用户名: 密码: 验证码:
末端带苯并噁嗪环的聚酰胺—胺的合成及其热固化行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并噁嗪是由酚类化合物、甲醛和伯胺类化合物通过缩合反应得到的一类新型的热固性树脂,具有很强的分子设计性。围绕苯并噁嗪树脂的缺点而进行的研究主要集中在单官能度和双酚A型苯并噁嗪的改性方面,而对于多官能度苯并噁嗪的研究较少。本论文针对苯并噁嗪的研究现状,以整代数的PAMAM为多元胺,通过分子设计性,制备出固化温度低的苯并噁嗪树脂。
     以乙二胺、1.0G PAMAM和2.0G PAMAM作为多元胺,与多聚甲醛和苯酚反应合成0G苯并噁嗪(0GBZ)、1.0G苯并噁嗪(1.0G BZ)和2.0G苯并噁嗪(2.0G BZ)。用红外,核磁对合成的苯并噁嗪结构进行表征。通过溶解性测试,选择良溶剂与不良溶剂除去1.0G BZ和2.0G BZ中的杂质。
     采用差示扫描量热仪(DSC)研究了0GBZ、1.0GBZ和2.0G BZ的固化行为,1.0GBZ和2.0G BZ固化峰值温度(Tp)分别为203.6℃和213℃。与0G BZ的Tp(225℃)相比,PAMAM的引入有利于降低苯并噁嗪的固化温度,但是随着苯并噁嗪核心PAMAM代数的增长和末端苯并噁嗪数量的增多,使得2.0G BZ的固化温度高于1.0G BZ。与传统苯并噁嗪的Tp相比,1.0G BZ固化温度降低了22℃。同时由于分子空腔内存在少量的苯酚能够催化噁嗪环开环,从而使1.0G BZ具有较低的起始固化温度Ti(141.6℃)。采用DSC研究了1.0G BZ的固化反应动力学,同时得到采用外推法确定1.0G BZ的固化工艺。利用Kissinger法和Flynn-Wall-Ozawa等转化率法确定1.0G BZ的表观活化能(Ea)分别为103.11kJ/mol和109.15kJ/mol,采用Crane方程确定了固化反应级数为一级。
     采用热重分析(TGA)对0G PBZ、1.0G PBZ和2.0G PBZ和1.0G PAMAM进行热重分析。0G PBZ、1.0G PBZ和2.0G PBZ和1.0G PAMAM在800℃的残炭率分别为53.30%,37.61%,26.34%,18.05%。研究表明,苯并噁嗪单体中苯环和噁嗪环的数量虽随着代数的增长而呈指数增长,但是耐热基团的相对含量却在降低,从而使得耐热性随着代数的增长而降低。苯并噁嗪环的引入提高了PAMAM的交联密度,使得1.0G PBZ在800℃下的残炭率较1.0G PAMAM提高了19.62%,表明1.0G PBZ具有优良的耐热性能。同时,对不同氛围的1.0G PBZ和2.0G PBZ进行热重分析,表明1.0G PBZ和2.0G PBZ具有优良的热氧稳定性。DSC测试结果表明,1.0G BZ的固化产物具有较高的玻璃化转变温度(Tg=161.4℃),优于传统的双官能度苯并噁嗪。
Benzoxazine is a novel thermosetting resin, it's synthesized by phenols, primary amines and formaldehyde through condensation reaction. It has well molecular-design properties. The modification of polybenzoxazine was focused on synthesizing monofunctional and difunctional benzoxazine monomers. However, the study of trifunctional and multifunctional benzoxazine monomers were few reported. In this paper, benzoxazine resin with low curing temperature was synthesized through the molecular design by using entire generation PAMAM as multiamines.
