用户名: 密码: 验证码:
半导体Sn、Sb基硫属化合物的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用温和简单的方法高效合成了若干种半导体纳米材料,将其制成了光电探测器、气敏传感器等相关器件,对其各项性能进行了较完善的测试研究,制成的相关器件在部分性能上取得了一定的突破,加深了对光电子器件机理和气敏机理的认识,同时开发出了若干种具有可见光响应的新型高效催化剂。论文的主要内容如下:
     1、采用温和的多元醇回流方法,我们在常压下快速大量合成了多孔SnS和SnS2纳米材料,并对其形貌、成分以及电子结构进行了分析和计算。制备了一种新型的基于光电化学电池的可见光光电探测器,并对其性质进行了基本的测试,显示了这两种多孔材料制成的器件对可见光有极强的光敏感性,对于SnS制成的光电探测器其响应时间和恢复时间可以达到0.5秒,光响应开关比可以达到1.4×103,这个结果相对于其他SnS光电探测器的报道高了接近三个数量级。光催化性质测试显示利用微量材料进行吸附和光降解的可行性,我们把重点放在选用尽量少的材料达到最高的光催化效果上,实现了微量材料短时间内成功吸附和降解染料的目的。
     2、在对多孔SnS和SnS2材料进行原位氧化煅烧的基础上,我们制备得到了两种多孔SnO_2纳米花样品,并对其进行了表征,确定了这两种物质的形貌、结晶度和带隙等基本特征。选用这两种SnO_2样品制成气体传感器,进行了对乙醇、甲醇、丙酮和甲醛的灵敏度测试,发现在最佳温度270oC时由SnS前驱体得到的SnO_2多孔材料的乙醇灵敏度为43.23,具有极高的灵敏度和极快的响应和恢复时间,同时对其他几种气体也有一定的响应和达到0.5ppm的探测精度。为了更进一步的提高这种气敏传感器的灵敏度,我们对这种多孔材料进行担载Pt的修饰,担载后其最佳测量温度降低到120oC,且其对乙醇气体的灵敏度达到了103.85,得到了2.4倍的提升,不仅如此,我们还发现其在90oC灵敏度就可以达到40.64,接近担载重金属前的水平。最后我们还对另一种多孔SnO_2气体传感器的性质也进行了测试,表明同样具有很好的气体灵敏度。总之,我们的测试结果表明了这种由前驱体煅烧得到的多孔SnO_2材料制成的传感器对于多种挥发性的有机气体尤其是乙醇气体有较高的灵敏度,担载重金属Pt后其灵敏度可以得到极大的提高,并且最佳工作温度可以有效的降低,这样就为SnO_2气敏传感器的低温实用化发展提供了一个新的思路。
     3、一维纳米结构材料便于电子传输,有利于电子-空穴对的转移,近年来被科研人员广泛关注,我们利用简单的回流方法制备得到了一维SnS纳米带,并测量了其光电性质,测试结果发现其光电化学性质比我们前面测得的SnS多孔结构的光电流密度更大,是几乎所有关于SnS材料光电化学性质里面报道的最高结果之一,如果用作一种新型的光电探测器其开关比可以达到336,响应时间和恢复时间为0.1秒。将该种材料涂覆在PET上制成的柔性光电探测器具有很高的柔韧性,对不同强度的可见光都有极快的反应能力,开关比可以达到22,响应时间为5.4秒,恢复时间为1.8秒。光催化效果显示该种带状形貌材料对亚甲基蓝有很强的敏感性,可以在2个小时内把染料吸附和光降解完毕,是一种高效的光催化剂材料。
     4、发展制备了针状和花状的Sb_2S_3样品,并在刚性FTO和柔性PET两种基底上制备成功了光电探测器,花状形貌样品制成的两种光电探测器都表现出了比较优异的性能。在FTO片上制备的花状形貌的光电探测器具有较高的光电响应特性,其响应时间和恢复时间分别达到6毫秒和10毫秒,开关比可以达到38,材料和电极的接触面具有良好的欧姆接触,具有较低的线性动态范围和波长的选择性响应。将材料均匀涂覆在PET上制成的柔性光电探测器,其开关比为5,响应时间和恢复时间分别为0.09秒和0.27秒,而且这种柔性探测器具有很高的柔韧度,良好的稳定性和快速的光响应能力。
The objective of this dissertation is to explore how to highly efficiently synthesize ofseveral inorganic semiconductor nanocrystal materials. Based on those semiconductingmaterials, photoelectric detectors, gas sensors, and so on have been fabricated. We havealso investigated the performances of the semiconductor nanomaterials, madebreakthroughs in some of the performance, enhanced the understanding of gas sensingmechanism and the mechanism of optoelectronic devices, and developed a number of newtype photocatalysts with visible light absorption. The main contents are as follows:
     1. By using a facile polyol refluxing process, we reported the successful synthesis ofporous SnS and SnS2architectures on a large scale at constant pressure. The morphologiesand chemical component have been analysed in details, and the electronic structures of SnSand SnS2were further investigated by band structure calculations.. A new photodetector hasbeen fabricated by configuring the samples as photoelectrochemical cell, exhibitingexcellent photosensitivity with the features of rapid response and recover time to0.5second,with greatly enhanced Ion/offas high as1.4×103, three orders of magnitude higher thanprevious work. Photocatalytic properties of both samples were investigated byphotodegradation of MB and RhB under visible light irradiation. The results indicate thepotential application of the SnSxnanostructures in visible-light-driven photocatalysts. Welayed stress on using as little as possible materials to achieve maximum photocatalyticeffect, realized the purpose on dye adsorption and degradation using trace materials withina short time.
     2. We report here the synthesis of two types of porous SnO_2nanoflowers by in-situoxidization of SnS and SnS2precursors with similar morphologies. As-synthesized SnO_2products were characterized with morphology, crystallinity and band-gap and so on.Configured as resistor-type chemical sensors, the as-synthesized SnO_2products exhibitedexcellent sensitivity and fast response/recover time towards different gases includingethanol, methanol, methanal and acetone. At the optimal sensing temperature of270oC, theporous SnO_2samples derived from the SnS precursor exhibit high sensitivities to ethanolfor43.23. In addition, we can see that the sensor device susceptible to other three gases andthe lowest detection limit was0.5ppm. It was found that the sensitivity toward ethanol dramatically increased by2.4times and the working temperature decreased to120oC whennovel metal Pt nanoparticles were loaded onto the surface of the SnO_2flowers. Theenhanced gas sensing performances can be attributed to the synergistic effects of thePt-loaded SnO_2products. And we also found its sensitivity can be reach to40.64at90oC,which approached to the previous level before loaded. At last, the gas sensing properties ofthe porous SnO_2sample derived from the SnS2precursor were also investigated and thecorresponding results are demonstrated, indicating good sensing properties too. In a word,at optimal sensing temperature, the porous SnO_2samples exhibited high sensitivities toseveral volatile organic gases, especially to ethanol. It was found that the optimaltemperature decreased and the sensitivity toward ethanol dramatically increased afterloaded Pt, which will pay the new way for the application of SnO_2gas sensors at lowoptimal temperature.
