用户名: 密码: 验证码:
PbO_2基纳米氧化物复合功能电极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PbO2是一种被广泛应用的电极材料,具有高导电性、高化学稳定性、良好的耐蚀性、可通过大电流、价格低廉等优点。若能将一些具有特定功能的纳米微粒均匀分散在PbO2基质中,由于纳米微粒与PbO2之间的协同效应,从而可制备出一些具有特殊性能的PbO2基纳米氧化物复合电极材料。
     本文通过低温一步合成法和水热法分别制备了Co3O4纳米粒子、Mn3O4纳米粒子、WO3纳米片和SnO2纳米粒子,采用电化学复合共沉积技术,在钛基体上可控制备了nano-Co3O4+PbO2、nano-Mn304+PbO2、nano-WO3+PbO2和nano-SnO2+PbO2等四种PbO2基纳米金属氧化物复合功能电极材料,并且对四种复合电极材料的制备工艺、结构、组成、电化学性能和应用进行了详细的研究。结果表明,制备的四种PbO2基纳米金属氧化物复合功能电极材料在电催化和储能等方面表现出良好的性能。
     电化学复合共沉积过程在三电极体系中进行恒压施镀。其镀液的pH为3~4,镀液中含有0.1 mol/L Pb(NO3)2和一定量稳定悬浮的纳米微粒。研究发现,纳米粒子/纳米片的嵌入量随溶液中微粒含量的增大而增大,并趋于极限值;最佳沉积电位为1.4 V;最佳沉积体系为20%丙酮+80%水溶液;最佳沉积时间为2 h;最佳沉积温度为室温。
     Nano-Co3O4+PbO2复合电极材料是由尖晶石结构的Co3O4和β-PbO2组成。随纳米Co3O4掺杂量的增大,复合材料的晶粒尺寸随之减小,孔隙率、比表面积随之增大。由于多孔性和组分间的电子协同效应,该复合电极材料在碱性介质中具有良好的析氧活性和赝电容性能。其析氧电位随Co3O4掺杂量的增大而降低,最大可降低约160 mV;复合电极材料的电容性能为最佳,其比电容值可达约220 F/g。
     Nano-Mn3O4+PbO2复合电极材料是由四方相y-Mn3O4与β-PbO2所组成的复合物。同未掺杂nano-Mn3O4的PbO2电极相比,复合电极材料的晶体颗粒小孔隙率高,具有准三维多孔特性,比表面积大,其有效电化学面积比最高可达72。高电化学有效面积以及nano-Mn3O4与PbO2之间的协同作用,使nano-Mn3O4+PbO2复合电极材料在中性介质中,具有优良的析氧活性和赝电容性能。其析氧活性和赝电容性能随Mn3O4含量的增加而增加,析氧电位最大可降低约500 mV,其比电容值最高约可达340 F/g。
     Nano-WO3+PbO2复合电极材料是由WO3·H2O与β-PbO2所组成的复合物。随着nano-WO3掺杂量的增大,复合电极材料的晶体颗粒尺寸随之减小、孔隙率随着提高,表面积随之增加,其有效电化学面积比最高可达57。高电化学有效面积以及WO3·H2O纳米片与PbO2之间的协同作用,使nano-WO3+PbO2复合电极材料在酸性介质中,具有良好的析氧活性和优良的赝电容性能。随nano-WO3掺杂量的增加,初始析氧电位负移幅度随之增大,比电容值也随之增大,其起始析氧电位最大可降低约200 mV,比电容值最高可达320 F/g。
     Nano-SnO2+PbO2复合电极材料是由四方金红石相SnO2与β-PbO2所组成的复合物。同未掺杂SnO2的PbO2电极相比,复合电极材料的晶体颗粒小,因而其比表面积增加。复合电极材料的起始析氧电位表明,nano-SnO2+PbO2复合电极材料与纯SnO2和PbO2的析氧活性相近,初始析氧电位都在1.9 V~2.0 V之间,是一种析氧电位较高的电极材料,适宜作为阳极材料应用在电氧化反应中。较大的比表面积以及SnO2纳米粒子与PbO2之间的协同作用,使nano-SnO2+PbO2复合电极材料在酸性水溶液超级电容器中,具有优良的赝电容性能,其比电容值最高可达208 F/g。
PbO2 is widely employed as an anode in the chemical industry, as it has high conductivity, excellent corrosion resistance, chemical stability, high current tolerance and low cost. If the functional nanomaterials could be dispersed into PbO2 matrix, they would benefit each other through synergetic effects arising from the intimate electronic interaction of the components. The novel PbO2 matrix composite electrode materials will have special properties.
     In this study, we have synthesized nano-Co3O4, nano-Mn3O4, nano-WO3 and nano-SnO2, respectively, via one-step homogeneous precipitation at low temperature and hydrothermal synthesis method. Subsequently, the nano-Co3O4+PbO2, nano-Mn3O4+PbO2, nano-WO3+PbO2 and nano-SnO2+PbO2 composite electrode materials are prepared by anodic composite electrocodeposition on Ti substrate. Furthermore, we have studied the controllable preparation conditions, structure, composition, electro-properties and applications of these four composites in detail. The resultes indicate that the novel PbO2 matrix composite electrode materials have promising application potentials in the fields of electro-catalytic and storage.
