用户名: 密码: 验证码:
氧化铝和氧化硅多孔陶瓷冷凝成型与组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷作为一种重要的材料,由于其具有密度小、耐高温、耐腐蚀、比表面积高等优点,在工程上被广泛应用于各个领域。在过去几十年,大量的技术被发展用于多孔陶瓷的制备,但由于其自身的特点,所得材料孔的性质被限制在一定范围内。冷凝成型工艺,利用成型剂晶体生长与升华的制备技术,以其材料组织性能可控、环境友好等特性,为多孔陶瓷的制备提供新的途径。
     针对这种新型的成型技术,结合颗粒对凝固系统温度与浓度场的影响,从理论上确定固-液界面的稳定性条件,并根据移动界面与颗粒之间的相互作用,获得界面捕获与排出颗粒的临界速率。利用固-液界面的不稳定及颗粒从界面排除的判定条件,采用浆料底部匀速降温的定向凝固方式设计和制备了具有单向宏孔排列结构的材料,并从浆料组成成分与冷凝成型技术的角度对所制备材料的组织性能进行研究。
     实验结果表明,在氧化铝浆料引入甘油作为抗冻剂,冷凝成型制备的多孔陶瓷的力学性能可能被提高。通过研究不同固相含量浆料中,甘油浓度对凝固过程、陶瓷显微结构和抗压强度的影响,认为甘油的添加增加了浆料的粘度和烧结样品的致密度,促进陶瓷中宏孔结构的转变和陶瓷层间的连接。这种良好的连接使多孔陶瓷获得高的力学性能。对于30 vol.%固相含量的水-甘油基浆料而言,制备陶瓷的轴向和侧向抗压强度分别达到255.1 MPa和105.8 MPa。
     除了浆料组分的改变可以对多孔陶瓷的组织性能调节外,冷凝成型技术的改进也能达到相同的目的。例如通过采用浸渍与定向凝固结合的技术制备了具有复杂三维连通孔结构的氧化铝陶瓷。在这个过程中,聚氨酯海绵被浸渍于含有20 vol.%氧化铝浆料的模具内,随后使浆料底部以6℃/min的降温速率定向凝固。经过预制件的干燥与烧结后,具有明显层状结构的多孔陶瓷被获得,其层厚与层间距分别为~9μm和~15μm。来源于海绵骨架烧蚀形成的大孔均匀分布在陶瓷样品中,这些大孔的存在导致了层状结构的局部中断,但所制备的多孔陶瓷仍保持高的力学性能。
     在定向凝固过程中,电场的引入也被用于致密/多孔双层氧化铝陶瓷的制备。其中致密层的厚度能够通过调节电压强度的大小进行控制,当加载的电压从15 V增加至90 V时,致密层厚度由51μm相应地增加到155μm。而在多孔层部分,所有制备的陶瓷都表现出相同的、具有良好连接的层状结构,其层厚与层间距分别为~14μm和~24μm。
     由于催化和吸附等领域的实际应用,具有等级孔系统的单向宏孔排列氧化硅陶瓷通过可溶性淀粉模板的矿化被原位合成。该过程由两步所构成,第一步采用可溶性淀粉水溶胶或水凝胶的定向冷凝制备具有单向宏孔通道的块体材料;第二步,使用制备的淀粉材料作为模板浸渍于含有表面活性剂的溶胶-凝胶溶液中,进行模板结构的矿化。实验结果表明,所制备可溶性淀粉材料的宏孔尺寸、壁厚及宏孔形貌可以通过调节其浆料的含量控制。当淀粉初始含量由10 wt.%改变为15 wt.%时,模板材料的宏孔尺寸减小,而壁厚增加。经过对第二步处理得到材料的干燥和煅烧后,多孔氧化硅陶瓷被获得。这些陶瓷完整地复制了模板的精细结构,展示了狭窄的宏孔分布。就其孔径而言,当浸渍时间从36 h增加到84 h时,平均尺寸由4.1μm减小到3.6μm。此外,在纳米尺度内,所有氧化硅陶瓷都展现出均匀的蠕虫状纳米孔与层状相的共存结构和高的BET、微孔比表面积。
Porous ceramics as a technological important material have been widely applied in various regions, because they are lightweight, can withstand high temperature and corrosion, and exhibit high specific surface aera. In the past few decades, a large number of techniques are developed for the fabrication of such materials. However, all processing routes suffer from themselves inherent limitation: pore characteristics of ceramics which prepared by these techniques are limited to a narrow range. Freeze-casting technique, a manufacture method which uses growth and sublimation of vehicle crystal, possesses controllable microstructure and properties and environmental friendliness, and supplys a new route to prepare porous ceramics.
     In view of the new formation technique, a stability condition of solid-liquid interface was determined, combined with effect of particles on temperature fields and concentration fields of solidification system. Based on the interaction between the moving interface and a particle, critical velocity of trapped particle was evaluated. Using the criteria condition of interface instability and particle expelled from interface and unidirectional solidification way under a constant cooling rate, porous materials with aligned channel morphology were fabricated. From the perspectives of slurry components and freeze-casting technique investigated effects of formation technics on microstructure and properties of prepared materials.
     Experiment results indicated that mechanical properties of alumina porous ceramics might be improved by introducing glycerol into raw slurries. The effects of glycerol on the freeze-casting process and thereby on the microstructure and compression strength of porous ceramics obtained were investigated. It was shown that the addition of glycerol increased both the slurry viscosity and sample sintered density, promoting transition of macroporous structure and connection between ceramic lamellae. This connection made as-prepared porous ceramics obtain high mechanical properties. For the 30 vol.% alumina slurry with glycerol, the axial and radial compression strengths reached to, respectively, 255.1 MPa and 105.8 MPa.
     In addition to changing slurry components, the change of freeze-casting technique could also adjust the microstructure and properties of porous ceramics. For instance, the ceramic with complex 3D interconnected porous structures could be fabricated by a combination of impregnating and unidirectional freeze-casting technique. In the process, the polyurethane sponge was impregnated in the mold with 20 vol% of aqueous alumina slurry, and then the bottom of the cast body was kept at a constant cooling rate of 6°C/min to induce solidification. After drying and sintering of the green part, porous ceramic with obvious lamellar architectures was obtained. The lamellae thickness and interlayer distance were as large as ~9μm and ~15μm, respectively. The large pores, which resulted from the burn-up of sponge struts, were homogeneously distributed in the sample. The existence of these large pores introduced some local interruption of the lamellar structures. However, high compression strength for the porous ceramics could still be remained.
     In the unidirectional freeze-casting process, introduction of an electric field could also be used to prepare dense/porous bilayered ceramics. The thickness of dense layer in the sample could be controlled by tuning the electric field intensity. When the voltage was increased from 15 to 90 V, the dense layer thickness was increased from 51μm to 155μm, correspondingly. On the other hand, all samples exhibited an identical and good connective lamellar structure in the porous region. These lamellae thickness and interlayer distance were as large as ~14μm and ~24μm, respectively.