     3. In recent years, extensive attention has been paid to the fabrication ofone-dimensional nanostructured semiconductors for constructing electronic andoptoelectronic devices with improved performances. Tin sulphide nanoribbons weresynthesized via a facile polyol refluxing process. The photoconductive properties of theSnS nanoribbons were tested by assembling the samples into photoelectrochemical cells,exhibiting excellent photosensitivity with the features of rapid response and recover time,and stable on/off cycle performance to the stimulated sunlight. The photocurrent density isthe highest one among all reported SnS photoelectrode. Using it as a new photodetector, theratio of the photocurrent to the dark current is about336, and the response and recoverytime were all found to be0.1second. Flexible photodetectors were then fabricated on PETsubstrate, showing high flexible, fast response to visible light with different intensities. TheIon/Ioffis calculated to be about22, and the response and recovery time are5.4s and1.8srespectively. Photocatalytic properties of the as-synthesized SnS nanoribbons were alsostudied by photocatalytic degradation of methylene blue (MB). Almost all of MB wasdecomposed within2h, indicating the SnS nanoribbons are good candidates for highperformance photocatalysts.
     4. Needle-like and flower-like antimony sulfide products were successfullysynthesized. The antimony sulfide photodetectors based not only on rigid FTO but also onflexible PET substrates are proposed, and the flower-like antimony sulfide photodetector exhibited excellent photoconductive performance in terms of high sensitivity to the visiblelight, excellent stability and reproducibility, and fast response and recovery time. The rigidSb_2S_3nanoflowers photodetector has high photoresponse characteristic, its response timeand decay time were found relatively fast to be6ms and10ms respectively, the Ion/Ioffisabout38. The linear photocurrent characteristics demonstrate the good Ohmic contactsbetween the Sb_2S_3nanoflowers materials and the electrodes. In addition to good sensitivityto light intensity, the Sb_2S_3nanoflowers photodetector also exhibits perfect wavelengthselectivity. The flexible Sb_2S_3nanoflowers photodetector based on PET substrate were alsofabricated. The ratio of the photocurrent to the dark current is about5, the response andrecovery time were found to be around0.09s and0.27s. Above all, the device exhibitedexcellent photoconductive performance to visible light, such as high flexible, light-weight,high stability and adequate bendability and fast response and recovery time..
引文
[1] Feynman R P. There’s plenty of room at the bottom: an invitation to enter a new fieldof physics. Eng. Sci.,1960,23(5):22-36
    [2] Kubo R., Kawabata A., Kobayashi S. Electronic properties of small particles. Annu.Rev. Mater. Sci.,1984,14:49-66
    [3] Rossetti R., Nakahara S., Brus L. E. Quantum size effects in the redox potentials,resonance Raman spectra, and electronic spectra of CdS crystallites in aqueoussolution. J. Chem. Phys,1983,79(2):1086-1088
    [4] Lee Y. L., Lo Y. S. Highly efficient quantum-dot-sensitized solar cell based onco-sensitization of CdS/CdSe. Adv. Funct. Mater.,2009,19(4):604-609
    [5] Alivisators A. P. Semiconductor clusters, nanocrystals, and quantum dots, Science,1996,271(5251):933-937
    [6] Klein D. L., Roth R., Lim A. K. L., et al. A single-electron transistor made from acadmium selenide nanocrystal. Nature,1997,389(6652):699-701
    [7] Alivisators A. P. Birth of a nanoscience building block. ACS Nano,2008,2(8):1514-1516
    [8] Hickey S. G., Waurisch C., Rellinghaus B., et al. Size and shape control of colloidallysynthesized IV-VI nanoparticulate tin (II) sulfide. J. Am. Chem. Soc,2008,130(45):14978-14980
    [9] Talapin D. V., Lee J-S, Kovalenko M. V., et al. Prospects of colloidal nanocrystal forelectronic and optoelectronic applications. Chem. Rev.,2010,110(1):389-458
    [10] Ding X. G., Zou Y., and Jiang J. Au-Cu2S heterodimer formation via oxidization ofAuCu alloy nanoparticles and ini situ formed copper thiolate. J. Mater. Chem.,2012,22(43):23169-23174
    [11] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [12] Duan X., Lieber C. M. General synthesis of compound semiconductor nanowires.Adv. Mater.,2000,12(4):298-302
    [13] Xia Y. N., Yang P. D., Sun Y. G., et al. One-dimensional nanostructures: synthesis,characterization, and applications. Adv. Mater.,2003,15(5):353-389
    [14] Aleshin A. N. Polymer nanofibers and nanotubes: charge transport and deviceapplications. Adv. Mater.,2006,18(1):17-27
    [15] Zhou X., Chesin J., Crawford S., et al. Using seed particle composition to controlstructural and optical properties of GaN nanowires. Nanotechnology,2012,23(28):285603
    [16] Wang B., Chen J. S., Wang Z. Y., et al. Green synthesis of NiO nanobelts withexceptional pseudo-capacitive properties. Adv. Energy Mater.,2012,10(2):1188-1182
    [17] Wu J., Zhang H., Du N., et al. General solution route for nanoplates of hexagonaloxide or hydroxide. J. Phys. Chem. B,2006,110(23):11196-11198
    [18] Hideyuki N., Takuya M., Masashi H., et al. Soft synthesis of single-crystal siliconmonolayer sheets. Angew. Chem. Int. Ed,2006,45(38):6303-6306
    [19] Seo J., Jun Y., Park P. S., et al. Two-dimensional nanosheet crystals. Angew. Chem.Int. Ed,2007,46(46):8828-8831
    [20] Leon R., Petroff P. M., Leonard D., et al. Spatially resolved visible luminescence ofself-assembled semiconductor quantum dots. Science,1995,267(5206):1966-1968
    [21] Ball P., Garwin L. Science at the atomic scale. Nature,1992,355(6363):761-766
    [22] Valden M., Lai X., Goodman D. W. Onset of catalytic activity of gold clusters ontitania with the appearance of nonmetallic properties. Science,1998,281(5383):1647-1650
    [23] Paggel J. J., Miller T., Chiang T. C. Quantum-well states as Fabry-Pérot modes in athin-film electron interferometer. Science,1999,283(5408):1709-1711
    [24] Kormann C., Bahnemnn D. W., Hoffmann M. R. Preparation and characterization ofquantum-size titanium dioxide. J. Phys. Chem.,1988,92(18):5196-5201
    [25] Serpone N., Lawless D., Khairutdinov R. Size effects on the photophysical propertiesof colloidal anatase TiO2particles: size quantization versus direct transitions in thisindirect semiconductor? J. Phys. Chem.,1995,99(45):16646-16654