     Two novel dendrimer compounds with pendant benzoxazine named 1.0G Benzoxazine(1.0G BZ) and 2.0G Benzoxazine (2.0G BZ), were prepared by 1.0G PAMAM and 2.0G PAMAM, phenol, paraformaldehyde.OG Benzoxazine (0G BZ) was prepared by ethylenediamine, phenol, paraformaldehyde. The structure of 1.0G BZ and 2.0G BZ were characterized by FT-IR and'H NMR. By plentiful solubility tests, we found out good component solvent which could remove impurities of 1.0G BZ and 2.0GBZ.
     Curing behavior of OG BZ, 1.0G BZ and 2.0G BZ were carried out by differential scanning calorimetry (DSC), the curing peak temperature(Tp) of 1.0G BZ and 2.0G BZ were 203.6℃and 213℃, respectively. Compared with the Tp of OG BZ(225℃), the curing temperature was decreased by the introduction of PAMAM, meanwhile, the curing temperature of PAMAM-based benzoxazine is enhancing with the increase the generations of PAMAM and the amount of oxazines, as a result, the Tp of 2.0G BZ is higher than 1.0G BZ.. Compared with the traditional benzoxazine resins, the curing temperature of 1.0G BZ reduced 22℃. The initial curing temperature(Ti) of 1.0G BZ was lower due to the cavity it contained, phenol as excess reactants was not removed completely and resdued in the cavity. When 1.0G BZ is curing, phenol as catalyst provides active hydrogen to catalyze 1.0G BZ ring-openning, therefore, the initial curing temperature of LOG BZ was lower. The curing kinetics of LOG BZ was explored by non-isothermal DSC. The basic cure process was determined through extrapolation. The Flynn-Wall-Ozawa isoconversional method and Kissinger method were used to evaluate the effective activation energy (Ea). The activation energy values(Ea) were 109.15 and 103.11 kJ·mol-1, respectively. The curing reaction order was one order by Crane method.
     Thermal properties of cured resin of 1.0G PAMAM. 0G PBZ、1.0G PBZ and 2.0G PBZ were investigated by thermogravimetrical analysis (TGA). The char yields of 1.0G PAMAM、OG PBZ、1.0G PBZ and 2.0G PBZ were 53.30%,37.61% and 26.34%,18.05%, respectively. The results showed that the increasing amount of benzoxazine groups can enhance heat resistance, but importing the higher generation of PAMAM results in descending the thermal performance. The later factor is dominant, so the thermal properties of 2.0G PBZ descend in general. The char yeild of 1.0G PBZ is higher than that of 1.0G PAMAM by 19.56%, which show the outstanding thermal properties of the 1.0G PBZ. Thermal gravimetric analysis of 1.0G PBZ and 2.0G PBZ in different atmosphere indicated that 1.0G PBZ and 2.0G PBZ had excellent thermo-oxidative stability. DSC results showed 1.0G PBZ had high glass transition temperature (Tg=161.4℃), higher than the traditional difunctionality of benzoxazine.