     Electrolytic deposition of composite oxides was performed in a three-electrode electrolytic cell under constant-potential control. The 100 mL of electrolytic solution consisted of 0.1 mol/L Pb(NO3)2 and suspended nano-particles/sheets, the pH value of the electrolyte is about 3~4. It is found that the embedded nano-particles/sheets concentration is increased with the increasing concentration of the nano-particles/sheets suspended in the planting. However, the content of the particles/sheets embedded increased to a limiting value. The optimal preparation conditions for the composites were as follows:deposition potential is 1.4 V; electrolytic solution consisted of 20% acetone and 80% water; deposition time is 2 h; deposition temperature is room temperature.
     The composite on the electrode surface is composed of spinel nano-Co3O4 andβ-PbO2. Composite porosity and specific area increase and the grains decrease with the nano-Co3O4 doping content increasing. The composite shows excellent activity for OER (oxygen evolution reaction) and high-capacity in alkaline medium, owing to the intimate electronic interaction between PbO2 and nano-Co3O4, and the porosity of the composite. Electrical tests indicate that the overpotentials of the composites for OER shift to the negative, whereas the onset potential (Eonset) decreases by approximately 160 mV to the maximal degree. The nano-Co3O4+PbO2 composite shows the highest specific capacitance up to~220 F/g.
     The nano-Mn3O4+PbO2 composite is composed of tetragonalγ-Mn3O4 andβ-PbO2. Composite porosity and specific area increase and the grains decrease with the nano-Mn3O4 doping content increasing. It is a porous quasi-3D material with a maximum electrochemically effective area ratio (RF) of 72. The composite shows excellent activity for OER and high-capacity in neutral medium. This could be attributed to the intimate electronic interaction between PbO2 and nano-Mn3O4, and the porous quasi-3D structure of the composite. The activity for OER and capacity is improving with the embedded nano-Mn3O4 increasing. The Eonset decreases by approximately 160 mV to the maximal degree. The nano-Mn304+Pb02 composite shows high specific capacitance up to~340 F/g.
     The nano-WO3+PbO2 composite is composed of WO3·H2O andβ-PbO2. Composite porosity and specific area increase and the grains decrease with the nano-WO3 doping content increasing. It is a porous material with a maximum electrochemically effective area ratio (RF) of 57. The composite shows excellent activity for OER and high-capacity in acidic medium. This could be attributed to the intimate electronic interaction between PbO2 and nano-WO3, and the porous structure of the composite. The activity for OER and capacity is improving with the embedded nano-WO3 increasing. The Eonset decreases by approximately 200 mV to the maximal degree. The nano-WO3+PbO2 composite shows high specific capacitance up to~320 F/g.
     The nano-SnO2+PbO2 composite is composed of rutile phase SnO2 andβ-PbO2. Composite specific area increase and the grains decrease with the nano-SnO2 doping content increasing. The Eonset of the composite is similar to SnO2 andβ-PbO2, which is about 1.9 V~2.0 V. Owing to the intimate electronic interaction between PbO2 and nano-SnO2, the nano-SnO2+PbO2 composite shows high specific capacitance up to~208 F/g.
引文
[1]Devilliers D, Mahel E. Modified titanium electrodes:Application to Ti/TiO2/PbO2 dimensionally stable anodes [J]. Electrochimica Acta,2010,55 (27):8207-8214.
    [2]陈康宁.金属阳极[M].上海:华东师范大学出版社,1989.
    [3]周海晖,陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试[J].表面技术,2000,28(2):15-18.
    [4]Gonzalez-Garci J, Saez V, Iniesta J, Montiel V, Aldaz A. Electrodeposition of PbO2 on glassy carbon electrodes:influence of ultrasound power [J]. Electrochemistry Communications,2002,4:370-373.
    [5]Bertoncello R, Cattarin S, Frateur I, Musiani M. Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti [J]. Journal of Electroanalytical Chemistry,2000,492 (2):145-149.
    [6]Tan C, Xiang B, Li Y J, Fang J W, Huang M. Preparation and characteristics of a nano-PbO2 anode for organic wastewater treatment [J]. Chemical Engineering Journal,2011,166:15-21.
    [7]Zhao G H, Zhang Y G, Lei Y Z, Lv B Y, Gao J X, Zhang Y N, Li D M. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability [J]. Environmental Science & Technology,2010,44: 1754-1759.
    [8]Andrade L S, Ruotolo L A M, Rocha-Filho R C, Bocchi N, Biaggio S R, Iniesta J, Garcia-Garcia V, Montiel V. On the performance of Fe and Fe,F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive [J]. Chemosphere,2007,66:2035-2043.
    [9]Yang X P, Zou R Y, Huo F, Cai D C, Xiao D. Preparation and characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol [J]. Journal of Hazardous Materials,2009,164:367-373.
    [10]Bragg W L, Darbyshire J A. The structure of thin films of certain metallic oxides [J]. Transactions of the Faraday Society,1932,28:522-529.
    [11]Zaslavskii A I, Kondrashov Yu D, Tolkachev S S. New modification of lead dioxide and the texture of anodic deposits [J]. Doklady Akademii Nauk SSSR, 1950,75:559-561.
    [12]Zaslavskii A I, Tolkachev S S. Structure for the a-modification of lead dioxide [J]. Zhurnal Fizicheskoi Khimii,1952,26:743-752.