    [26] Legget A. J., Chakravarty S., Dorsey A. T., et al. Dynamics of the dissipativetwo-state system. Rev. Mod. Phys.,1987,59(1):1-85
    [27] Awschalom D. D., Mccord M. A., Grinstein G. Observation of macroscopic spinphenomena in nanometer-scale magnets. Phys. Rev. Lett.,1990,65(6):783-786
    [28] Muller M., Zentel R., Maka T., et al. Photonic crystal films with high refractive indexcontrast. Adv. Mater.,2000,12(20):1499-1503
    [29] Hegde S. S., Kunjomana A. G., Chandrasekharan K. A., et al. Optical and electricalproperties of SnS semiconductor crystals grown by physical vapor depositiontechnique. Physica B,2011,406(5):1143-1148
    [30] Deepa K. G., Nagaraju J. Growth and photovoltaic performance of SnS quantum dots.Mater. Sci. Eng.,B,2012,177(13):1023-1028
    [31] Zhang H. L., Hu C. G., Wang X., et al. Synthesis and photosensitivity of SnSnanobelts. J. Alloys Compd,2012,513:1-5
    [32] Kumar G. G., Reddy K., Nahm K. S., et al. Synthesis and electrochemical propertiesof SnS as possible anode material for lithium batteries. J. Phys. Chem. Solids,2012,73(9):1187-1190
    [33] Sathish M., Mitani S., Tomai T., et al. Ultrathin SnS2nanoparticles on graphenenanosheets: synthesis, characterization, and Li-ion storage applications. J. Phys.Chem. C,2012,116(23):12475-12481
    [34] Deng Z. T.,Cao D., He J., et al. Solution synthesis of ultrathin single-crystalline SnSnanoribbons for photodetectors via phase transition and surface processing.2012,6(7):6197-6207
    [35] Zhang Y. C., Li J., Zhang M., et al. Size-tunable hydrothermal synthesis of SnS2nanocrystals with high performance in visible light-driven photocatalytic reductionof aqueous Cr(VI). Environ. Sci. Technol,2011,45(21):9324-9331
    [36] Lei Y. Q., Song S. Y., Fan W. Q., et al. Facile synthesis and assemblies of flowerlikeSnS2and In3+-doped SnS2: hierarchical structures and their enhanced photocatalyticproperty. J. Phys. Chem. C,2009,113(4):1280-1285
    [37] Zhang Y. C., Du Z. N., Li K. W., et al. Size-controlled hydrothermal synthesis ofSnS2nanoparticles with high performance in visible light-driven photocatalyticdegradation of aqueous methyl orange. Sep. Purif. Technol,2011,81(2):101-107
    [38] Du W. M., Deng D. H., Han Z. T., et al. Hexagonal tin disulfide nanoplatelets: a newphotocatalyst driven by solar light. CrystEngComm,2011,13(6):2071-2076
    [39] Yue G. H.,Lin Y. D.,Wen X., et al. Synthesis and characterization of the SnSnanowires via chemical vapor deposition. Appl Phys A,2012,106(1):87-91
    [40] Subramanian B., Sanjeeviraja C., Jayachandran M. Photoelectrochemicalcharacteristics of brush plated tin sulfide thin films. Sol. Energy Mater. Sol. Cells,2003,79(1):57-65
    [41] Deepa K.G., Nagaraju J. Growth and photovoltaic performance of SnS quantum dots.Mater. Sci. Eng.,B,2012,177(13):1023-1028
    [42] Cai J. J., Li Z. S., and Shen P. K. Porous SnS nanorods/carbon hybrid materials ashighly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater.Interfaces,2012,4(8):4093-4098
    [43] Yang J. M., Tian Q. W., Chen Z. G., et al. Synthesis and characterization of tindisulfide hexagonal nanoflakes via solvothermal decomposition. Mater. Lett.,2012,67(1):32-34
    [44] Ma J. M., Lei D. N., Mei L., et al. Plate-like SnS2nanostructures: hydrothermalpreparation, growth mechanism and excellent electrochemical properties.CrystEngComm,2012,14(3):832-836
    [45] Radovsky G., Popovitz-Biro R., and Tenne R. Study of tubular structures of the misfit layered compound SnS2/SnS. Chem. Mater.,2012,24(15):3004-3015
    [46] Zhong H. X., Yang G. Z., Song H. W., et al. Vertically aligned graphene-like SnS2ultrathin nanosheet arrays: excellent energy storage, catalysis, photoconduction, andfield-emitting performances. J. Phys. Chem. C,2012,116(16):9319-9326
    [47] McManamon C., Holmes J. D. and Morris M. A. Improved photocatalyticdegradation rates of phenol achieved using novel porous ZrO2-doped TiO2nanoparticle powders. J. Hazard Mater.,2011,193:120-127
    [48] Kokubu T., Oaki Y. and Hosono E., Biomimetic solid-solution precursors of metalcarbonate for nanostructured metal oxides: MnO/Co and MnO-CoO nanostructuresand their electrochemical properties. Adv. Funct. Mater.,2011,21(19):3673-3680
    [49] Li Y. S., Xu J., Chao J. F., et al. High-aspect-ratio single-crystalline porous In2O3nanobelts with enhanced gas sensing properties. J. Mater. Chem.,2011,21(34),12852-12857.
    [50] Xie Z., Zhu Y. G., Xu J., et al. Porous WO3with enhanced photocatalytic andselective gas sensing properties. CrystEngComm,2011,13(21):6393-6398
    [51] Huan T. N., Ganesh T., Kim K. S., et al. A three-dimensional gold nanodendritenetwork porous structure and its application for an electrochemical sensing. Biosens.Bioelectron,2011,27(1):183-186
    [52] Varoon K., Zhang X. Y. and Elyassi B., et al. Dispersible exfoliated zeolitenanosheets and their application as a selective membrane. Science,2011,334(6052):72-75
    [53] Yang Z. X., Du G. D. and Guo Z. P., et al. Encapsulation of TiO2(B) nanowire coresinto SnO2/carbon nanoparticle shells and their high performance in lithium storage.Nanoscale,2011,3(10):4440-4447
    [54] Lee H. I., Stucky G. D., Kim J. H., et al. Spontaneous phase separation mediatedsynthesis of3D mesoporous carbon with controllable cage and window size. Adv.Mater,2011,23(20):2357-2361
    [55] Xu L. P., Ding Y. S., Chen C. H., et al.3D flowerlike α-nickel hydroxide withenhanced electrochemical activity synthesized by microwave-assisted hydrothermalmethod. Chem. Mater.,2008,20(1):308-316
    [56] Chen D. and Ye J. H. Hierarchical WO3hollow shells: dendrite, sphere, dumbbell,and their photocatalytic properties. Adv. Funct. Mater,2008,18(13):1922-1928
    [57] Nikolic P. M., Milikovic P., Lavrencic B. Splitting and coupling of lattice modes inthe layer compound SnS. J. Phys. C: Solid Status Phys,1977,10(11): L289-L292
    [58] Sohila S., Rajalakshmi M., Ghosh C., et al. Optical and Raman scattering studies onSnS nanoparticles. J. Alloys Compd.,2011,509(19):5843-5847
    [59] Fu H. B., Zhang L. W., Yao W. Q., et al. Photocatalytic properties of nanosizedBi2WO6catalysts synthesis via a hydrothermal process. Appl. Catal. B,2006,66(1-2):100-110
    [60] Tang J. W., Zou Z. G. and Ye J. H. Photophysical and photocatalytic properties ofAgInW2O8. J. Phys. Chem. B,2003,107(51):14265-14269
    [61] Li G. Q., Yang N., Wang W. L., et al. Band structure and photoelectrochemicalbehavior of AgNbO3–NaNbO3solid solution photoelectrodes. Electrochim. Acta,2010,55(24):7235-7239