     Because of practical application of materials in catalysis field and adsorption field, hierarchically porous silica ceramics with unidirectionally aligned channel morphology were in-situ synthesized by mineralization of soluble starch monolith. The procedure followed two steps. First, soluble starch monoliths with well defined uniaxial macroporous structures were prepared by unidirectional freeze-casting process of starch hydrosol or starch hydrogel. Second, these prepared artificial monoliths which used as templates were soaked into a surfactant-templated sol-gel solution to mineralize aligned channel structures in their tissues. It was shown that the macropore size, wall thickness, and macropore morphology of obtained starch materials may be controlled by adjusting the concentration of starch slurry. When initial concentration changed from 10 wt.% to 15 wt.%, the macropore size of soluble starch materials decreased, while the wall thickness increased. Through the second step, porous silica ceramics were obtained after drying and calcining of organic-inorganic hybrid silicate compounds from the solution. These resulting products preserved templates microstructure in great detail and exhibited narrow macropore size distributions. It was observed when the soaking time increased from 36 h to 84 h, the average pore size of silica ceramics was decreased from 4.1μm to 3.6μm. In addition, in nanopore regime, all of these silica monoliths presented the conexistence of uniform worm-like nanopore and lamellar phase feature, and large BET and microporous surface area.
引文
1罗民华.多孔陶瓷实用技术.中国建材工业出版社, 2006:1-16
    2刘海燕.蛋白质发泡法制备氧化锆多孔陶瓷.天津大学硕士论文. 2007:3-5
    3李月琴.对多孔陶瓷孔特性影响因素的研究.华南理工大学硕士论文. 2001:2-8
    4陈雪梅. Al2O3基泡沫陶瓷的研究.中国陶瓷. 2001, 37(6):21-23
    5李月琴,吴基球.多孔陶瓷的制备、应用及发展前景.陶瓷工程. 2000, 12(6):44-47
    6 L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro. Ceramic Foams by Powder Processing. J. Eur. Ceram. Soc. 1998, 18(9):1339-1350
    7吴庆祝,刘永先,李福功,张辉.泡沫陶瓷及其应用.陶瓷. 2002, 2:12-14
    8刘辉,孙伟,覃文庆,乌顺科.多孔陶瓷材料的应用及发展前景.矿冶工程. 2003, 23(6):69-71
    9王圣威,金宗哲,黄丽容.多孔陶瓷材料的制备及应用研究进展.硅酸盐通报. 2006, 25(4):124-129
    10 K. Schwartzwalder, A. V. Somers. Method of Making Porous Ceramic Articles. US Pat. 1963, No.3090094
    11 X. P. Pu, X. J. Liu, F. G. Qiu, L. P. Huang. Novel Method to Optimize the Structure of Reticulated Porous Ceramics. J. Am. Ceram. Soc. 2004, 87(7):1392-1394
    12 D. D. Brown, D. J. Green. Investigation of Strut Crack Formation in Open Cell Alumina Ceramics. J. Am. Ceram. Soc. 1994, 77(6):1467-1472
    13 X. W. Zhu, D. L. Jiang, S. H. Tan, Z. Q. Zhang. Improvement in the Strut Thickness of Reticulated Porous Ceramics. J. Am. Ceram. Soc. 2001, 84(7):1654-1656
    14 J. Saggio-Woyansky, C. E. Scott, W. P. Minnear. Processing of Porous Ceramics. Am. Ceram. Soc. Bull. 1992, 71(11):1674-1682
    15 J. T. Richardson, Y. Peng, D. Remue. Properties of Ceramic Foam Catalyst Supports: Pressure Drop. Appl. Catal. A-General 2000, 204(1):19-32
    16 J. Luyten, I. Thijs, W. Vandermeulen, S. Mullens, B. Wallaeys, R. Mortelmans. Strong Ceramic Foams from Polyurethane Templates. Adv. Appl. Ceram. 2005, 104(1):4-8
    17 X. P. Pu, X. J. Liu, F. G. Qiu, L. P. Huang, Novel Method to Optimize the Structure of Reticulated Porous Ceramics. J. Am. Ceram. Soc. 2004, 87(7):1392-1394
    18 M. R. Nangrejo, X. Bao, M. J. Edirisinghe. Processing of Ceramic Foams from Polymeric Precursor-Alumina Suspensions. Cell. Polym. 2001, 20(1):17-35
    19 M. R. Nangrejo, M. J. Edirisinghe. Porosity and Strength of Silicon Carbide Foams Prepared Using Preceramic Polymers. J. Porous Mater. 2002, 9(2):131-140
    20 X. Bao, M. R. Nangrejo, M. J. Edirisinghe. Preparation of Silicon Carbide Foams Using Polymeric Precursor Solutions. J. Mater. Sci. 2000, 35(17):4365-4372
    21 M. R. Nangrejo, X. Bao, M. J. Edirisinghe. The Structure of Ceramic Foams Produced Using Polymeric Precursors. J. Mater. Sci. Lett. 2000, 19(9):787-789
    22 M. R. Nangrejo, X. J. Bao, M. J. Edirisinghe. Preparation of Silicon Carbide-Silicon Nitride Composite Foams from Pre-Ceramic Polymers. J. Eur. Ceram. Soc. 2000, 20(11):1777-1785
    23 R. A. White, E. W. White, J. N. Weber. Replamineform: A New Process for Preparing Porous Ceramic, Metal, and Polymer Prosthetic Materials. Science, 1972, 176(4037):922-924
    24 D. P. Skinner, R. E. Newnham, L. E. Cross. Flexible Composite Transducers. Mater. Res. Bull. 1978, 13(6):599-607
    25 R. E. Newnham, G. R. Ruschau. Smart Electroceramics. J. Am. Ceram. Soc. 1991, 74(3):463-480
    26 D. M. Roy, S. K. Linnehan. Hydroxyapatite Formed from Coral Skeletal Carbonate by Hydrothermal Exchange. Nature, 1974, 247(5438):220-222
    27 J. Hu, J. J. Russell, B. Ben-Nissan, R. Vago. Production and Analysis of Hydroxyapatite from Australian Corals Via Hydrothermal Process. J. Mater. Sci. Lett. 2001, 20(1):85-87
    28 H. Sieber, C. Hoffmann, A. Kaindl, P. Greil. Biomorphic Cellular Ceramics. Adv. Eng. Mater. 2000, 2(3):105-109
    29 F. M. Varela-Feria, J. Martinez-Fernandez, A. R. de Arellano-Lopez, M. Singh. Low Density Biomorphic Silicon Carbide: Microstructure and Mechanical Properties. J. Eur. Ceram. Soc. 2002, 22(14-15):2719-2725