    [13]Ruetschi P, Cahan B D. Anodic corrosion and hydrogen and oxygen overvoltage on lead and lead antimony alloys [J]. Journal of the Electrochemical Society,1957,104:406-413.
    [14]Ruetschi P, Sklarchuka J, Angstadta R T. Stability and reactivity of lead oxides [J]. Electrochimica Acta,1963,8:333-342.
    [15]Ravindranl K, Heermanl L, Simaeys L V. The anodic behaviour of lead in acid sulphate solutions. Influence of copper and cobalt ions [J]. Bulletin des Societes Chimiques Belges,1974,83:173-184.
    [16]Imamur K, Senna M. Difference between mechanochemical and thermal processes of polymorphic transformation of ZnS and PbO [J]. Materials Research Bulletin,1984,19:59-65.
    [17]Heinemann M. Electronic structure of β-PbO2 and its relation with BaPbO3 [J]. Physical Review B,1995,52:11740-11743.
    [18]Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxidation of Metals,1992,38:233-254.
    [19]Abaci S, Pekmez K, Yildiz A. The influence of nonstoichiometry on the electrocatalytic activity of PbO2 for oxygen evolution in acidic media [J]. Electrochemistry Communications,2005,7:328-332.
    [20]Devilliers D, Dinh M T, Thi, Lequeux N, et al. Electroanalytical investigations on electrodeposited lead dioxide [J]. Journal of Electroanalytical Chemistry, 2004,573:227-239.
    [21]张招贤.钛电极工学[M].北京:冶金工业出版社,2003.
    [22]Fleischmann M, Mansfield J R, Thirsk H R, Wilson H G E. The investigation of the kinetics of electrode reactions by the application of repetitive square pulses of potential [J]. Electrochimica Acta,1967,12:967-982.
    [23]Chang H, Johnson D C. Electrocatalysis of anodic oxygen-transfer reaction chronoamperometric and voltammetric studies of the nucleation and electrodeposition of β-lead dioxide at a rotated gold disk electrode in acidic media [J]. Journal of Electrochemistry Society,1989,136:17-23.
    [24]Chang H, Johnson D C. Electrocatalysis of anodic oxygen-transfer reactions ultrathin films of lead oxide on solid electrodes [J]. Journal of Electrochemistry Society,1990,137:3108-3114.
    [25]Yeo I H, Lee Y S, Johnson D C. Growth of lead dioxide on a gold electrode in the presence of foreign ions [J]. Electrochimica Acta,1992,37:1811-1819.
    [26]Campbell S A, Peter L M. Determination of the density of lead dioxide films by in situ laser interferometry [J]. Electrochimica Acta,1987,32:357-360.
    [27]Velichenko A B, Girenko D V, Danilov F I. Mechanism of lead dioxide electrodeposition [J]. Journal of Electroanalysis Chemistry,1996,405: 127-133.
    [28]Velichenko A B, Girenko D V, Danilov F I. Electrodeposition of lead dioxide at an Au electrode [J]. Electrochimica Acta,1995,40:2803-2807.
    [29]任秀斌,陆海彦,刘亚男,李伟,林海波.钛基二氧化铅电极电沉积制备过程中的立体生长机理[J].化学学报,2009,67(9):888-892.
    [30]王惠君.二氧化铅电极的制备及其应用[J].浙江海洋学院学报(自然科学版),1999,18(2):165-167.
    [31]Abaci S, Tamer U, Pekmez K, Yildiz A. Electrosynthesis of benzoquinone from phenol on α and β surfaces of PbO2 [J]. Electrochimica Acta,2005,50 (18): 3655-3659.
    [32]Nakamura M, Inoue T, Nakamura E. Synthesis of substituted cyclopropanone acetals by carbometallation and its oxidative cleavage with manganese (IV) oxide and lead (IV) oxide [J]. Journal of Organometallic Chemistry,2001,624: 300-306.
    [33]Amadelli R, Battisti A De, Girenko D V, Kovalyov S V, Velichenko A B. Electrochemical oxidation of trans-3,4-dihydroxycinnamic acid at PbO2 electrodes:direct electrolysis and ozone mediated reactions compared [J]. Electrochimica Acta,2000,46:341-347.
    [34]Trasatti S. Electrocatalysis:understanding the success of DSA [J]. Electrochimica Acta,2000,45:2377-2385.
    [35]周雅宁,万亚珍.二氧化铅电极的制备及应用现状[J].无机盐工业,2006,38(10):8-11.
    [36]Rashkov S T, Dobrev T S, Noncheva Z, Stefanov Y, Rashkova B, Petrova M. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes [J]. Hydrometallurgy,1999,52:223-230.
    [37]Hrussanova A, Mirkova L, Dobrev T S. Anodic behaviour of the Pb-Co3O4 composite coating in copper electrowinning [J]. Hydrometallurgy,2001,60: 199-213.
    [38]Borras C, Laredo T, Scharifker B R. Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 [J]. Electrochimica Acta, 2003,48:775-2780.
    [39]Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment:electrochemical characteristics and degradation mechanism [J]. Environmental Science & Technology,2005,39 (1):363-370.
    [40]Wang X, Huang W M, Li H T, Zhang X N, Lu H Y, Lin H B. Comparison between performances of PbO2 and F-doped PbO2 anodes for electrochemical degradation of aniline [J]. Chemical Research in Chinese Universities,2010,26 (6):991-995.