    [62] Xu Y., Al-Salim N., Bumby C. W., et al. Synthesis of SnS quantum dots. J. Am.Chem. Soc.,2009,131(44):15990-15991
    [63] Wang Z. R., Wang H., Liu B., et al. Transferable and flexible nanorods-assembledTiO2cloths for dye-sensitized solar cells, photodetectors and photocatalysts. ACSNano,2011,5(10):8412-8419
    [64] Hickey S. G., Waurisch C., Rellinghaus B., et al. Size and shape control of colloidallysynthesized IV-VI nanoparticulate tin (II) sulfide. J. Am. Chem. Soc.,2008,130(45):14978-14980
    [65] Ye H., Park H. S., Akhavan V. A., et al. Photoelectrochemical characterization ofCuInSe2and Cu(In1xGax)Se2thin films for solar cells. J. Phys. Chem. C,2011,115(1):234-240
    [66] Chen D., Liu Z., Ouyang S. X., et al. Simple room-temperature mineralizationmethod to SrWO4micro/nanostructures and their photocatalytic properties. J. Phys.Chem. C,2011,115(32):15778-15784
    [67] Fox M. A. and Dulay M. T. Heterogeneous photocatalysis. Chem. Rev.,1993,93(1):341-357
    [68] Chen D., Ouyang S. X. and Ye J. H. Photocatalytic degradation of isopropanol overPbSnO3nanostructures under visible light irradiation. Nanoscale Research Lett,2009,4(3):274-280
    [69] Xu J., Zhu Y. G., Huang H. T., et al. Zinc-oleate complex as efficient precursor for1-D ZnO nanostructures: synthesis and properties. CrystEngComm,2011,13(7):2629-2635
    [70] Rengaraj S., Venkataraj S., Tai C., et al. Self-assembled mesoporous hierarchical-likeIn2S3hollow microspheres composed of nanofibers and nanosheets and theirphotocatalytic activity. Langmuir,2011,27(9):5534-5541
    [71] Sung-Suh H. M., Choi J. R., Hah H. J., et al. Comparison of Ag deposition effects onthe photocatalytic activity of nanoparticulate TiO2under visible and UV lightirradiation. J. Photochem. Photobiol. A.,2004,163(1-2):37-44
    [72] Wu T., Liu G., Zhao J., et al. Self-photosensitized ox-idative transformation ofrhodamine B under visible light irradiationin aqueous TiO2dispersions. J. Phys.Chem. B,1998,102(30):5845-5851
    [73] Zhao J. C., Zhang F. L., Zang L., et al. Photoassisted degradation of dye pollutants inaqueous TiO2dispersions under irradiation by visible light. J. Mol. Catal. A: Chem.,1997,120(1):173-178
    [74] Wu J. M. and Zhang T. W. Photodegradation of rhodamine B in water assisted bytitania films prepared through a novel procedure. J. Photochem. Photobiol. A,2004,162(1):171-177
    [75] Yang F., takahashi Y., Sakai N., et al. Photocatalytic remote oxidation induced byvisible light. J. Phys. Chem. C.,2011,115(37):18270-18274
    [76] Chen D., Ouyang S. X. and Ye J. H. Photocatalytic degradation of isopropanol overPbSnO3nanostructures under visible light irradiation. Nanoscale Research. Lett,2009,4(3):274-280
    [77] Xu J., Meng W., Zhang Y., et al. Photocatalytic degradation of tetrabromobisphenol Aby mesoporous BiOBr: efficacy, products and pathway. Appl. Catal. B Environ.,2011,107(3-4):355-362
    [78] Li G. Q., Yang N., Yang X. L., et al. Reagent dependency of the extent of organiccompound degradation ability under visible light irradiation. J. Phys. Chem. C,2011,115(28):13734-13738
    [79] Schmitt P., Brem N., Schunk S., et al. Polyol-mediated synthesis of nanoscalemolybdates/tungstates and its properties: color, luminescence, catalysis. Adv. Funct.Mater.,2011,21(16):3037-3046
    [80] Song X. C., Zheng Y. F., Ma R., et al. Photocatalytic activities of Mo-doped Bi2WO6three-dimensional hierarchical microspheres. J. Hazard. Mater.,2011,192(1):186-191
    [81] Chen D., Ye J. H. Photocatalytic H2evolution under visible light irradiation onAgIn5S8photocatalyst. J. Phys. Chem. Solids,2007,68(12):2317-2320
    [82] Du W. M., Zhu J., Li S. X., et al. Ultrathin β-In2S3nanobelts: shape-controlledsynthesis and optical and photocatalytic properties. Cryst. Growth Des.,2008,8(7):2130-2136
    [83] Bao N. Z., Shen L. M., Takata T., et al. Self-templated synthesis of nanoporous CdSnanostructures for highly efficient photocatalytic hydrogen production under visiblelight. Chem. Mater.,2008,20(1):110-117
    [84] Zhang Y. C., Du Z. N., Li S. Y., et al. Novel synthesis and high visible lightphotocatalytic activity of SnS2nanoflakes from SnCl2·2H2O and S powders. Appl.Catal., B,2010,95(1-2):153-159
    [85] Yang C., Wang W., Shan Z., et al. Preparation and photocatalytic activity ofhigh-efficiency visible-light-responsive photocatalyst SnSx/TiO2. J. Solid State Chem,2009,182(4):807-812
    [86] Tang P., Chen H., Cao F., et al. Nanoparticulate SnS as an efficient photocatalystunder visible-light irradiation. Mater. Lett.,2011,65(3):450-452
    [87] Lei Y. Q., Song S. Y., Fan W. Q., et al. Facile synthesis and assemblies of flowerlikeSnS2and In3+-doped SnS2: hierarchical structures and their enhanced photocatalyticproperty. J. Phys. Chem. C,.2009,113(4):1280-1285
    [88] Wang C. X., Yin L. W., Zhang L. Y., et al. Metal oxide gas sensors: sensitivity andinfluencing factors. Sensors,2010,10(3):2088-2106
    [89] Shen Y. B., Yamazaki T., Liu Z. F., et al. Porous SnO2sputtered films with high H2sensitivity at low operation temperature, Thin Solid Film,2008,516(15):5111-5117
    [90] Jing Z. H. and Zhan J. H. Fabrication and gas-sensing properties of porous ZnOnanoplates. Adv. Mater.,2008,20(23):4547-4551
    [91] Chang Y. E., Youn D. Y., Ankonina G., et al. Fabrication and gas sensing properties ofhollow SnO2hemispheres, Chem. Commun.,2009,27:4019-4021
    [92] Rothschild A. and Komem Y. The effect of grain size on the sensitivity ofnanocrystalline metal-oxide gas sensors, J. Appl. Phys.,2004,95(11):6374-6380
    [93] Pinna N., Neri G., Antonietti M., et al. Nonaqueous synthesis of nanocrystallinesemiconducting metal oxides for gas sensing. Angew. Chem. Int. Ed.,2004,43(33):4345-4349
    [94] Lu F., Liu Y., Dong M., et al. Nanosized tin oxide as the novel material withsimultaneous detection towards CO, H2and CH4, Sens. Actuators. B,2000,66(1-3):225-227
    [95] Sakai G., Matsrnaga N., Shimanoe K., et al. Theory of gas-diffusion controlledsensitivity for thin film semiconductor gas sensor, Sens. Actuators. B,2001,80(2):125-131
    [96] Matsunaga N., Sakai G., Shimanoe K., et al. Formulation of gas diffusion dynamicsfor thin film semiconductor gas sensor based on simple reaction-diffusion equation,Sens. Actuators. B,2003,96(1-2):226-233
    [97] Xue X., Xing L., Chen Y., et al. Synthesis and H2S sensing properties of CuO-SnO2core/shell pn-junction nanorods, J. Phys. Chem. C,2008,112(32):12157-12160