    30 P. Greil, T. Lifka, A. Kaindl. Biomorphic Cellular Silicon Carbide Ceramics from Wood: I. Processing and Microstructure. J. Eur. Ceram. Soc. 1998,18(14):1961-1973
    31 A. Zampieri, H. Sieber, T. Selvam, G. T. P. Mabande, W. Schwieger, F. Scheffler, M. Scheffler, P. Greil. Biomorphic Cellular SiSiC/Zeolite Ceramic Composites: From Rattan Palm to Bioinspired Structured Monoliths for Catalysis and Sorption. Adv. Mater. 2005, 17(3):344-349
    32 E. Vogli, H. Sieber, P. Greil. Biomorphic SiC-Ceramic Prepared by Si-Vapor Phase Infiltration of Wood. J. Eur. Ceram. Soc. 2002, 22(14-15):2663-2668
    33 C. R. Rambo, H. Sieber. Novel Synthetic Route to Biomorphic Al2O3 Ceramics. Adv. Mater. 2005, 17(8):1088-1091
    34 N. Popovska, D. A. Streitwieser, C. Xu, H. Gerhard. Paper Derived Biomorphic Porous Titanium Carbide and Titanium Oxide Ceramics Produced by Chemical Vapor Infiltration and Reaction (CVI-R). J. Eur. Ceram. Soc. 2005, 25(6):829-836
    35 N. Popovska, D. Almeida-Streitwieser, C. Xu, H. Gerhard, H. Sieber, Kinetic Analysis of the Processing of Porous Biomorphic Titanium Carbide Ceramics by Chemical Vapor Infiltration. Chem. Vapor Deposition, 2005, 11(3):153-158
    36 D. A. Streitwieser, N. Popovska, H. Gerhard, G. Emig. Application of the Chemical Vapor Infiltration and Reaction (M-R) Technique for the Preparation of Highly Porous Biomorphic SiC Ceramics Derived from Paper. J. Eur. Ceram. Soc. 2005, 25(6):817-828
    37 A. Herzog, R. Klingner, U. Vogt, T. Graule. Wood-Derived Porous SiC Ceramics by Sol Infiltration and Carbothermal Reduction. J. Am. Ceram. Soc. 2004, 87(5):784-793
    38 C. Zollfrank, R. Kladny, H. Sieber, P. Greil. Biomorphous SiOC/C-Ceramic Composites from Chemically Modified Wood Templates. J. Eur. Ceram. Soc. 2004, 24(2):479-487
    39 A. R. Studart, U. T. Gonzenbach, E. Tervoort, L. J. Gauckler. Processing Routes to Macroporous Ceramics: A Review. J. Am. Ceram. Soc. 2006, 89(6):1771-1789
    40 S. Zhu, H. Xi, Q. Li, R. Wang. In Situ Growth ofβ-SiC Nanowires in Porous SiC Ceramics. J. Am. Ceram. Soc. 2005, 88(9):2619-2621
    41 S. Zhu, S. Ding, H. Xi, R. Wang. Low-temperature Fabrication of Porous SiC Ceramics by Preceramic Polymer Reaction Bonding. Mater. Lett. 2005, 59(5):595-597
    42 J. She, J. Yang, N. Kondo, T. Ohji, S. Kanzaki. High-strength Porous SiliconCarbide Ceramics by an Oxidation-bonding Technique. J. Am. Ceram. Soc. 2002, 85(11):2852-2854
    43 J. She, T. Ohji, S. Kanzaki. Oxidation Bonding of Porous Silicon Carbide Ceramics with Synergistic Performance. J. Eur. Ceram. Soc. 2004, 24(2):331-334
    44 T. J. Fitzgerald, V. J. Michaud, A. Mortensen. Processing of Microcellular SiC Foams. II: Ceramic Foam Production. J. Mater. Sci. 1995, 30(4):1037-1045
    45 H. Kim, C. da Rosa, M. Boaro, J. M. Vohs, R. J. Gorte. Fabrication of Highly Porous Yttria-Stabilized Zirconia by Acid Leaching Nickel from a Nickel-Yttria-Stabilized Zirconia Cermet. J. Am. Ceram. Soc. 2002, 85(6):1473-1476
    46 H. Wang, I. Y. Sung, X. D. Li, D. Kim. Fabrication of Porous SiC Ceramics with Special Morphologies by Sacrificing Template Method. J. Porous Mater. 2004, 11(4):265-271
    47 O. Lyckfeldt, J. M. F. Ferreira. Processing of Porous Ceramics by Starch Consolidation. J. Eur. Ceram. Soc. 1998,18(2):131-140
    48 L. M. Rodriguez-Lorenzo, M. Vallet-Regi, J. M. F. Ferreira. Fabrication of Porous Hydroxyapatite Bodies by a New Direct Consolidation Method: Starch Consolidation. J. Biomed. Mater. Res. 2002, 60(2):232-240
    49 R. Barea, M. I. Osendi, P. Miranzo, J. M. F. Ferreira. Fabrication of Highly Porous Mullite Materials. J. Am. Ceram. Soc. 2005, 88(3):777-779
    50 A. Diaz, S. Hampshire. Characterisation of Porous Silicon Nitride Materials Produced with Starch. J. Eur. Ceram. Soc. 2004, 24(2):413-419
    51 A. F. Lemos, J. M. F. Ferreira. Porous Bioactive Calcium Carbonate Implants Processed by Starch Consolidation. Mater. Sci. Eng. C Biomimetic Supramol. Syst. 2000, 11(1):35-40
    52 P. V. Vasconcelos, J. A. Labrincha, J. M. F. Ferreira. Permeability of Diatomite Layers Processed by Different Colloidal Techniques. J. Eur. Ceram. Soc. 2000, 20(2):201-207
    53 H. M. Alves, G. Tari, A. T. Fonseca, J. M. F. Ferreira. Processing of Porous Cordierite Bodies by Starch Consolidation. Mater. Res. Bull. 1998, 33(10):1439-1448
    54 G. J. Zhang, J. F. Yang, T. Ohji, Fabrication of Porous Ceramics with Unidirectionally Aligned Continuous Pores. J. Am. Ceram. Soc. 2001, 84(6):1395-1397
    55 S. M. Naga, A. A. El-Maghraby, A. M. El-Rafei, P. Greil, T. Khalifa, N. A.Ibrahim. Porous Fibrous Mullite Bodies. Am. Ceram. Soc. Bull. 2006, 85(2):21-24
    56 D. M. Liu, J. J. Brown. Lightweight (Ca1-x, Mgx)Zr4(Po4)6 Ceramics. Mater. Chem. Phys. 1992, 32(2):161-167
    57 R. A. Lopes, A. M. Segadaes. Microstructure, Permeability and Mechanical Behaviour of Ceramic Foams. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 1996, 209(1-2):149-155
    58 B. P. Kumar, H. H. Kumar, D. K. Kharat. Study on Pore-Forming Agents in Processing of Porous Piezoceramics. J. Mater. Sci. Mater. Electron. 2005, 16(10):681-686
    59 Y. Hotta, P. C. A. Alberius, L. Bergstrom. Coated Polystyrene Particles as Templates for Ordered Macroporous Silica Structures with Controlled Wall Thickness. J. Mater. Chem. 2003, 13(3):496-501