    [41]Tong S P, Ma C A, Feng H. A novel PbO2 electrode preparation and its application in organic degradation [J]. Electrochimica Acta,2008,53: 3002-3006.
    [42]Munichandraiah N. Physieochemical properties of electrodeposited (3-lead dioxide:effect of deposition current density [J]. Journal of Applied Electrochemistry,1992,22 (1):825-829.
    [43]McGeachin S G Synthesis and properties of some P-diketimines derived from acetylacetone, and their metal complexes [J]. Canadian Journal Chemistry, 1968,46(11):1903-1912.
    [44]于德龙,覃奇贤.低析氧过电位Pb02电极的研究[J].材料研究学报,1995,9(3):250-254.
    [45]Larew, Larry A. Application of an electrochemical quartz crystal microbalance to a study of pure and bismuth-doped beta-lead dioxide film electrodes [J]. Journal of the Electrochemical Society,1990,137 (10):3071-3078.
    [46]Huet F, Musiani M, Nogueira R P. Electrochemical noise analysis of O2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru oxides [J]. Electrochimica Acta,2003,48:3981-3989.
    [47]Shiota M, Kameda T, Matsui K, Hirai N, Tanaka T. Electrochemical properties of lead dioxides formed on various lead alloy substrates [J]. Journal of Power Sources,2005,144:358-364.
    [48]Soria M L, Valeciano J, Ojeda A. Development of ultra high power, valve-regulated lead-acid batteries for industrial applications [J]. Journal of Power Sources,2004,136:376-382.
    [49]Das K, Mondal A. Studies on a lead-acid cell with electrodeposited lead and lead dioxide electrodes on carbon [J]. Journal of Power Sources,2000,89: 112-116.
    [50]Ghasemi S, Mousavi M F. Energy storage capacity investigation of pulsed current formed nano-structured lead dioxide [J]. Electrochima Acta,2006,52: 1596-1602.
    [51]Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials,2008,7:845-854.
    [52]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in Capacitors [J]. Carbon,2001,39:937-950.
    [53]Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors [J]. Journal of Power Sources,1997,66:1-14.
    [54]Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J]. Journal of the Electrochemical Society,1995,142 (8):2699-2703.
    [55]Patil U M, Kulkarni S B, Jamadade V S, Lokhande C D. Chemically synthesized hydrous RuO2 thin films for supercapacitor application [J]. Journal of Alloys and Compounds,2011,509:1677-1682.
    [56]Burke A. R&D considerations for the performance and application of electrochemical capacitors [J]. Electrochimica Acta,2007,53:1083-1091.
    [57]Yu N F, Gao L J, Zhao S H, Wang Z D. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor [J]. Electrochimica Acta,2009, 54:3835-3841.
    [58]Yu N F, Gao L J. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor [J]. Electrochemistry Communications, 2009,11:220-222.
    [59]Kazaryan S A, Litvinenko S V, Kharisov G G. Self-discharge of heterogeneous electrochemical supercapacitor of PbO2H2SO4C related to manganese and titanium ions [J]. Journal of the Electrochemical Society,2008,155 (6): 464-473.
    [60]Kazaryan S A, Kharisov G G., Litvinenko S V, Kogan V I. Self-discharge related to iron ions and its effect on the parameters of HES PbO2H2SO4C Systems [J]. Journal of the Electrochemical Society,2007,154 (8):751-759.
    [61]Lam L T, Louey R. Development of ultra-battery for hybrid-electric vehicle applications [J]. Journal of Power Sources,2006,158:1140-1148.
    [62]Furukawa J, Takada T, Monma D, Lam L T. Further demonstration of the VRLA-type ultrabattery under medium-HEV duty and development of the flooded-type ultrabattery for micro-HEV applications [J]. Journal of Power Sources,2010,195:1241-1245.
    [63]Lama L T, Louey R, Haigh N P, Lim O V, Vella D G, Phyland C G, Vu L H, Furukawa J, Takada T, Monma D, Kano T. VRLA ultrabattery for high-rate partial-state-of-charge operation [J]. Journal of Power Sources,2007,174: 16-29.
    [64]Cong Y, Wu Z. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride [J]. Journal of Physical Chemistry C, 2007,111:3442-3446.
    [65]Ai S Y, Gao M N, Zhang W, et al.Preparation of fluorine-doped lead dioxide modified electrodes for electroanalytical applications [J]. Electroanalysis,2003, 15:1403-1409.
    [66]Yeo I H, Johnson D C. Effect of groups IIIA and VA metal oxides in electrodeposited β-PbO2 dioxide electrodes in acidic media [J]. Journal of Electrochemical Society,1987,134 (8):1973-1977.
    [67]Nielsen B S, Davis J L, Thiel P A. Surface properties of PbO2 and Bi-modified PbO2 electrodes [J]. Journal of Electrochemical Society,1990,137 (4): 1017-1022.
    [68]Larew L A, Gordon J S, Hsiao Y L, Johnson D C. Application of an electrochemical quartz crystal microbalance to a study of pure and bismuth-doped beta-lead dioxide film electrodes [J]. Journal of Electrochemical Society,1990,137 (10):3071-3078.