    [98] He L., Jia Y., Meng F., et al. Development of sensors based on CuO-doped SnO2hollow spheres for ppb level H2S gas sensing. J. Mater. Sci.,2009,44(16):4326-4333
    [99] Lu Y. J., Li J., Han J., et al. Room temperature methane detection using palladiumloaded single-walled carbon nanotube sensors,Chem. Phys. Lett.,2004,391(4-6):344-348
    [100] Kolmakov A., Klenov D. O., Lilach Y., et al. Enhanced gas sensing by individualSnO2nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett.,2005,5(4):667-673
    [101] Sun F. Q., Cai W. P., Li Y., et al. Direct growth of monoand multilayer nanostructuredporous films on curved surfaces and their application as gas sensors. Adv. Mater,2005,17(23):2872-2877
    [102] Sun P., Zhao W., Cao Y., et al. Porous SnO2hierarchical nanosheets: hydrothermalpreparation, growth mechanism, and gas sensing properties. CrystEngComm,2011,13(11):3718-3724
    [103] Huang J. R., Yu K., Gu C. P., et al. Prepatation of porous flower-shaped SnO2nanostructures and their gas-sensing property. Sens. Actuators, B,2010,147(2):467-474
    [104] Yin X. M., Li C. C., Zhang M., et al. SnO2monolayer porous hollow spheres as a gassensor. Nanotechnology,2009,20(45):455503
    [105] Cho C. Y., Moon J. H. Hierarchically porous TiO2electrodes fabricated by dualtemplating methods for dye-sensitized solar cells. Adv. Mater,2011,23(26):2971-2975
    [106] Wang J. X., Wu C. M. L., Cheung W. S., et al. Synthesis of hierarchical porous ZnOdisklike nanostructures for improved photovoltaic properties of dye-sensitized solarcells. J. Phys. Chem. C,2011,114(31):13157-13161
    [107] Qu Q. T., Fu L. J., Zhan X. Y., et al. Porous LiMn2O4as cathode material with highpower and excellent cycling for aqueous rechargeable lithium batteries. EnergyEnviron. Sci.,2011,4(10):3985-3990
    [108] Song Y. Q., Qin S. S., Zhang Y. W., et al. Large-scale porous hematite nanorod arrays:direct growth on titanium foil and reversible lithium storage. J. Phy. Chem. C,2010,114(49):21158-21164
    [109] Wang M., Fei G. T., Zhang L. D. Porous-ZnO-nanobelt film as recyclablephotocatalysts with enhanced photocatalytic activity. Nanoscale Res Lett,2010,5(11):1800-1803
    [110] Wijnhoven J. E. G. J. and Vos W. L. Preparation of photonic crystals made of airspheres in titania. Science,1998,281(5378):802-804
    [111] Tanev P. T., Chibwe M. and Pinnavaia T. J. Tianium-containing mesoporousmolecular sieves for catalytic oxidation of aromatic compounds. Nature,1994,368(6469):321-323
    [112] Zhang D. S., Yoshida T. and Minoura H. Low-temperature fabrication of efficientporous titania photoelectrodes by hydrothermal crystallization at the solid/gasInterface. Adv. Mater,2003,15(10):814-817
    [113] Landskron K., Geoffrey A. O. Periodic mesoporous dendrisilicas. Science,2004,306(5701):1529-1532
    [114] Zhong Z., Yin Y., Gates B., et al. Preparation of mesoscale hollow spheres of TiO2and SnO2by templating against crystalline arrays of polystyrene beads. Adv. Mater,2000,12(3):206-209
    [115] Seung Y. B., Hee W. S., Jeunghee P., et al. Porous GaN nanowires synthesized usingthermal chemical vapor deposition. Chem. Phys. Lett.,2003,376(3-4):445-451
    [116] Aravamudhan S., Luongo K., Poddar P., et al. Porous silicon templates forelectrodeposition of nanostructures. Appl. Phys. A,2007,87(4):773-780
    [117] Ramasamy E. and Lee J. Ordered mesoporous Zn-doped SnO2synthesized byexotemplating for efficient dye-sensitized solar cells. Energy Environ. Sci.,2011,4(7):2529-2536
    [118] Law M., Kind H., Messer B., et al. Photochemical sensing of NO2with SnO2nanoribbon nanosensors at room temperature. Angew. Chem., Int. Ed.,2002,41(13):2405-2408
    [119] Liang H. W., Liu S. and Yu S. H. Controlled synthesis of one-dimensional inorganicnanostructures using pre-existing one-dimensional nanostructures as templates. Adv.Mater.,2010,22(35):3925-3937
    [120] Zhang M., Lu, Chen Y. J., et al. Selective synthesis of Zn(1-x)Mn(x)Se nanobelts andnanotubes from [Zn(1-x)Mn(x)Se](DETA)0.5nanbelts in solution (x=0-0.15) and theirEPR and optical properties. Langmuir,2010,26(15):12882-12889
    [121] Song R. Q., Xu A. W., Deng B., et al. From layered basic zinc acetate nanobelts tohierarchical zinc oxide nanostructures and porous zinc oxide nanobelts. Adv. Funct.Mater.,2007,17(2):296-306
    [122] Jiang X. C., Wang Y., Herricks T., et al. Ethylene glycol-mediated synthesis of metaloxide nanowires. J. Mater. Chem.,2004,14(4):695-703
    [123] Haridas D., Chowdhuri A., Sreenivas K., et al. Enhanced LPG responsecharacteristics of SnO2thin film based sensors loaded with Pt clusters. Int. JournalSmart Sensing and Intelligent Systems,2009,2(3),503-514.
    [124] Lu Y., Li J., Han J., et al. Room temperature methane detection using palladiumloaded single-walled carbon nanotube sensors. Chem. Phys. Lett.,2004,391(4-6):344-348
    [125] Kolmakov A., Klenov D. O., Lilach Y., et al. Enhanced gas sensing by individualSnO2nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett.,2005,5(4):667-673
    [126] Wang D. H., Ma Z., Dai S., et al. Low-temperature synthesis of tunable mesoporouscrystalline transition metal oxides and applications as Au catalyst supports. J. Phys.Chem. C,2008,112(35):13499-13509
    [127] Afuilar-leyva J., Maldonado A., Dela M., et al. Gas-sensing characteristics ofundoped-SnO2thin films and Ag/SnO2and SnO2/Ag structures in a propaneatmosphere. Mater. Charact.,2007,58(8-9):740-751
    [128] Gurlo A. Interplay between O2and SnO2: oxygen ionosorption and spectroscopicevidence for adsorbed oxygen. ChemPhysChem,2006,7(10):2041-2052
    [129] Barsan N., Schweizer-Berberich M., Gopel W. Fundamental and practical aspects inthe design of nanoscale SnO2gas sensors: a status report. Fresen. J. Ana. Chem,1999,365(4):287-304
    [130] Maier J., Gopel W. Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide, J. Solid. State. Chem,1988,72(2):293-302
    [131] Jarzebski Z. M., Marton J. P. Physical properties of SnO2materials, J. Electrochem.Soc,1976,123(7):199-205
    [132] Gopel W., Schierbaum K. D. SnO2sensors: current status and future prospects, Sens.Actuators. B,1995,26(1-3):1-12
    [133] Chao J. F., Xie Z., Duan X. B., et al. Visible-light-driven photocatalytic andphotoelectrochemical properties of porous SnSx(x=1,2) architectures,CrystEngComm,2012,14(9):3163-3168