    60 D. Y. Wang, R. A. Caruso, F. Caruso. Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres-A Novel Route to Tune Pore Morphology. Chem. Mater. 2001, 13(2):364-371
    61 D. B. Kuang, A. W. Xu, J. Y. Zhu, H. Q. Liu, B. S. Kang. Fabrication of Ordered Macroporous Rutile Titania at Low Temperature. New J. Chem. 2002, 26(7):819-821
    62 I. Thijs, J. Luyten, S. Mullens. Producing Ceramic Foams with Hollow Spheres. J. Am. Ceram. Soc. 2004, 87(1):170-172
    63 D. M. Liu. Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic. Ceram. Int. 1997, 23(2):135-139
    64 P. Colombo, E. Bernardo. Macro- and Micro-Cellular Porous Ceramics from Preceramic Polymers. Compos. Sci. Technol. 2003, 63(16):2353-2359
    65 Y. W. Kim, S. H. Kim, C. B. Park. Processing of Closed-Cell Silicon Oxycarbide Foams from a Preceramic Polymer. J. Mater. Sci. 2004, 39(18):5647-5652
    66 Y. W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, H. D. Kim. A Simple Pressing Route to Closed-Cell Microcellular Ceramics. Scripta Mater. 2005, 53(8):921-925
    67 S. H. Li, J. R. de Wijn, P. Layrolle, K.de Groot. Novel Method to Manufacture Porous Hydroxyapatite by Dual-Phase Mixing. J. Am. Ceram. Soc. 2003, 86(1):65-72
    68 S. H. Li, J. R. De Wijn, P. Layrolle, K.de Groot. Synthesis of MacroporousHydroxyapatite Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. 2002, 61(1):109-120
    69 N. Koc, M. Timucin, F. Korkusuz, Fabrication and Characterization of Porous Tricalcium Phosphate Ceramics. Ceram. Int. 2004, 30(2):205-211
    70 E. Sundermann, J. Viedt. Method of Manufacturing Ceramic Foam Bodies. US Pat. 1973, No.3745201,
    71 P. Schuster, B. V. Chiari. Foamed Ceramic Element. US Pat. 1978, No.4123285,
    72 L. L. Wood, P. Messina, K. Frisch. Method of Preparing Porous Ceramic Structures by Firing a Polyurethane Foam that is Impregnated with inorganic Material. US Pat. 1974, No.3833386.
    73 H. X. Peng, Z. Fan, J. R. G. Evans, J. J. C. Busfield. Microstructure of Ceramic Foams. J. Eur. Ceram. Soc. 2000, 20(7):807-813
    74 H. X. Peng, Z. Fan, J. R. G. Evans. Cellular Arrays of Alumina Fibres. J. Mater. Sci. 2001, 36(4):1007-1013
    75 S. J. Powell, J. R. G. Evans. The Structure of Ceramic Foams Prepared from Polyurethane-Ceramic Suspensions. Mater. Manuf. Process. 1995, 10(4):757-771
    76 P. Colombo, J. R. Hellmann. Ceramic Foams from Preceramic Polymers. Mater. Res. Innov. 2002, 6(5-6):260-272
    77 T. Takahashi, H. Munstedt, P. Colombo, M. Modesti. Thermal Evolution of a Silicone Resin/Polyurethane Blend from Preceramic to Ceramic Foam. J. Mater. Sci. 2001, 36(7):1627-1639
    78 T. Fujiu, G. L. Messing, W. Huebner. Processing and Properties of Cellular Silica Synthesized by Foaming Sol Gels. J. Am. Ceram. Soc. 1990, 73(1):85-90
    79 T. Tomita, S. Kawasaki, K. Okada. A Novel Preparation Method for Foamed Silica Ceramics by Sol-Gel Reaction and Mechanical Foaming. J. Porous Mater. 2004, 11(2):107-115
    80 E. P. Santos, C. V. Santilli, S. H. Pulcinelli. Formation of Zirconia Foams Using the Thermostimulated Sol-Gel Transition. J. Non-Cryst. Solids 2002, 304(1-3):143-150
    81 E. P. Santos, C. V. Santilli, S. H. Pulcinelli. Effect of Aging on the Stability of Ceramic Foams Prepared by Thermostimulated Sol-Gel Process. J. Sol-Gel Sci. Technol. 2003, 26(1-3):165-169
    82 Z. P. Du, M. P. Bilbao-Montoya, B. P. Binks, E. Dickinson, R. Ettelaie, B. S. Murray. Outstanding Stability of Particle-Stabilized Bubbles. Langmuir 2003,19(8):3106-3108
    83 E. Dickinson, R. Ettelaie, T. Kostakis, B. S. Murray. Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Langmuir 2004, 20(20):8517-8525
    84 B. P. Binks, T. S. Horozov. Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem. Int. Ed. 2005, 44(24):3722-3725
    85 U. T. Gonzenbach, A. R. Studart, E. Tervoort, L. J. Gauckler. Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 2006, 45(21):3526-3530
    86 U. T. Gonzenbach, A. R. Studart, D. Steinlin, E. Tervoort, L. J. Gauckler. Processing of Particle-Stabilized Wet Foams into Porous Ceramics. J. Am. Ceram. Soc. 2007, 90(11):3407-3414
    87 U. T. Gonzenbach, A. R. Studart, E. Tervoort, L. J. Gauckler. Macroporous Ceramics from Particle-Stabilized Wet Foams. J. Am. Ceram. Soc. 2007, 90(1):16-22
    88 K. Prabhakaran, N. R. Babu, S. R. Kumar, K. G. Warrier. Freeform Gelcasting of Porous Tubular Alumina Sunstrate. J. Am. Ceram. Soc. 2002, 85(12):3126-3128
    89 P. Sepulveda. Gelcasting Foams for Porous Ceramics. Am. Ceram. Soc. Bull. 1997, 76(10):61-65
    90 P. Sepulveda, F. S. Ortega, M. D. M. Innocentini, V. C. Pandolfelli. Properties of Highly Porous Hydroxyapatite Obtained by the Gelcasting of Foams. J. Am. Ceram. Soc. 2000, 83(12):3021-3024
    91 H. T. Wang, X. Q. Liu, G. Y. Meng. Porousα-Al2O3 Ceramics Prepared by Gelcasting. Mater. Res. Bull. 1997, 32(12):1705-1712
    92 Z. Shi, Y. Feng, L. Xu, S. Da, M. Zhang. Synthesis of a Carbon Monolith with Trimodal Pores. Carbon 2003, 41(13):2653-2689
    93 Z. Shi, Y. Feng, L. Xu, S. Da, M. Zhang. A Template Method to Control the Shape and Porosity of Carbon Materials. Carbon 2004, 42(8-9):1677-1682