引文
[1]信春玲.聚苯并噁嗪的非均相结构及其碳纤维复合材料的固化动力学和界面性能研究:[北京化工大学博士学位论文].北京:北京化工大学,2005,11-12
    [2]卢江,梁晖.高分子化学.北京:化学工业出版社,2005,52-55
    [3]Hollyand F W, Cope A C. Condensation products of aldehydes and ketones with o-aminbenzyl alcolo and o-hydroxy-benzylamine. Journal of the American Chemical Society,1944,66(11):1875-1879
    [4]Burke W J, Kolbenzen M J. Condensation of naphthols with formaldehyde and Primary amines. Journal of the American Society of Nephrology,1952,74(9): 3601-3603
    [5]Burke W J, Bishop J L. A new aminoalkylation reaction condensation of phenols with dihydro-1,3-oarxaznies. The Journal of Organic Chemistry,1965 30(10):3423-3427
    [6]Schreiber H. Phenolic resin as electric insulator. Gemran patent. DE2217099, 1973-6-9
    [7]Schreiber H. Method of bonding polyimide films and printed circuit boards incoproration the same. European Patent. EP356379,1990-2-28
    [8]Schreiber H. Curable resin compositions having flame resistant properties in the cured state and use thereof. European Patent. EP493310,1992-7-1
    [9]Higginbottom H P, Drumm M F. Polymerizbale Compositions Comprising polymaines and poly(dihydrobenzoxazine). US Patent.4501864,1985-2-26
    [10]Higginbottom H P, Drumm M F. Proeess for deposition of resin dispersions on metal substrates. US Patent.4557979,1985-12-10
    [11]Grabranik L G, Puryga T V, Matveev V A. Hardening of phenol-formaldehyde and arenephenol-formaldehyde oligomers without evolution of volatile matter. IZV Akad Nauk Kaz SSR Ser Khim,1989,3:64-70
    [12]李曹,高念,顾宜.苯并噁嗪聚合物耐热性能研究进展.化学推进剂与高分子材料,2007,5(5):8-12
    [13]陈红.苯并噁嗪/酚醛树脂共聚体的合成与其自催化固化机理的研究:[北京化工大学硕士学位论文].北京:北京化工大学,2002,12-16
    [14]余鼎声,史子兴,徐日炜,等.苯并噁嗪/蒙脱土插层体系和苯并噁嗪体系的动态固化行为比较.高等学校化学学报,2002,23(11):2188-2191
    [15]纪凤龙,顾宜,谢美丽,等.一种新型苯并噁嗪中间体的合成及其固化性能的研究.塑料工业,2001,29(2):28-29
    [16]Ishida H, Low H Y. Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites. Journal of Applied Polymer Science,1998,69(13):2559-2567
    [17]王旭,徐日炜,余鼎声,等.溶液法合成烯丙基苯并噁嗪中间体与其固化性能的研究.北京化工大学学报,2003,30(4):33-36
    [18]史子兴,潘颖,余鼎声,等.聚苯并嗯嗪预聚体的结构与固化行为的研究.北京化工大学学报,2000,27(3):13-16
    [19]王旭.含烯丙基的苯并噁嗪中间体的合成及其固化性能的研究:[北京化工大学硕士学位论文].北京:北京化工大学,2006,16-19
    [20]顾宜.粒状苯并嗯嗪中间体及制备方法.中国专利.CN1139104A,1997-1-1
    [21]向海,凌鸿,顾宜.新型低黏度苯并噁嗪树脂.热固性树脂,2005,20(2):10-12
    [22]Ishida H, Low H Y. A Study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules,1997,30(4):1099-1106
    [23]Dunkers J, Zarate E A, Ishida H. Crystal structure and hydrogen-bonding characteriatics of N,N-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine a benzox-azine dimer. Journal of Physical Chemical,1996,100(32):13514-13520
    [24]Wirasate S, Dhumrongvaraporn S, Ishida H. Molecular origin of unusual physical and mechanical properties in novel phenolic materials based on benzoxazine chemistry. Journal of Applied Polymer Science,1998,70(7):1299-1306.