    [69]Kawagoe K T, Johnson D C. Oxidation of phenol and Benzene at bismuth-doped lead dioxide electrodes in acidic Solutions [J]. Journal of Electrochemical Society,1994,141 (12):3404-3409.
    [70]Popovie N D, Cox J N, Johnson D C. A mathematical model for anodic oxygen-transfer reactions at Bi (V)-doped PbO2-film electrodes [J]. Journal of Electroanalytical Chemistry,1998,456:203-209.
    [71]Feng J R, Johnson D C. Titanium substrates for pure and doped lead dioxide films [J]. Journal of Electrochemical Society,1991,138 (11):3328-3337.
    [72]Feng J R, Johnson D C. Fe-deped beta-lead dioxide electrodeposited on noble metals [J]. Journal of Electrochemical Society,1990,137 (2):507-510.
    [73]Ai S Y, Gao M N, Zhang W, et al. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J]. Talanta,2004,62:445-450.
    [74]Musiani M, Furlanetto F, Beridncello R. Electrodeposited PbO2+RuO2:a composite anode for oxygen evolution from sulphuric acid solution [J]. Journal of Electroanalytical Chemistry,1999,465 (2):160-167.
    [75]Bertoncello R, Cattarin S, Frateur I, et al. Preparation of anodes for oxygen evolutionby electrodeposition of composite oxides of Pb and Ru on Ti [J]. Journal of Electroanalytical Chemistry,2000,492 (2):145-149.
    [76]Cattarin S, Guerriero P, Musiani M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides [J]. Electrochimica Acta, 2001,46:4229-4234.
    [77]Velichenko A B, Amadelli R, Baranova E A, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties [J]. Journal of Electroanalytical Chemistry,2002,527:56-64.
    [78]Huet F, Musiani M, Nogueira R P. Electrochemical noise analysis of O2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru Oxides [J]. Electrochimica Acta,2003,48 (27):3981-3989.
    [79]Casellato U, Cattarjn S, Guerriero P, et al. Anodic synthesis of oxide-matrix composites, composition, morphology, and structure of PbO2-matrix composites [J]. Chemistry of Materials,1997 (9):960-966.
    [80]CaiT X, Ju H, Wu H R, Kang X T, Zhang Y P. The property of β-PbO2 electrode by adding of nanograde TiO2 powders [J]. Rare Metal Matedals and Engineering,2003,32 (7):558-560.
    [81]Esswein A J, McMurdo M J, Ross P N, Bell A T, Tilley T D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis [J]. The Journal of Physical Chemistry C,2009,113:15068-15072.
    [82]Deng M J, Huang F L, Sun I W, Tsai W T, Chang J K. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity [J]. Nanotechnology,2009,20:175602-175607.
    [83]Hu C C, Wu Y T, Chang K H. Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals:determinant influence of oxidants [J]. Chemistry of Materials,2008,20:2890-2894.
    [84]Chen Z W, Lai J K L, Shek C H. Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals [J]. Scripta Materialia,2006,55: 735-738.
    [85]Ahmed K A M, Zeng Q M, Wu K B, Huang K X. Mn3O4 nanoplates and nanoparticles:synthesis, characterization, electrochemical and catalytic properties [J]. Journal of Solid State Chemistry,2010,183:744-751.
    [86]Wang H L, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y Y, Cui Y, Dai H J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries [J]. Journal of the American Chemical Society,2010,132: 13978-13980.
    [87]Wang J M, Khoo E, Lee P S, Ma J. Controlled Synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte [J]. The Journal of Physical Chemistry C,2009,113:9655-9658.
    [88]Lee S H, Deshpande R, Parilla P A, Jones K M, To B, Mahan A H, Dillon A C. Crystalline WO3 nanoparticles for highly improved electrochromic applications [J]. Advanced Materials,2006,18:763-766.
    [89]Zhao G H, Cui X, Liu M C, Li P Q, Zhang Y G, Cao T C, Li H X, Lei Y Z, Liu L, Li D M. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode [J]. Environmental Science & Technology,2009,43:1480-1486.
    [90]Subramanian V, Burke W W, Zhu H W, Wei B Q. Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties [J]. The Journal of Physical Chemistry C,2008,112:4550-4556.
    [91]Hamdani M, Pereira M I S, Douch J, et al. Physicochemical and electrocatalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis [J]. Electrochimica Acta,2004,49: 1555-1563.
    [92]Dalchiele E A, Cattarin S, Musiain M, Casellato U, Guerriero P. Electrodeposition studies in the MnO2+PbO2 system:formation of Pb3Mn7O15 [J]. Journal of Applied Electrochemistry,2000,30:117-120.
    [93]Singh V B, Pandey P. Electrodeposition of Ni composites and nanocomposites from aqueous organic solution [J]. Journal of New Materials for Electrochemical Systems,2005,8:299-303.
    [94]Fink C G, Prince J D. Codeposition of copper and graphite [J]. Trans. Am. Electrochem. Soc.,1928,54:315-321.
    [95]Williams R V. Electrodeposited Composite Coatings [J]. Electroplating and Metal Finishing,1966,19(3):92-96.
    [96]Kunugi Y, Fuchigami T, Nonaka T, Matsumura S. Electrolysis using composite-plated electrodes:Part II. Electrooxidation of alcohols at a hydrophobic nickel/poly (tetrafluoroethylene) composite-plated anode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1990, 287:385-388.