    94 Z. Shi, Y. Feng, L. Xu, S. Da, Y. Ren. Synthesis of a Silica Monolith with Textural Pores and Ordered Mesopores. Micropor. Mesopor. Mater. 2004, 68(1-3):55-59
    95 J. Smatt, C. Weidenthaler, J. B. Rosenholm, M. Linden. Hierarchically Porous Metal Oxide Monoliths Prepared by the Nanocasting Route. Chem. Mater. 2006, 18(6):1443-1450
    96 J. Smatt, B. Spliethoff, J. B. Rosenholm, M. Linden. Hierachically PorousNanocrystalline Cobalt Oxide Monoliths through Nanocasting. Chem. Commun. 2004, 4(19):2188-2189
    97 A. Morancais, F. Louvet, D. S. Smith, J. Bonnet. High Porosity SiC Ceramics Prepared via a Process Involving an SHS Stage. J. Eur. Ceram. Soc. 2003, 23(11):1949-1956
    98 R. W. Jones. Near Net Shape Ceramics by Freeze Casting. Ind. Ceram. 2000, 20(2):117-120
    99 S. W. Sofie, F. Dogan. Freeze Casting of Aqueous Alumina Slurries with Glycerol. J. Am. Ceram. Soc. 2001, 84(7):1459-1464
    100 T. Fukasawa, Z. Y. Deng, M. Ando. Pore Structure of Porous Ceramics Synthesized from Water-based Slurry by Freeze-dry Process. J. Mater. Sci. 2001, 36(10):2523-2527
    101 T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki. Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-dry Processing. J. Am. Ceram. Soc. 2001, 84(1):230-232
    102 D. Koch, L. Andresen, T. Schmedders, G. Grathwohl. Evolution of Porosity by Freeze Casting and Sintering of Sol-gel Derived Ceramics. J. Sol-Gel Sci. Technol. 2003, 26(1-3):149-152
    103 M. Nakata, K. Tanihata, S. Yamaguchi, K. Suganuma. Fabrication of Porous Alumina Sintered Bodies by a Gelate-freezing Method. J. Ceram. Soc. Jpn. 2005, 113(1323):712-715
    104 D. Donchev, N. Walther, J. Ulrich. Crystallization of Ice to Form Images of Pores in Ceramic Materials.VDI Ber. 2005, 1901(1):337-342
    105 S. Deville, E. Saiz, A. P. Tomsia. Ice-templated Porous Alumina Structures. Acta Mater. 2007, 55(6):1965-1974
    106 C. M. Pekor, P. Kisa, I. Nettleship. Effect of Polyethylene Glycol on the Microstructure of Freeze-Cast Alumina. J. Am. Ceram. Soc. 2008, 91(10):3185-3190
    107 T. Waschkies, R. Oberacker, M. J. Hoffmann. Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double-Side Cooling as a Novel Processing Route. J.Am.Ceram. Soc.2009, 92(S1): S79-S84
    108 Y. M. Zhang, L. Y. Hu, J. C. Han Preparation of a Dense/Porous BiLayered Ceramic by Applying an Electric Field During Freeze Casting. J. Am. Ceram. Soc. 92(8): 1874-1876
    109漆小鹏,叶建东,王秀鹏,王迎军.具有定向孔隙结构的大孔磷酸钙骨水泥支架的制备与表征.硅酸盐学报. 2007, 35(12):1577-1581
    110 S. Deville, E. Saiz, A. P. Tomsia Freeze Casting of Hydroxyapatite Scaffolds for Bone Tissue Engineering. Biomaterilas 2006, 27(32): 5480-5489
    111 S. Deville, P. Miranda, E. Saiz, A. P. Tomsia, Fabrication of Porous Hydroxyapatite Scaffolds. Proc. Int. Conf. Manufact. Sci. Eng. 2006
    112 Y. Suetsugu, Y. Hotta, M. Iwasashi, M. Sakane, M. Kiuchi, T. Ikoma, T. Higaki, N. Ochiai, J. Tanaka. Structural and Tissue Reaction Properties of Novel Hydroxyapatite Ceramics with Unidirectional Pores. Key Eng. Mater. 2007, 330-332 II:1003-1006
    113 E. Landi, F. Valentini, A. Tampieri. Porous Hydroxyapatite/Gelatine Scaffolds with Ice-designed Channel-like Porosity for Biomedical Applications. Acta Biomater. 2008, 4(6):1620-1626
    114 M. N. Rahaman, Q. Fu. Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. J. Am . Ceram. Soc. 2008, 91(12):4137-4140
    115 Q. Fu, M. N. Rahaman, F. Dogan, B. S. Bal. Freeze Casting of Porous Hydroxyapatite Scaffolds. I. Processing and General Microstructure. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86(1):125-135
    116 Q. Fu, M. N. Rahaman, F. Dogan, B. S. Bal. Freeze-cast Hydroxyapatite Scaffolds for Bone Tissue Engineering Applications. Biomed. Mater. 2008, 3(2):025005 1-7
    117 Q. Fu, M. N. Rahaman, F. Dogan, B. S. Bal. Freeze Casting of Porous Hydroxyapatite Scaffolds. II. Sintering, Microstructure, and Mechanical Behavior. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86(2):514-522
    118 Q. Fu, M. N. Rahaman, B. S. Bal, R. F. Brown. Proliferation and Function of MC3T3-E1 Cells on Freeze-cast Hydroxyapatite Scaffolds with Oriented Pore Architectures. J. Mater. Sci. Mater. Med. 2009, 20(5):1159-1165
    119赵康,魏俊琪,罗德福,汤玉斐,徐雷.冷冻干燥法制备羟基磷灰石多孔支架.硅酸盐学报. 2009, 37(3): 432-435
    120 Y. Zhang, K. Zuo, Y. Zeng. Effects of Gelatin Addition on the Microstructure of Freeze-cast Porous Hydroxyapatite Ceramics. Ceram. Int. 2009, 35(6): 2151-2154
    121 J. W. Moon, H. J. Hwang, M. Awano, K. Maeda, S. Kanzaki. Preparation of Dense Thin-film Solid Electrolyte on Novel Porous Structure with Parallel PoreChannel. J. Ceram. Soc. Jpn. 2002, 110(5):479-484
    122 J. W. Moon, H. J. Hwang, M. Awano, K. Maeda. Preparation of NiO-YSZ Tubular Support with Radially Aligned Pore Channels. Mater. Lett. 2003, 57(8):1428-1434
    123 J. Tang, Y. F. Chen, H. Wang, H. Liu, Q. Fan. Preparation of Oriented Porous Silicon Carbide Bodies by Freeze-casting Process. Key Eng. Mater. 2005, 280-283(II):1287-1290
    124 P. Kisa, P. Fisher, A. Olszewski, I. Nettleship, N. G. Eror. Synthesis of Porous Ceramics through Directional Solidification and Freeze-drying. Mater. Res. Soc. Symp. Proc. 2004, 788:415-419