    [134] Chen,D. Xu J., Xie Z., et al. Nanowires assembled SnO2nanopolyhedrons withenhanced gas sensing properties. ACS Appl. Mater. Interfaces,2011,3(6):2112-2117
    [135] Zeng Y., Zhang T., Wang L. J., et al. Enhanced toluene sensing characteristics ofTiO2-doped flowerlike ZnO nanostructures. Sens. Actuators B,2009,140(1):73-78
    [136] Chen D., Xu, J. Liang B., et al. Electric transport, reversible wettability and chemicalsensing of single-crystalline zigzag Zn2SnO4nanowires. J. Mater. Chem.,2011,21(43):17236-17241
    [137] Yu X. X., Yu J. G., Cheng B., et al. Synthesis of hierarchical flower-like AlOOH andTiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys.Chem. C,2009,113(40):17527-17535
    [138] Cai W. Q., Yu J. G. and Mann S. Template-free hydrothermal fabrication ofhierarchically organized γ-AlOOH hollow microspheres. Microporous MesoporousMater.,2009,122(1-3):42-47
    [139] Franke M. E., Koplin T. J. and Simon U. Metal and metal oxide nanoparticles inchemiresistors: Does the nanoscale matter?. Small,2006,2(3):36-50
    [140] Shahrokh Abadi M. H., Hamidon M. N., Shaari A. H., et al. Nanocrystalline SnO2-Ptthick film gas sensor for air pollution applications. Sensors&Transducers Journal,2011,125(2):76-88
    [141] Wang Q. H., Wang D. W., Wu M. H., et al. Porous SnO2nanoflakes withloose-packed structure: morphotogy conserved transformation from SnS2precursorand application in lithium ion batteries and gas sensors. J. Phys. Chem. Solids.,2011,72(6):630-636
    [142] Wang G. X., Park J. S., Park M. S., et al. Synthesis and high sensitivity of tin oxidenanotubes. Sens. Actuators B.,2008,131(1):313-317
    [143] Zhang J., Wang S. R., Wang Y., et al. Facile synthesis of highly ethanol-sensitiveSnO2nanoparticles. Sens. Actuators B.,2009,139(2):369-374
    [144] Zhang Y., He X. L., Li J. P., et al. Fabrication and ethanol-sensing properties of microgas sensor based on electrospun SnO2nanofbers, Sens. Actuators B.,2008,132(1):67-73
    [145] Chen Y. J., Xue X. Y., Wang Y. G., et al. Synthesis and ethanol sensing characteriticsof single crystalline SnO2nanorods. Appl. Phys. Lett.,2005,87(23):233503-233505
    [146] Que R. H., Shao M. W., Wang S. D., et al. Silicon nanowires with permanentelectrostatic charges for nanogenerators. Nano Lett.,2011,11(11):4870-4873
    [147] Chang Y., Wu H., Chen H., et al. Two-dimensional inverse opal ZnO nanorodnetworks with photonic band gap. J. Phys. Chem. C,2009,113(33):14778-14782
    [148] Li L., Wu P. C., Fang X. S., et al. Single-crystalline CdS nanobelts for excellentfield-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater.,2010,22(29):3161-3165
    [149] Shen G. Z., Chen D. One-dimensional nanostructures and devices of II–V groupsemiconductors. Nanoscale Res Lett,2009,4(8):779-788
    [150] Zeng H. B., Zhi, C. Y., Bando Y., et al.“White Graphenes”: boron nitridenanoribbons via boron nitride nanotube unwrapping. Nano Lett.,2010,10(12):5049-5055
    [151] Shen G. Z., Bando Y., Liu B., et al. Systematic investigation of the formation of1Dα-Si3N4nanostructures by using a thermal-decomposition/nitridation process. Chem.Eur. J.,2006,12(11):2987-2993
    [152] Shen G. Z., Xu J., Wang X., et al. Growth of directly transferable In2O3nanowiremats for transparent thin-film transistor applications. Adv. Mater.,2010,23(6):771-775
    [153] Shen G. Z., Chen P. C., Ryu K., et al. Devices and chemical sensing applications ofmetal oxide nanowires. J. Mater. Chem.,2009,19(7):828-839
    [154] Devika M., Reddy N. K., Patolsky F., et al. Temperature dependent structuralproperties of nanocrystalline SnS structures. Appl. Phys. Lett.,2009,95(26):261907-291909
    [155] Yang Y. J., Xiang B. J. A simple synthesis of SnS nanoflakes at ambient conditions.Appl. Phys. A,2006,83(3):461-463
    [156] Xu Y., Al-Salim N., Bumby C. W., et al. Synthesis of SnS quantum dots. J. Am.Chem. Soc,2009,131(44):15990-15991
    [157] Hickey S. G., Waurisch C., Rellinghaus B., et al. Size and shape control of colloidallysynthesized IV-VI nanoparticulate tin (II) sulfide. J. Am. Chem. Soc.,2008,130(45):14978-14980
    [158] Hickey S. G., Riley D. J., Tull E. J. Photoelectrochemical studies of CdS nanoparticlemodified electrodes: absorption and photocurrent investigations. J. Phys. Chem. B,2000,104(32):7623-7626
    [159] Shen G. Z., Chen P. C., Bando Y., et al. Bicrystalline Zn3P2and Cd3P2nanobelts andtheir electronic transport properties. Chem. Mater.,2008,20(23):7319-7323
    [160] Jiang Y., Zhang W. J., Jie J. S., et al. Photoresponse properties of CdSesingle-nanoribbon photodetectors. Adv. Funct. Mater.,2007,17(11):1795-1800
    [161] Peng H. R., Jiang L., Huang,J. et al. Synthesis of morphologically controlled tinsulfide nanostructures. J. Nanopart. Res.,2007,9(6):1163-1166
    [162] Sinsermsuksakul P., Hartman K., Kim S. B., et al. Enhancing the efficiency of SnSsolar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys.Lett.,2013,102(5):053901
    [163] Zhang H. L., Hu C. G., Wang X., et al. Synthesis and photosensitivity of SnSnanobelts. J. Alloys Compd.,2012,513:1-5
    [164] Chandraeskhar H. R., Humphreys R., Zwick U., et al. Infrared and Raman spectra ofthe IV-VI compounds SnS and SnSe. Phys. Rev. B,1977,15(4):2177-2183
    [165] Devika M., Reddy N. K., Prashantha M., et al. The physical properties of SnS filmsgrown on lattice-matched and amorphous substrates. Phys. Status Solidi A,2010,207(8):1864-1869
    [166] Ichimura M., Takenchi K., Ono Y., et al. Electrochemical deposition of SnS thinfilms. Thin Solid Films,2000,361-362:98-101
    [167] Yue G. H.,Lin Y. D.,Wen X.,et al. Synthesis and characterization of the SnSnanowires via chemical vapor deposition. Appl. Phys. A,2012,106(1):87-91
    [168] Cai J. J., Li Z. S., and Shen P. K. Porous SnS nanorods/carbon hybrid materials ashighly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater.Interfaces,2012,4(8):4093-4098
    [169] C. H. An, K. B. Tang, G. Z. Shen, et al..Growth of belt-like SnS crystals fromethylenediamine solution. J. Crys. Growth,2002,244(3):333-338
    [170] Peng H. R., Jiang L., Huang J., et al. Synthesis of morphologically controlled tinsulfide nanostructures. J. Nanopart. Res.,2007,9(6):1163-1166
    [171] Liu J., Xue D. F. Sn-based nanomaterials converted from SnS nanobelts: facilesynthesis, characterizations, optical properties and energy storage performances.Electrochim. Acta,2010,56(1):243-250
    [172] Chandraeskhar H. R., Humphreys R., Zwick U., et al. Infrared and Raman spectra ofthe IV-VI compounds SnS and SnSe. Phys. Rev. B,1977,15(4):2177-2183