    [97]Kunugi Y, Kumada R, Nonaka T, Chong T B, Watanabe N. Electrolysis using composite-plated electrodes:Part III. Electroorganic reactions on a hydrophobic Ni/PTFE composite-plated nickel electrode [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1991,313: 215-225.
    [98]Musiani M. Electrodeposition of Composites:An Expanding Subject in Electrochemical Materials Science [J]. Electrochimica Acta,2000,45(20): 3397-3402.
    [99]Musiani M, Furlanetto F, Bertoncello R. Electrodeposited PbO2+RuO2:a composite anode for oxygen evolution from sulphuric acid solution [J]. Journal of Electroanalytical Chemistry,1999,465:160-167.
    [100]Kawai K, Mihara N, Kuwabata S, Yoneyama H. Electrochemical Synthesis of Polypyrrole Films Containing TiO2 Powder Particles [J]. Journal of Electrochemistry Society,1990,137:1793-1796.
    [101]Yoneyama H, Kishimoto A, Kuwabata S. Charge-discharge properties of polypyrrole films containing manganese dioxide particles [J]. Journal of the Chemical Society, Chemical Communications,1991,15:986-987.
    [102]Kuwabata S, Kishimoto A, Tanaka T, Yoneyama H. Electrochemical Synthesis of Composite Films of Manganese Dioxide and Polypyrrole and Their Properties as an Active Material in Lithium Secondary Batteries [J]. Journal of Electrochemistry Society,1994,141(1):10-15.
    [103]Roos J R, Celis J P, Fransaer J, Buelens C. The development of composite plating for advanced materials [J]. The Journal of the Minerals, Metals & Materials Society,1990,42(11):60-63.
    [104]Franser J. Mechanism of composite electroplating [J]. Metal Finishing,1993, 43(6):97-102.
    [105]Low C T J, Wills R G A, Walsh F C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit [J]. Surface & Coatings Technology, 2006,201:371-383.
    [106]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths [J]. Journal of the Electrochemical Society,1972,119:1009-1012
    [107]Celis J P, Roos J R, Buelens C. A mathematical model for the electrolytic codeposition of particles with a metallic matrix [J]. Journal of the Electrochemical Society,1987,134:1402-1408.
    [108]Fransaer J, Celis J P, Roos J R. Analysis of the electrolytic codeposition of non-brownian particles with metals [J]. Journal of the Electrochemical Society, 1992,139:413-425.
    [109]Maurin G, Lavanant A. Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode [J]. Journal of Applied Electrochemistry, 1995,25:1113-1121.
    [110]Hwang B J, Hwang C S. Mechanism of Codeposition of Silicon Carbide with Electrolytic Cobalt [J]. Journal of the Electrochemical Society,1993,140: 979-984.
    [111]Vereecken P M, Shao I, Searson P C. Particle codeposition in nanocomposite films[J]. Journal of Applied Electrochemistry,2000,147:2572-2575.
    [112]Bercot P, Pena-Munoz E, Pagetti J. Electrolytic composite Ni-PTFE coatings: an adaptation of Guglielmi's model for the phenomena of incorporation [J]. Surface and Coatings Technology,2002,157:282-289.
    [113]方莉俐,张兵临,姚宁.搅拌对金刚石-金属复合薄膜电沉积结果的影响及流 体力学分析[J].金刚石与磨料磨具工程,2005,146(2):18-20.
    [114]Bertoncello R, Furlanetto F, Guerriero P, Musiani M. Electrodeposited composite electrode materials:effect of the concentration of the electrocatalytic dispersed phase on the electrode activity [J]. Electrochimica Acta,1999,44: 4061-4068.
    [115]Amadelli R, Armelao L, Velichenko A B, Nikolenko N V, Girenko D V, Kovalyov S V, Danilov F I. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes [J]. Electrochimica Acta,1999,45:713-720.
    [1]Casellato U, Cattarin S, Guerriero P, Musiani M M. Anodic synthesis of oxide-matrix composites. Composition, morphology, and structure of PbO2-matrix composites [J]. Chemistry of Materials,1997,9:960-966.
    [2]Thiemig D, Bund A. Characterization of electrodeposited Ni-TiO2 nanocomposite coatings [J]. Surface & Coatings Technology,2008,202: 2976-2984.
    [3]Mohd Y, Pletcher D. The fabrication of lead dioxide layers on a titanium substrate [J]. Electrochimica Acta,2006,52 (3):786-793.
    [4]Velichenko A B, Girenko D V, Danilov F I. Mechanism of lead dioxide electrodeposition [J]. Journal of Electroanalytical Chemistry,1996,495: 127-132.
    [5]Munichandraiah N. Physicochemical properties of electrodeposited β-lead dioxide:effect of deposition current density [J]. Journal of Applied Electrochemistry,1992,22:825-829.
    [6]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths. Journal of the Electrochemical Society [J].1972,119:1009-1012.
    [7]Berkh O, Eskin S, Zahavi J. Effect of additives on electrodeposition of composite chromium coatings [J]. Plating and Surface Finishing,1994,81(3): 62-64.
    [8]Snaith D W. Some further studies of the mechanism of cermet electro-deposition:Part 1- The effect of electrolyte on the charge carried by a suspended ceramic particle [J]. Transactions of the Institute of Metal Finishing, 1977,55 (3):136-140.