    125 S. R. Mukai, H. Nishihara, H. Tamon. Formation of Monolithic Silica Gel Microhoneycombs (SMHs) Using Pseudosteady State Growth of Microstructural Ice Crystals. Chem. Commun. 2004, 4(7):874-875
    126 H. Nishihara, S. R. Mukai, D. Yamashita, H. Tamon. Ordered Macroporous Silica by Ice Templating. Chem. Mater. 2005, 17(3):683-689
    127 S. R. Mukai, H. Nishihara, H. Tamon. Morphology Maps of Ice-templated Silica Gels Derived from Silica Hydrogels and Hydrosols. Micropor. Mesopor. Mater. 2008, 116(1-3):166-170
    128 H. Nishihara, S. Iwamura, T. Kyotani. Synthesis of Silica-based Porous Monoliths with Straight Nanochannels Using an Ice-rod Nanoarray as a Template. J. Mater. Chem. 2008, 18(31):3662-3670
    129 H. Nishihara, S. R. Mukai, Y. Fujii, T. Tago. T. Masuda, H. Tamon. Preparation of Monolithic SiO2-Al2O3 Cryogels with Inter-connected Macropores through Ice Templating. J. Mater. Chem. 2006, 16(31):3231-3236
    130 T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji, S. Kanzaki. Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-drying Process. J. Am. Ceram. Soc. 2002, 85(9):2151-2155
    131 T. Fukasawa, M. Ando, T. Ohji. Filtering Properties of Porous Ceramics with Unidirectionally Aligned Pores. J. Ceram. Soc. Jpn. 2002, 110(7):627-631
    132 L. L. Ren, Y. P. Zeng, D. L. Jiang. Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze-tape-casting Process. J. Am. Ceram. Soc. 2007, 90(9):3001-3004
    133 L. L. Ren, Y. P. Zeng, D. L. Jiang. Preparation of Porous TiO2 by a Novel Freeze Casting. Ceram. Int. 2009, 35(3):1267-1270
    134 M. Bettge, H. Niculescu, P. J. Gielisse. Engineered Porous Ceramics Using aDirectional Freeze-drying Process. 28th. Int. Spring Seminar Elect. Technol. Meet. Chall. Elect. Technol. Progr. 2005, 2005:12-18
    135 S. W. Sofie. Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates with the Novel Freeze-tape-casting Process. J. Am. Ceram. Soc. 2007, 90(7):2024-2031
    136 K. H. Zuo, Y. P. Zeng, D. L. Jiang. Properties of Microstructure-controllable Porous Yttria-stabilized Ziroconia Ceramics Fabricated by Freeze Casting. Int. J. Appl. Ceram. Technol. 2008, 5(2):198-203
    137 Z. Y. Deng, H. R. Fernandes, J. M. Ventura, S. Kannan, J. M. F. Ferreira. Nano-TiO2-coated Unidirectional Porous Glass Structure Prepared by Freeze Drying and Solution Infiltration. J. Am. Ceram. Soc. 2007, 90(4):1265-1268
    138 M. Fukushima, M. Nakata, Y. Yoshizawa. Fabrication and Properties of Ultra Highly Porous Cordierite with Oriented Micrometer-sized Cylindrical Pores by Gelation and Freezing Method. J. Ceram. Soc. Jpn. 2008, 116(1360):1322-1325
    139 S. Q. Ding, Y. P. Zeng, D. L. Jiang. Fabrication of Mullite Ceramics with Ultrahigh Porosity by Gel Freeze Drying. J. Am. Ceram. Soc. 2007, 90(7):2276-2279
    140 H. J. Hwang, D. Y. Kim, J. W. Moon. Fabrication of Porous Clay Materials with Aligned Pore Structures by Freeze-drying. Mater. Sci. Forum 2006, 510-511:906-909
    141 S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia. Freezing as a Path to Build Complex Composites. Science 2006, 311(5760):515-518
    142 E. Munch, E. Saiz, A. P. Tomsia, S. Deville. Architectural Control of Freeze-cast Ceramics through Additives and Templating. J. Am. Ceram. Soc. 2009, 92(7):1534-1539.
    143 K. Araki, J. W. Halloran. New Freeze-casting Technique for Ceramics with Sublimable Vehicles. J. Am. Ceram. Soc. 2004, 87(10):1859-1863
    144 K. Araki, J. W. Halloran. Porous Ceramic Bodies with Interconnected Pore Channels by a Novel Freeze Casting Technique. J. Am. Ceram. Soc. 2005, 88(5):1108-1114
    145 O. Shanti, K. Araki, J. W. Halloran. Particle Redistribution during Dendritic Solidification of Particle Suspensions. J. Am. Ceram. Soc. 2006, 89(8):2444-2447
    146 H. Koh, J. H. Song, E. J. Lee, H. E. Kim. Freezing Dilute Ceramic/Camphene Slurry for Ultra-high Porosity Ceramics with Completely Interconnected PoreNetworks. J. Am. Ceram. Soc. 2006, 89(10): 3089-3093
    147 H. Koh, E. J. Lee, B. H. Yoon, J. H. Song, H. E. Kim. Effect of Polystyrene Addition on Freeze Casting of Ceramic/Camphene Slurry for Ultra-high Porosity Ceramics with Aligned Pore Channels. J. Am. Ceram. Soc. 2006, 89(12): 3646-3653
    148 H. Yoon, W. Y. Choi, H. E. Kim, J. H. Kim, Y. H. Koh. Aligned Porous Alumina Ceramics with High Compressive Strengths for Bone Tissue Engineering. Scripta Mater. 2008, 58(7):537-540
    149 M. Soon, K. H. Shin, Y. H. Koh, J. H. Lee, H. E. Kim. Compressive Strength and Processing of Camphene-based Freeze Cast Calcium Phosphate Scaffolds with Aligned Pores. Mater. Lett. 2009, 63(17):1548-1550
    150 J. Lee, Y. H. Koh, B. H. Yoon, H. E. Kim, H. W. Kim. Highly Porous Hydroxyapatite Bioceramics with Interconnected Pore Channels Using Camphene-based Freeze Casting. Mater. Lett. 2007, 61(11-12):2270-2273
    151 H. Yoon, Y. H. Koh, C. S. Park, H. E. Kim. Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-based Freeze Casting. J. Am. Ceram. Soc. 2007, 90(6):1744-1752
    152 H. Yoon, C. S. Park, H. E. Kim, Y. H. Koh. In-situ Fabrication of Porous Hydroxyapatite (HA) Scaffolds with Dense Shells by Freezing HA/Camphene Slurry. Mater. Lett. 2008, 62(10-11):1700-1703