    [173] Devika M., Reddy N. K., Prashantha M., et al. The physical properties of SnS filmsgrown on lattice-matched and amorphous substrates. Phys. Status Solidi A,2010,207(8):1864-1869
    [174] Tanusevski A., Poelman D. Optical and photoconductive properties of SnS thin filmsprepared by electron beam evaporation. Sol. Energy Mater. Sol. Cells,2003,80(3):297-303
    [175] Antunez P. D., Buckley J. J., Brutchey R. L. Tin and germanium monochalcogenideIV-VI semiconductor nanocrystals for use in solar cells. Nanoscale,2011,3(6):2399-2411
    [176] Ye H., Park H. S., Akhavan V. A., et al. Photoelectrochemical characterization ofCuInSe2and Cu(In1xGax)Se2thin films for solar cells. J. Phys. Chem. C,2011,115(1):234-240
    [177] Shi J., Hara Y., Sun C. L., et al. Three-dimensional high-density hierarchicalnanowire architecture for high-performance photoelectrochemical electrodes. NanoLett.,2011,11(8):3413-3419
    [178] Mulmudi H. K., Batabyal S. K., Rao M., et al. Solution processed transition metalsulfides: application as counter electrodes in dye sensitized solar cells (DSCs). Phy.Chem. Chem. Phys.,2011,13(43):19307-19309
    [179] Vigil E., Peter L. M., Forcade F., et al. An ultraviolet selective photodetector basedon a nanocrystalline TiO2photoelectrochemical cell. Sens. Actuators, A,2011,171(2):87-92
    [180] Peter L. M., Riley D. J., Tull E. J., et al. Photosensitization of nanocrystalline TiO2by self-assembled layers of CdS quantum dots. Chem. Commun.,2002,10:1030-1031
    [181] Jing D. W., Liu M. C., Guo L. J. Enhanced hydrogen production from water over Nidoped ZnIn2S4microsphere photocatalysts. Catal Lett,2010,140(3-4):167-171
    [182] Devika M., Reddy N. K., Prashantha M., et al. The physical properties of SnS filmsgrown on lattice-matched and amorphous substrates. Phys. Status Solidi A,2010,207(8):1864-1869
    [183] Lee Y., Bae S., Jang H., et al. Wafer-scale synthesis and transfer of grapheme films.Nano Lett.,2010,10(2):490-493
    [184] Liang H. W., Wang L., Chen P. Y., et al. Carbonaceous nanofiber membranes forselective filtration and separation of nanoparticles. Adv. Mater.,2010,22(42):4691-4695
    [185] Shen G. Z., Liang B., Wang X. F., et al. Ultrathin In2O3nanowires with diametersbelow4nm: synthesis, reversible wettability switching behavior and transparentthin-filn transistor applications. ACS Nano,2011,5(8):6148-6155
    [186] Chen X. Q., Li P., Tong H., et al. Nanoarchitectonics of a Au nanoprism array onWO3film for synergistic optoelectronic response. Sci. Technol. Adv. Mater.,2011,12(4):044604
    [187] Yang S., Zhu P., Nair A. S., et al. Rice grain-shaped TiO2mesostructures-synthesis,characterization and applications in dye-sensitized solar cells and photocatalysis. J.Mater. Chem.,2011,21(18):6541-6548
    [188] Soci C., Zhang A., Xiang B., et al. ZnO nanowire UV photodetectors with highinternal gain. Nano Lett.,2007,7(4):1003-1009
    [189] Liu B., Wang Z. R., Dong Y., et al. ZnO-nanoparticle-assembled cloth for flexiblephotodetectors and recyclable photocatalysts. J. Mater. Chem.,2012,22(18):9379-9384
    [190] Jin Y. Z., Wang J. P., Sun B. Q., et al. Solution-processed ultraviolet photodetectorsbased on colloidal ZnO nanoparticles. Nano Lett.,2008,8(6):1649-1653
    [191] Yu Y., Wang R. H., Chen Q., et al. High-quality ultralong Sb2S3nanoribbons onlarge scale. J. Phys. Chem. B,2005,109(49):23312-23315
    [192] Chen G. C., Deng B., Cai G. B., et al. The fractal splitting growth of Sb2S3andSb2Se3hierarchical nanostructures. J. Phys. Chem. C,2008,112(3):672-679
    [193] Sun M., Li D. Z., Li W. J., et al. A new photocatalyst Sb2S3for degradation of methylorange under visible light irradiation. J. Phys. Chem. C,2008,112(46):18076-18081
    [194] Chang J. A., Rhee J. H., Im S. H., et al. High-performance nanostructuredinorganic-organic heterojunction solar cells. Nano Lett.,2010,10(7):2609-2612
    [195] Cardoso J. C., Grimes C. A., Feng X. J., et al. Fabrication of coaxial TiO2/Sb2S3nanowire hybrids for efficient nanostructured organic-inorganic thin filmphotovoltaics. Chem. Commun.,2012,48(22):2818-2820
    [196] Chen X. Y., Zhang X. F., Shi C. W., et al. A simple biomolecule-assistedhydrothermal approach to antimony sulfide nanowires. Solid State Commun.,2005,134(9):613-615
    [197] Yang J., Zeng J., Yu S., et al. Pressure-controlled fabrication of stibnite nanorods bythe solvothermal decomposition of a simple single-source precursor. Chem. Mater.,2000,12(10):2924-2929
    [198] Geng Z. R., Wang M. X., Yue G. H., et al. Growth of single-crystal Sb2S3nanowiresvia solvothermal route. J. Cryst. Growth,2008,310(2):341-343
    [199] Shen G. Z., Chen D., Tang K. B., et al. A rapid ethylenediamine-assisted polyol routeto synthesize Sb2E3(E=S, Se) nanowires. J. Cryst. Growth,2003,252(1-3):350-354
    [200] Liu Y., Miao H. Y., Tian G. Q., et al. Synthesis and characterization of Sb2S3nanowires. Rare Metal Mat Eng,2008,3:468-471
    [201] Zhu G. Q., Liu P., Miao H. Y., et al. Large-scale synthesis of ultralong Sb2S3sub-microwires via a hydrothermal process. Mater. Res. Bull.,2008,43(10):2636-2642
    [202] Xie G., Qiao Z. P., Zeng M. H., et al. A single-source approach to Bi2S3and Sb2S3nanorods via a hydrothermal treatment. Cryst Growth Des.,2004,4(3):513-516
    [203] Lou W. J., Chen M., Wang X. B., et al. Novel single-source precursors approach toprepare highly uniform Bi2S3and Sb2S3nanorods via a solvothermal treatment.Chem. Mater.,2007,19(4):872-878
    [204] Jiang Y., Zhu Y. J. Microwave-assisted synthesis of sulfide M2S3(M=Bi, Sb)nanorods using an ionic liquid. J. Phys. Chem. B,2005,109(10):4361-4364
    [205] Yang H. M., Su X. H., Tang A. Microwave synthesis of nanocrystalline Sb2S3and itselectrochemical properties. Mater Res Bull.,2007,42(7):1357-1363
    [206] Chen D., Tang K. B., Shen G. Z., et al. Microwave-assisted synthesis of metalsulfides in ethylene glycol. Mater. Chem. Phys.,2003,82(1):206-209
    [207] An C. H., Tang K. B., Yang Q., et al. Formation of crystalline stibnite bundles of rodsby thermolysis of an antimony (III) diethyldithiocarbamate complex in ethyleneglycol. Inorg. Chem.,2003,42(24):8081-8086
    [208] Ota J., Srivastava S. K. Tartaric acid assisted growth of Sb2S3nanorods by a simplewet chemical method. Cryst. Growth Des.,2007,7(2):343-347
    [209] Wang H., Lu Y. N., Zhu J. J., et al. Sonochemical fabrication and characterization ofstibnite nanorods. Inorg. Chem.,2003,42(20):6404-6411