    [9]郭鹤桐,舒钰,唐致远.金属陶瓷复合材料的电沉积[J].电镀与环保,1982,3:4-8.
    [1]Singh R N, Mishra D, Anindita, Sinha A S K, Singh A. Novel electrocatalysts for generating oxygen from alkaline water electrolysis [J]. Electrochemistry Communications,2007,9:1369-1373.
    [2]Palmas S, Ferrara F, Mascia M, Polcaro A M, Ruiz J R, Vacca A, Piccaluga G. Modeling of oxygen evolution at Teflon-bonded Ti/Co3O4 electrodes [J]. Internatinal Journal of Hydrogen Energy,2009,34:1647-1654.
    [3]Lu B G, Cao D X, Wang P, Wang G L, Gao Y Y. Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes [J]. Internatinal Journal of Hydrogen Energy,2011,36:72-78.
    [4]Esswein A J, McMurdo M J, Ross P N, Bell A T, Tilley T D. Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis [J]. The Journal of Physical Chemistry C,2009,113:15068-15072.
    [5]Gao Y Y, Chen S L, Cao D X, Wang G L, Yin J L. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam [J]. Journal of Power Sources,2010,195:1757-1760.
    [6]Zhou W J, Xu M W, Zhao D D, Xu C L,. Li H L. Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors [J]. Microporous and Mesoporous Materials, 2009,117:55-60.
    [7]Li Y H, Huang K L, Zeng D M, Li S Q, Yao Z F. RuO2/Co3O4 thin films prepared by spray pyrolysis technique for supercapacitors [J]. Journal of Solid State Electrochemistry,2010,14:1205-1211.
    [8]Zhu T, Chen J S, Lo X W. Shape-controlled synthesis of porous Co3O4 nanostructures for application inSupercapacitors [J]. Journal of Materials Chemistry,2010,20:7015-7020.
    [9]Li Y H, Huang K L, Yao Z F, Liu S Q, Qing X X. Co3O4 thin film prepared by a chemical bath deposition for electrochemical Capacitors [J]. Electrochimica Acta,2011,56:2140-2144.
    [10]Xu J, Gao L, Cao J Y, Wang W C, Chen Z D. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material [J]. Electrochimica Acta,2010,56:732-736.
    [11]Vogt, H. Note on a method to interrelate inner and outer electrode areas [J]. Electrochimica Acta,1994,39 (13):1981-1983.
    [12]Velichenko A B, Girenko D V, Danilov F I. Mechanism of lead dioxide electrodeposition [J]. Journal of Electroanalytical Chemistry,1996,495: 127-132.
    [13]Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods [J]. Nature,2009,458:746-749.
    [1]Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors [J]. Chemical Reviews,2004,104:4245-4269.
    [2]Miller J R, Simon P. Electrochemical capacitors for energy management [J]. Science,2008,321:651-652.
    [3]Sakka M Al, Gualous H, Mierlo J Van, Culcub H. Thermal modeling and heat management of supercapacitor modules for vehicle applications [J]. Journal of Power Sources,2009,194:581-587.
    [4]Thounthonga P, Chunkag V, Sethakul P, Sikkabut S, Pierfederici S, Davatd B. Energy management of fuel cell/solar cell/supercapacitor hybrid power source [J]. Journal of Power Sources,2011,196:313-324.
    [5]Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials,2008,7:845-854.
    [6]Li G R, Feng Z P, Ou Y N, Wu D C, Fu R W, Tong Y X. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors [J]. Langmuir,2010,26:2209-2213.
    [7]Subramanian V, Zhu H W, Wei B Q. Nanostructured MnO2:hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material [J]. Journal of Power Sources,2006,159:361-364.
    [8]Brousse T, Taberna P L, Crosnier O, Dugas R, Guillemet P, Scudeller Y, Zhou Y, Favier F, Belanger D, Simon P. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J]. Journal of Power Sources,2007,173:633-641.
    [9]Liu R, Lee S B. MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage [J]. Journal of the American Chemical Society,2008,130:2942-2943.
    [10]Lee M T, Chang J K, Hsieh Y T, Tsai W T. Annealed Mn-Fe binary oxides for supercapacitor applications [J]. Journal of Power Sources,2008,185: 1550-1556.
    [11]Demarconnay L, Raymundo-Pinero E, Beguin F. Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor [J] Journal of Power Sources,2011,196:580-586.
    [12]Ahmed K A M, Zeng Q M, Wu K B, Huang K X. Mn3O4 nanoplates and nanoparticles:synthesis, characterization, electrochemical and catalytic properties [J]. Journal of Solid State Chemistry,2010,183:744-751.
    [13]Wang H L, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y Y, Cui Y, Dai H J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries [J]. Journal of the American Chemical Society,2010,132: 13978-13980.
    [14]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths. Journal of the Electrochemical Society [J].1972,119:1009-1012.
    [15]Levine S, Smith A L. Theory of the differential capacity of the oxide/aqueous electrolyte interface [J]. Discussions of the Faraday Society,1971,52:290-301.
    [16]Hrussanova A, Mirkova L, Dobrev Ts. Anodic behaviour of the Pb-Co3O4 composite coating in copper electro winning [J]. Hydrometallurgy,2001,60: 199-213.