    153 W. Yook, H. E. Kim, B. H. Yoon, Y. M. Soon, Y. H. Koh. Improvement of Compressive Strength of Porous Hydroxyapatite Scaffolds by Adding Polystyrene to Camphene-based Slurries. Mater. Lett. 2009, 63(11):955-958
    154 Macchetta, I. G. Turner, C. R. Bowen. Fabrication of HA/TCP Scaffolds with a Graded and Porous Structure Using a Camphene-based Freeze-casting Method. Acta Mater. 2009, 5(4):1319-1327
    155 H. Koh, J. J. Sun, H. E. Kim. Freeze Casting of Porous Ni-YSZ Cermets. Mater. Lett. 2007, 61(6):1283-1287
    156 H. Lee, S. H. Jun, H. E. Kim, Y. H. Koh. Fabrication of Porous PZT-PZN Piezoelectric Ceramics with High Hydrostatic Figure of Merits Using Camphene-based Freeze Casting. J. Am. Ceram. Soc. 2007, 90(9):2807-2813
    157 H. Lee, S. H. Jun, H. E. Kim, Y. H. Koh. Piezoelectric Properties of PZT-based Ceramic with Highly Aligned Pores. J. Am. Ceram. Soc. 2008, 91(6):1912-1915
    158 H. Yoon, E. J. Lee, H. E. Kim, Y. H. Koh. Highly Aligned Porous Silicon Carbide Ceramics by Freezing Polycarbosilane/Camphene Solution. J. Am.Ceram. Soc. 2007, 90(6):1753-1759
    159 H. Yoon, C. S. Park, H. E. Kim, Y. H. Koh. In Situ Synthesis of Porous Silicon Carbide (SiC) Ceramics Decorated with SiC Nanowires. J. Am. Ceram. Soc. 2007, 90(12):3759-3766
    160 H. Koh, I. K. Jun, J. J. Sun, H. E. Kim. In Situ Fabrication of a Dense/Porous Bi-layered Ceramic Composite Using Freeze Casting of a Ceramic-camphene Slurry. J. Am. Ceram. Soc. 2006, 89(2):763-766
    161 Hong, X. Zhang, J. C. Han, J. Du, W Han. Ultra-high-porosity Zirconia Ceramics Fabricated by Novel Room-temperature Freeze-casting. Scripta Mater. 2009, 60(7):563-566
    162 H. Song, Y. H. Koh, H. E. Kim, L. H. Li. Fabrication of a Porous Bioactive Glass-ceramic Using Room-temperature Freeze Casting. J. Am. Ceram. Soc. 2006, 89(8):2649-2653
    163 K. Araki, J. W. Halloran. Room-temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene-camphor Eutectic System. J.Am. Ceram. Soc. 2004, 87(11):2014-2019
    164 R. F. Chen, C. A. Wang, Y. Huang, L. G. Ma, W. Y. Lin. Ceramics with Special Porous Structures Fabricated by Freeze-gelcasting: Using Tert-butyl Alcohol as a Template. J. Am. Ceram. Soc. 2007, 90(11):3478-3484
    165 B. V. Derjaguin, L. D. Landau. Theory of Stability of Highly Charged Lyophobic Sols and Adhesion of Highly Charged Particles in Solutions of Electrolytes. Acta Phys. Chem. URSS 1941, 14:633-652
    166 E. J. W. Verwey, J. T. G. Overbeek. Theory of the Stability of Lyophobic Colloids. Elsevier, New York.1948
    167 J. A. Lewis. Colloidal Processing of Ceramics. J. Am. Ceram. Soc. 2000, 83(10):2341-2359
    168 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57(4):603-619
    169 D. Dollimore, G. R. Heal. An Improved Method for The Calculation of Pore Size Distribution from Adsorption Data. J. Appl. Chem. 1964, 14(3):109-114
    170 W. W. Mullins, R. F. Sekerka. Morphological Stability of a Particle Growing by Diffusion or Heat Flow. J. Appl. Phys. 1963, 35(2):323-329
    171 W. W. Mullins, R. F. Sekerka. Stability of a Planar Interface duringSolidification of a Dilute Binary Alloy. J. Appl. Phys. 1964, 35(2):444-451
    172 S. S. L. Peppin, J. A. W. Elliott, M. G. Worster. Solidification of Colloidal Suspensions. J. Fluid Mech. 2006, 554:147-166
    173 S. S. L. Peppin, M. G. Worster, J. S. Wettlaufer. Morphological Instability in Freezing Colloidal Suspensions. J. Fluid Mech. 2007, 463:723-733
    174 S. S. L. Peppin, J. S. Wettlaufer, M. G. Worster. Experimental Verification of Morphological Instability in Freezing Aqueous Colloidal Suspensions. Phys. Rev. Lett. 2008, 100(23):238301
    175闵乃本.晶体生长的物理基础.上海科学技术出版社, 1982:211-220
    176 J. J. Guo, J. A. Lewis. Aggregation Effects on the Compressive Flow Properties and Drying Behavior of Colloidal Silica Suspensions. J. Am. Ceram. Soc. 1999, 82(9):2345-2358
    177 N. F. Carnahan, K. E. Starling. Equation of State for Non-attracting Rigid Spheres. J. Chem. Phys. 1969, 51(2):635-636
    178 P. Casses, M. A. Azouni. A General Theoretical Approach to the Behaviour of Foreign Particles at Advancing Solid-Liquid Interfaces. Adv. Colloid Interface Sci. 1994, 50:103-120
    179 D. Shangguan, S. Ahuja, D. M. Stefanescu. An Analytical Model for the Interaction between an Insoluble Particle and an Advancing Solid/Liquid Interface. Metall. Trans. A 1992, 23(2):669-680
    180 G. Kaptay. Interfacial Criterion of Spontaneous and Forced Engulfment of Reinforcing Particles by an Advancing Solid/Liquid Interface. Metall. Trans. A 2001, 32(4):993-1005
    181 S. Kitaoka, Y. Matsushima, C. Chen, H. Awaji. Thermal Cyclic Fatigue Behavior of Porous Ceramics for Gas Cleaning. J. Am. Ceram. Soc. 2004, 87(5):906-913
    182 R. Moene, M. Makkee, J. A. Moulijn. High Surface Area Silicon Carbide as Catalyst Support Characterization and Stability. Appl. Catal. A Gen. 1998, 167(2):321-330
    183 C. Pham-Huu, C. Bouchy, T. Dintzer, G. Ehret, C. Estournes, M. J. Ledoux. High Surface Area Silicon Carbide Doped with Zirconium for Use as Catalyst Support. Preparation, Characterization and Catalytic Application. Appl. Catal. A Gen. 1999, 180(1-2):385-397
    184 K. Lu, C. S. Kessler. Optimization of a Nanoparticle Suspension for FreezeCasting. J. Am. Ceram. Soc. 2006, 89(8):2459-2465