    [25]Ishida H, Allen D J. Physical and mechanical characterization of near-zero shrinkage polybenzoxazenes. Journal of Polymer Science part B:Polymer Physics, 1996,34(6):1019-1030
    [26]刘欣,顾宜.苯并噁嗪热固化过程中体积变化的研究.高分子学报,2000,5:612-618
    [27]Ning X, Ishida H. Phenolic materials viaring-opening polymerization of benzoxazines:effect of molecular surtcture on mechanical and dynamic properties. Journal of Polymer Science part B:Polymer Physics,1994,32(5): 921-927
    [28]向海.RTM成型用高性能苯并噁嗪树脂的分子设计、制备及性能研究:[四川大学博士学位论文].四川:四川大学,2005,22-23
    [29]Dunkers J, Ishida H. Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. Journal of Polymer Science part A:Polymer Chemical,1999,37(3):1913-1921
    [30]Ishida H, Sanders D P. Regioselectivity of the ring-opening polymerization of monofunctional alkyl-substituted aromatic amine-based benzoxazines. Polymer, 2001,42(7):3115-3125
    [31]Wang Y X, Ishida H. Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines. Macromolecules,2000,33(8): 2839-2847
    [32]Ishida H, Ohba S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer,2005,46(15):5588-5595
    [33]门薇薇,鲁在君.高性能聚苯并噁嗪树脂.化学进展,2007,19(5):779-786
    [34]Su Y C, Chen W C, Chang F C. Investigation of the thermal properties of novel adamantane-modified polybenzoxazine. Journal of Applied Polymer Science, 2004,94(3):932-940
    [35]曹宏伟,徐日炜,余鼎声.取代基效应对烯丙胺型苯并噁嗪及其树脂的影响.北京化工大学学报,2005,32(4):64-69
    [36]Santhosh Kumar K S, Reghunadhan Nair C P, Radhakrishnan T S. Bis allyl benzoxazine:synthesis, polymerisation and polymer properties. European Polymer Journal.2007,43(6):2504-2514
    [37]郑新生,曾繁涤,陈光辉.苯并噁嗪二苯醚树脂的固化行为研究.高分子材料与工程,2000,16(5):103-105
    [38]郑新生,陈光辉,许东利.苯并嗯嗪二苯醚树脂耐热胶粘剂的研究.化学与粘合,2001,5:195-196
    [39]Liu Y L, Chou C I. High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science part A:Polymer Chemical, 2005,43(21):5267-5282
    [40]Kim H J, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer,1999,40 (29):6565-6573
    [41]Kim H J, Brunovska Z, Ishida H. Molecular characterization of the polymerization of acetylene-functional benzoxazine resins. Polymer,1999,40(7):1815-1822
    [42]Brunovska Z, Lyon R, Ishida H. Thermal properties of phthalonitrile functional polybenzoxazines. Thermochimica Acta,2000,357-358:195-203
    [43]Kim H J, Brunovska Z, Ishida H. Dynamic mechanical analysis on highly thermally stable polybenzoxazines with an acetylene functional group. Journal of Applied Polymer Science,1999,73(6):857-862
    [44]Ishida H, Low H Y. An investigation of the thermal and thermo-oxidative degradation of polybenzoxazines with a reactive functional group. Journal of Polymer Science part B:Polymer Physics,1999,37(7):647-659
    [45]Brunovska Z, Ishida H. Thermal study on the copolymers of phthalonitrile and phenylnitrile-functional benzoxazines. Journal of Applied Polymer Science,1999, 73(14):2937-2949
    [46]Allen D J, Ishida H. Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer,2007,48(23):6763-6772
    [47]Allen D J, Ishida H. Physical and mechanical properties of flexible polyben-zoxazine resins:effect of aliphatic siamine chain length. Journal of Applied Polymer Science,2006,101(5):2798-2809
    [48]谢倩.二元胺型、二元酚型聚苯并噁嗪的研究:[华南热带林业大学硕士论文].海南:华南热带林业大学,2005,11-12
