Polymer Science, 2000, 38: 2887~2892
    [61]曾献谋,余淑文,徐仁贤.配位高分子双8-羟基喹啉衍生物配位高分子的合成及其耐热和导电性能的研究.中国科学院高分子学术会议会刊—高分子物理化学及物理研究工作报告会(1961) ,北京:科学出版社,1963: 286~295
    [62] BURCKHALTER J. H., ROBERT I., LEIB. Amino- and Chloromethylation of 8-Quinolinol. Mechanism of Preponderant ortho Substitution in Phenols under Mannich Conditions[J]. Journal of Organic Chemistry, 26: 4078~4083
    [63] Kolb H.C., Finn M. G.., Sharpless K.B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie, International Edition, 2001, 40:2004~2021
    [64] Pringle, Wallace, Sharpless K., et al. The osmium-catalyzed aminohydroxylation of Baylis-Hillman olefins[J] . Tetrahedron Letter, 1999, 40: 5151~5154
    [65]王晓红,冯增国,凌剑.多官能度炔烃与叠氮化物的固化研究[J].高分子学报, 2000, (4): 397~401
    [66] Rostovtsev V. V., Green L. G.., Fokin V. V., et al. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes[J]. Angewandte Chemie, International Edition, 2002, 41: 2596~2599
    [67] Chan T. R., Hilgraf R., Sharpless K.B, et al. Polytriazoles as Copper(I) -Stabilizing Ligands in Catalysis[J]. Organic letters, 2004, 6: 2853~2855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700