    185 K. Lu. Microstructural Evolution of Nanoparticle Aqueous Colloidal Suspensions during Freezing Casting. J. Am. Ceram. Soc. 2007, 90(12):3753-3758
    186 M. M. Cross. Rheology of Non-newtonian Fluids: a New Flow Equation for Pseudoplastic Systems. J. Colloid Sci. 1965, 20(5):417-437
    187 C. S. Miner, N. N. Dalton. Glycerol. Reinhold Publishing Corporation, New York. 1953:238-449
    188 S. Deville. Freeze-casting of Porous Ceramics: A Review of Current Achievements and Issues. Adv. Eng. Mater. 2008, 10(3):155-169
    189 J. L. Dashnau, N. V. Nucci, K. A. Sharp, J. M. Vanderkooi. Hydrogen Bonding and Cryoprotective Properties of Glycerol/Water Mixtures. J. Phys. Chem. B 2006, 110(27):13670-13677
    190 L. Cerroni, R. Filocamo, M. Fabbri, C. Piconi, S. Caropreso, S. G. Condo, Growth of osteoblast-like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol. Eng. 2002, 19(2-6):119-124
    191 R. J. Gorte, S. Park, J. M. Vohs, C. Wang. Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell. Adv. Mater. 2000, 12(19):1465-1469
    192 C. P. Shaw, R. W. Whatmore, J. R. Alcock. Porous, Functionally Gradient Pyroelectric Materials. J. Am. Ceram. Soc. 2007, 90(1):137-142
    193 G. Carotenuto. Dense/Porous Layered Hydroxylapatite Ceramic for Orthopedic Device Coating Prepared by Tape Casting Technique. Adv. Perform. Mater. 1998, 5(3):171-181
    194 F. Zhang, J. Chang, J. Lu, K. Lin, C. Ning. Bioinspired Structure of Bioceramics for Bone Regeneration in Load-Bearing Sites. Acta Biomater. 2007, 3(6):896-804
    195 W. M. Sigmund, N. S. Bell, L. Bergsstrom. Novel Powder-Processing Methods for Advanced Ceramics. J. Am. Ceram. Soc. 2000, 83(7):1557-1574
    196 Z. Peng, M. Liu. Preparation of Dense Platinum-Yttria Stabilized Zirconia and Yttria Stabilized Zirconia Films on Porous La0.9 Sr0.1 MnO3 (LSM) Substrates. J. Am. Ceram. Soc. 2001, 84(2):283-288
    197 J. Will, M. K. M. Hruschka, L. Gubler, L. J. Gauckler. Electrophoretic Deposition of Zirconia on Porous Anodic Substrates. J. Am. Ceram. Soc. 2001, 84(2):328-332
    198 J. Chang, J. Jean. Camber Development during the Cofiring of Bi-Layer Glass-Based Dielectric Laminate. J. Am. Ceram. Soc. 2005, 88(5):1165-1170
    199 R. Hsu, J. Jean. Key Factors Controlling Camber Behavior during the Cofiring of Bi-Layer Ceramic Dielectric Laminates. J. Am. Ceram. Soc. 2005, 88(9):2429-2434
    200 B. Zhang, S. A. Davis, S. Mann. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films. Chem. Mater. 2002, 14(3):1369-1375
    201 H. Nishihara, S. R. Mukai, H. Tamon. Preparation of Resorcinol-formaldehyde Carbon Cryogel Microhoneycombs. Carbon 2004, 42(4):899-901
    202 Y. J. Lee, J. S. Lee, Y. S. Park, K. B. Yoon. Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures. Adv. Mater. 2001, 13(16):1259-1263
    203 A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Y. Yue, Z. Gao. Zeolitic Tissue through Wood Cell Templating. Adv. Mater. 2002, 14(2):926-929
    204 Y. Shin, C. Wang, G. J. Exarhos. Synthesis of SiC Ceramics by the Carbothermal Reduction of Mineralized Wood with Silica. Adv. Mater. 2005, 17(1):73-77
    205 Z. Liu, T. Fan, W. Zhang, D. Zhang. The Synthesis of Hierarchical Porous Iron Oxide with Wood Templates. Micropor. Mesopor. Mat. 2005, 82(1-2):82-88
    206 J. Cao, C. R. Rambo, H. Sieber. Preparation of Porous Al2O3-ceramics by Biotemplating of Wood. J. Porous Mat. 2004, 11(3):163-172
    207 Y. Shin, J. Liu, J. H. Chang, Z Nie, G. J. Exarhos. Hierarchically Ordered Ceramics through Surfactant-templated Sol-gel Mineralization of Biological Cellular Structures. Adv. Mater. 2001, 13(10):728-732
    208 A. Taubert, G. Wegner. Formation of Uniform and Monodisperse Zincite Crystals in the Presence of Soluble Starch. J. Mater. Chem. 2002, 12(4):805-807
    209 Y. Chen, J. Cao, M. Zheng, X. Ke, H. Ji, J. Liu, G. Ji. Novel Synthesis of Nanoporous Nickel Oxide and Nickel Nanoparticles/Amorphous Carbon Composites Using Soluble Starch as the Template. Chem. Lett. 2006, 35(7):700-701
    210 W. Shi, P. Liang, D. Ge, J. Wang, Q. Zhang. Starch-assisted Synthesis of Polypyrrole Nanowires by a Simple Electrochemical Approach. Chem. Commun. 2007, 7(23):2414-2416
    211 S. Yu, X. Cui, L. Li, K. Li, B. Yu, M. Antonietti, H. Colfen. From Starch toMetal/Carbon Hybrid Nanostructures: Hydrothermal Metal-catalyzed Carbonization. Adv. Mater. 2004, 16(18):1636-1640
    212 Z. Miao, K. Ding, T. Wu, Z. Liu, B. Han, G. An, S. Miao, G. Yang. Fabrication of 3D-networks of Native Starch and Their Application to Produce Porous Inorganic Oxide Networks through a Supercritical Route. Micropor. Mesopor. Mat. 2008, 111(1-3):104-109
    213 V. Budarin, J. H. Clark, J. J. E. Hardy, R. Luque, K. Milkowski, S. J. Tavener, A. J. Wilson. Starbons: New Starch-Derived Mesoporous Carbonaceous Materials with Tunable Properties. Angew. Chem. Int. Ed. 2006, 45(23):3782-3786
    214 L. Zhang, Q. Yang, H. Yang, J. Liu, H. Xin, B. Mezari, P. C. M. M. Magusin, H. L. C. Abbenhuis, R. A. van Santen, C. Li. Super-microporous Organosilicas Synthesized from Well-defined Nanobuilding Units. J. Mater. Chem. 2008, 18(4):450-457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700