    [17]余侃萍,黄宝贵.四氧化三锰中锰的存在价态及浆状试样的分析方法[J].矿冶工程,2004,24:58-63.
    [18]Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of the Electrochemical Society,2000,147 (2):444-450.
    [19]Levie R. de. On porous electrodes in electrolyte solutions:I. capacitance effects [J]. Electrochimica Acta,1963,8:751-780.
    [1]Su X T, Li Y N, Jian J K, Wang J D. In situ etching W03 nanoplates: hydrothermal synthesis, photoluminescence and gas sensor properties [J]. Materials Research Bulletin,2010,45:960-1963.
    [2]Hong K, Kim K, Kim S, Lee I W, Cho H, Yoo S, Choi H W, Lee N Y, Tak Y H, Lee J L. Optical Properties of WO3/Ag/WO3 multilayer as transparent cathode in top-emitting organic light emitting diodes [J]. The Journal of Physical Chemistry C,2011,115:3453-3459.
    [3]Vemuri R S, Bharathi K K, Gullapalli S K, Ramana C V. Effect of structure and size on the electrical pProperties of nanocrystalline WO3 films [J]. ACS Applied Materials & Interfaces,2010,2 (9):2623-2628.
    [4]Hayat K., Gondal M A, Khaled M M, Yamani Z H, Ahmed S. Laser induced photocatalytic degradation of hazardous dye (Safranin-O) using self synthesized nanocrystalline WO3 [J]. Journal of Hazardous Materials,2011, 186:1226-1233.
    [5]Sasaki Y, Nemoto H, Saito K, Kudo A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator [J]. The Journal of Physical Chemistry C,2009,113: 17536-17542.
    [6]Zhu J H, Jiang J, Liu J P, Ding R M, Ding H, Feng Y M, Wei G M, Huang X T. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application [J]. Journal of Solid State Chemistry,2011,184: 578-583.
    [7]Li Y H, Huang K L, Liu S Q, Yao Z F, Zhuang S X. Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors [J]. Journal of Solid State Electrochemistry,2011,15:587-592.
    [8]Ataherian F, Wu N Lih. Long-Term charge/discharge cycling stability of MnO2 aqueous supercapacitor under positive polarization [J]. Journal of The Electrochemical Society,2011,158 (4):A422-A427.
    [9]Yoon S, Kang E, Kim J K, Leea C W, Lee J. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity [J]. Chemical Communications,2011,47:1021-1023.
    [10]Huang C C, Xing W, Zhuo S P. Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation [J]. Scripta Materialia,2009, 61:985-987.
    [11]Wang Y, Yao K L, Liu Z L. Novel nonlinear current-voltage characteristics of sintered tungsten oxide [J]. Journal of Materials Science Letters,2001,20: 1741-1743.
    [12]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths. Journal of the Electrochemical Society [J].1972,119:1009-1012.
    [13]Levine S, Smith A L. Theory of the differential capacity of the oxide/aqueous electrolyte interface [J]. Discussions of the Faraday Society,1971,52:290-301.
    [14]Hrussanova A, Mirkova L, Dobrev Ts. Anodic behaviour of the Pb-Co3O4 composite coating in copper electro winning [J]. Hydrometallurgy,2001,60: 199-213.
    [1]Duan J, Yang S, Liu H, et al. Single crystal SnO2 zigzag nanobelts [J]. Journal of the American Chemical Society,2005,127(17):6180-6181.
    [2]Wang Y L, Jiang X C, Xia Y N, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J]. Journal of the American Chemical Society,2003,125: 16176-16177.
    [3]Kotz, Stucki S, Carcer B. Electrochemical waste water treatment using high overvoltage anodes. Part Ⅰ:Physical and electrochemical properties of SnO2 anodes [J]. Journal of Applied Electrochemistry,1991,21:14-20.
    [4]Martinez-Huitle C A, Battisti A De, Ferro S, Reyna S, Cerro-Lopez M, Quiro M A. Removal of the pesticide Methamidophos from aqueous Solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes [J]. Environmental Science & Technology,2008,42:6929-6935.
    [5]Selvan R K, Perelshtein I, Perkas N, Gedanken. A Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors [J]. The Journal of Physical Chemistry C, 2008,112:1825-1830.
    [6]Lu T, Zhang Y P, Li H B, Pan, L K, Li Y L, Sun Z. Electrochemical behaviors of grapheme-ZnO and grapheme-SnO2 composite films for supercapacitors [J]. Electrochimica Acta,2010,55:4170-4173.
    [7]Guglielmi N. Kinetics of the deposition of inert particles from electrolytic baths. Journal of the Electrochemical Society [J].1972,119:1009-1012.
    [8]Levine S, Smith A L. Theory of the differential capacity of the oxide/aqueous electrolyte interface [J]. Discussions of the Faraday Society,1971,52:290-301.
    [9]Zhao G H, Cui X, Liu M C, Li P Q, Zhang Y G,Cao T C, Li H X, Lei Y Z, Liu L, Li D M. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode [J]. Environmental Science & Technology,2009,43:1480-1486.
    [10]Hrussanova A, Mirkova L, Dobrev Ts. Anodic behaviour of the Pb-Co3O4 composite coating in copper electro winning [J]. Hydrometallurgy,2001,60: 199-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700