    [210] Yu Y., Wang R. H., Chen Q., et al. High-quality ultralong Sb2S3nanoribbons on largescale. J. Phys. Chem. B,2005,109(49):23312-23315
    [211] Yang X. Y., Zhong J. S., Liu L. J., et al. L-cystine-assisted growth of Sb2S3nanoribbons via solvothermal route. Mater. Chem. Phys.,2009,118(2-3):432-437
    [212] Sheikhiabadi P. G., Salavati-Niasari M., Davar F. Hydrothermal synthesis and opticalproperties of antimony sulfide micro and nano-size with different morphologies.Mater. Lett.,2012,71:168-171
    [213] Pan J., Xiong S. L., Xi B. J., et al. Tartatric acid and L-cysteine synergistic-assistedsynthesis of antimony trisulfide hierarchical structures in aqueous solution.. Eur. J.Inorg. Chem.,2009,35:5302-5306
    [214] Yang R. B., Bachmann J., Reiche M., et al. Atomic layer deposition of antimonyoxide and antimony sulfide. Chem. Mater.,2009,21(13):2586-2588
    [215] Zhang R., Chen X. Y., Mo M., et al. Morphology-controlled growth of crystallineantimony sulfide via a refluxing polyol process. J. Cryst. Growth,2004,262(1):449-455
    [216] Ota J., Roy P., Srivastava S. K., et al. Morphology evolution of Sb2S3underhydrothermal conditions: flowerlike structure to nanorods. Cryst. Growth Des.,2008,8(6):2019-2023
    [217] Kavinchan J., Thongtem T., Thongtem S. Cyclic microwave assisted synthesis ofSb2S3twin flowers in solutions containing a template and splitting agent,Chalcogenide Lett.,2012,9(9):365-370
    [218] Cao X. B., Gu L., Zhuge L. J., et al. Template-free preparation of hollow Sb2S3microspheres as supports for Ag nanoparticles and photocatalytic properties of theconstructed metal-semiconductor nanostructures. Adv. Funct. Mater.,2006,16(7):896-902
    [219] Sun M., Li D. Z., W. Li J., et al. New photocatalyst, Sb2S3, for degradation of methylorange under visible-light irradiation. J. Phys. Chem. C,2008,112(46):18076-18081
    [220] Bao H. F., Cui X. Q., Li C. M., et al. Synthesis and electrical transport properties ofsingle-crystal antimony sulfide nanowires. J. Phys. Chem. C,2007,111(45):17131-17135
    [221] Ma J. M., Duan X. C., Lian J. B., et al. Sb2S3with various nanostructures:controllable synthesis, formation mechanism, and electrochemical performancetoward lithium storage. Chem. Eur. J.,2010,16(44):13210-13217
    [222] Park C., Hwa Y., Sung N., et al. Stibnite (Sb2S3) and its amorphous composite as dualelectrodes for rechargeable lithium batteries. J. Mater. Chem.,2010,20(6):1097-1102
    [223] Prikhodchenko P. V., Gun J., Sladkevich S., et al. Conversion ofhydroperoxoantimonate coated graphenes to Sb2S3@graphene for a superior lithiumbattery anode. Chem. Mater.,2012,24(24):4750-4757
    [224] Nezu S., Larramona G., Chone C., et al. Light soaking and gas effect onnanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thinabsorber concept. J. Phys. Chem. C,2010,114(14):6854-6859
    [225] Liu C. P., Wang H. E., Ng T. W., et al. Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions. Phys. Status Solidi B2012,249(3):627-633
    [226] Cardoso J. C., Grimes C. A., Feng X., et al. Fabrication of coaxial TiO2/Sb2S3nanowire hybrids for efficient nanostructured organic–inorganic thin filmphotovoltaics. Chem. Commun.,2012,48(22):2818-2820
    [227] Chang J. A., Rhee J. H., Im S. H., et al. High-performance nanostructuredinorganic-organic heterojunction solar cells. Nano Lett.,2010,10(7):2609-2612
    [228] Lim C., Im S. H., Rhee J. H., et al. Hole-conducting mediator for stableSb2S3-sensitized photoelectrochemical solar cells. J. Mater. Chem.,2012,22(3):1107-1111
    [229] Wedemeyer H., Michels J., Chmielowski R. S., et al. Nanocrystalline solar cells withan antimony sulfide solid absorber by atomic layer deposition. Energy Environ. Sci.,2013,6(1):67-71
    [230] Liu B., Wang Z. R., Dong Y., et al. ZnO-nanoparticle-assembled cloth for flexiblephotodetectors and recyclable photocatalysts. J. Mater. Chem.,2012,22(18):9379-9384
    [231] Li L., Wu P. C., Fang X. S., et al. Single-crystalline CdS nanobelts for excellentfield-emitters and ultrahigh quantum-efficiency photodetectors. Adv. Mater.,2010,22(29):3161-3165
    [232] Liu Z., Huang H. T., Liang B., et al. Zn2GeO4and In2Ge2O7nanowire mats basedultraviolet photodetectors on rigid and flexible substrates. Opt. Express.,2012,20(3):2982-6991
    [233] Shen G. Z., Liang B., Wang X. F., et al. Ultrathin In2O3nanowires with diametersbelow4nm: synthesis, reversible wettability switching behavior, and transparentthin-film transistor applications. ACS Nano.,2011,5(8):6148-6155
    [234] Lu J. N., Hu M., Tian Y., et al. Fast visible light photoelectric switch based onultralong single crystalline V2O5nanobelt. Opt. Express.,2012,20(7):6974-6979
    [235] Shen G. Z. and Chen D. One-dimensional nanostructures for photodetectors. RecentPat on Nanotechnol,2010,4(1):20-31
    [236] Kim C., Lee H., Cho Y., et al. Diameter-dependent internal gain in ohmic Genanowire photodetectors. Nano Lett.,2010,10(6):2043-2048
    [237] Chen D., Liu Z., Liang B., et al. Transparent metal oxide nanowire transistors.Nanoscale,2012,4(10):3001-3012
    [238] Lou W. J., Chen M., Wang X. B., et al. Novel single source precursors approach toprepare highly uniform Bi2S3and Sb2S3nanorods via a solvothermal treatment.Chem. Mater.,2007,19(4):872-878
    [239] Guo W. X., Xue X. Y., Wang S. H., et al. Nano-newton transverse force sensor usinga vertical GaN nanowire based on the piezotronic effect. Nano Lett.,2012,12(5):2520-2523
    [240] Liu C. P., Wang H. E., Ng T. W., et al. Hybrid photovoltaic cells based onZnO/Sb2S3/P3HT heterojunctions. Phys. Status Solidi B.,2011,249(3):627-633
    [241] Liu S., Wei, Z. M., Cao Y., et al. Ultrasensitive water-processed monolayerphotodetectors. Chem. Sci.,2011,2(4):796-802
    [242] Hu P. A., Wen Z. Z., Wang L. F., et al. Synthesis of few-layer GaSe nanosheets forhigh performance photodetectors. ACS Nano.,2012,6(7):5988-5994
    [243] Jiang Y., Zhang W. J., Jie J. S., et al. Photoresponse properties of CdSesingle-nanoribbon photodetectors. Adv. Funct. Mater.,2007,17(11):1795-1800
    [244] Service R. F. Inorganic electronics begin to flex their muscle. Science,2006,312(5780):1593-1594
    [245] Sun Y. G., Wang H. H. High-performance, flexible hydrogen sensors that use carbonnanotubes decorated with palladium nanoparticles. Adv. Mater.,2007,19(19):2818-2823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700