    [49]赵庆来,曾科,韩勇,等.含马来酰亚胺和烯丙基醚的苯并噁嗪的合成与性能.高分子材料科学与工程,2007,23(3):51-54
    [50]Liu Y L, Yu J M, Chou C I. Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups. Journal of Polymer Science Part A: Polymer Chemistry,2004,42(23):5954-5963
    [51]Agag T, Takeichi T. Preparation,characterization and polymerization of malei-midobenzoxazine monomers as a novel class of thermosetting resins. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(4):1424-1435
    [52]Ramachandran P, Subrayan, Frank N, et al. Condensation of substituted phenols with hexakis(methoxymethyl)melamine:synthesis,characterization, and properties of substituted 2,4,6-tris[3,4-dihydro-1,3-(2H)-benzoxazin-3-yl]-s-triazine derivatives. Chemistry of Materials,1998,10(11):3506-3512
    [53]彭朝荣.多元胺型苯并嗯嗪的合成及其在印制线路板中的应用研究:[四川大学硕士学位论文].四川:四川大学,2006,28-47
    [54]Lin C H, Cai S X, Leu T S, et al. Synthesis and properties of flame-retardant benzoxazines by three approaches. Journal of Polymer Science:Part A:Polymer Chemistry,2006,44(11):3454-3468
    [55]成晓情,刘丽,顾宜,等.一种低黏度高热可靠性苯并噁嗪电子封装材料.热固性树脂,2006,21(3):22-25
    [56]Kumar K S S, Nair C P R, Sadhana R, et al. Benzoxazine-bismaleimide blends:curing and thermal properties. European Polymer Journal,2007,43(12): 5084-5096
    [57]Tiptipakorn S, Damrongsakkul S, Rimdusit S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polymer Degradation and Stability,2007,92(7):1265-1278
    [58]Gacal B, Cianga L, Agag T, et al. Synthesis and characterization of maleimide copolymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing. Journal of Polymer Science:Part A: Polymer Chemistry,2007,45(13):2774-2785
    [59]Jang J, Yang H. Toughness improvement of carbon-fibre/polybenzoxazine composites by rubber modification. Composites Science and Technology,2000, 60(3):457-463
    [60]Jang J, Seo D. Performance improvement of rubber-modified polybenzox-azine. Journal of Applied Polymer Science,1998,67(1):1-10
    [61]向海,顾宜.苯并噁嗪树脂的共混改性研究进展.材料导报,2004,18(3):51-53
    [62]Rimdusit S, Pirstpindvong S, Tanthapanichakoon W, et al. Toughening of polybenzoxazine by alloying with urethane prepolymer and flexible epoxy:a comparative study. Polymer Engineering and Science,2005,45(3):286-296
    [63]Takeichi T, Guo Y, Agag T. Synthesis and characterization of poly-(urethanebenzoxazine) films as novel type of polyurethane/phenolic resin composites. Journal of Polymer Science:Part A:Polymer Chemistry,2000,38(22): 4165-4176
    [64]Agag T, Takeichi T. Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer,2000,41(19):7083-7090
    [65]和亚莉,李玲,董凤云.高性能苯并恶嗪树脂的研究进展.绝缘材料,2006,39(4):5-9
    [66]Shi Z, Yu D S, Wang Y X, et al. Nonisothermal cure kinetics in the synthesis of polybenzoxazine-clay nanocomposites. Journal of Applied Polymer Science, 2003,88(1):194-200
    [67]Yei D R, Fu H K, Chen W Y, et al. Synthesis of a novel benzoxazine monomer-intercalated montmorillonite and the curing kinetics of polybenzoxazine /clay hybrid nanocomposites. Journal of Polymer Science:Part B:Polymer Physics,2006,44(2):347-358
    [68]叶朝阳,顾宜.苯并噁嗪中间体/蛭石插层纳米复合物热固化行为的研究.高分子学报,2004,2:208-212
    [69]Agag T, Taepaisitphongse V, Takeichi T. Reinforcement of polybenzoxazine matrix with rganically modified mica. Polymer Composities,2007,28(5):680-687
    [70]Zhang J, XuRW, Yu D S. A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine. European Polymer Journal,2007,43(33):743-752
    [71]Lee Y J, Kuo S W, Huang C F, et al. Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS). Polymer,2006,47(12):4378-4386
    [72]Lee Y J, Huang J M, Chang F C, et al. Synthesis and characterizations of a vinyl-terminated benzoxazine monomer and its blending with polyhedral oligomeric silsesquioxane (POSS). Polymer,2005,46(7):2320-2330
    [73]Lee Y J, Kuo S W, Huang C F, et al. Syntheses, thermal properties, and phase morphologies of novel benzoxazines functionalized with polyhedral oligomeric silsesquioxane(POSS) nanocomposites. Polymer,2004,45(18):6321-6331
    [74]Tomalia D A, Baker H, Dewald J R, et al. A new class of polymers: starburst-dendrimers. Polymer Journal,1985,17(1):117-132
    [75]Tomalia D A. Polymer having two-dimensional molecular dendrimer. US Patent.4587329,1986-5-6
    [76]王俊。树枝状大分子聚酰胺-胺的合成与性能研究:[大连理工大学博士学位论文].辽宁:大连理工大学,2005,15-17
    [77]王冰冰,罗宇飞,贾欣茹,等.扇形PAMAM树枝状高分子的合成与表征.高分子学报,2004,2,304-308
    [78]章昌华,胡剑青,涂伟萍.聚酰胺胺(PAMAM)树状分子的合成.化工新型材料,2005,33(10):32-35
    [79]王俊,杨锦宗,陈红侠,等.发散法合成树枝状高分子聚酰胺-胺.合成化学,2001,9(1):62-64
    [80]李杰,王俊,王天凤,等.树枝状大分子聚酰胺-胺的合成与性能.化学研究,2004,15(2):31-34
    [81]Ishida H, Sanders D P. Regioselectivity and network structure of difunctional alkyl-substituted aromatic amine-based polybenzoxazines. Macromolecules,2000, 33(22):8149-8157
    [82]Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules,2003,36(16):6010-6017
    [83]信春玲,余鼎声,杨小平.苯并噁嗪及其碳纤维复合材料固化动力学研究.热固性树脂.2005,20(3):1-4
    [84]宋霖,向海,顾宜,等.咪唑催化苯并噁嗪树脂固化的研究.热固性树脂,2005,20(4):17-20
    [85]裴顶峰,顾宜,李在兰,等.以双酚A为基础的双苯并噁嗪中间体的开环固化 反应动力学研究.高分子材料科学与工程.1997,13(3):41-44
    [86]Agag T, Tsuchiya H, Takeichi T. Novel organic-inorganic hybrids prepared from polybenzoxazine and titania using sol-gel process. Polymer,2004,45 (23): 7903-7910
    [87]Agag T, Zeidam R, Takeichi T. Polybenzoxazine/clay hybrid nanocomposites: influence of preparation method on the curing behavior and properties of polybenzoxazines. Polymer,2002,43(1):45-53
    [88]Kissinger H E. Reaction kinetics in differential thermal analysis. Annual Review of Physical Chemistry,1957,29(11):1702-1706.
    [89]Ozawa T. Kinetic analysis of derivative curves in thermal analysis. Journal of Thermal Analysis,1970,2(2):301-324.
    [90]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001,100-101
    [91]谢倩,包春磊,鲁在君,等.新型苯并嗯嗪中间体的合成及其固化行为研究.华南热带农业大学学报,2005,11(2):17-19
    [92]Su Y C, Yei D R, Chang F C. The kinetics of B-a and P-a type copolybenzoxazine via the ring opening process. Journal of Applied Polymer Science,2005,95(3): 730-737
    [93]王春颖,孙 皓,陈晓婷,等.含磷阻燃环氧树脂的固化动力学研究.热固性树脂,2006,21(4):26-28
    [94]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001,26-29
    [95]Vyazovkin S, Sbirrazzuoli N. Isoconversional method to explore the mechanism and kinetics Of multi-step epoxy cure. Macromolecular Rapid Communication, 1999,20(7)387-389
    [96]范永忠,孙康.热固性树脂固化的非模型反应动力学研究.高分子材料科学,2001,17(1):60-61
    [97]Crane L W, Dynes P J, Kaelble D H. Analysis of curing kinetics in polymer composites. Polymer Letters,1973,11(8):533-540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700