用户名: 密码: 验证码:
东北地区流域径流对气候变化与人类活动的响应特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文序列的时空分布变化受到气候变化与人类活动的共同影响。科学认识已发生的气候变化及人类活动对径流的影响,有助于正确认识变化环境下水循环响应机制,预估未来径流对气候变化与人类活动的响应,更好的开展流域水资源的规划、管理和配置。基于已有研究,本文以东北地区七个样本流域为研究对象,采用“先初步确定,后反向验证”的研究思路确定径流的“天然阶段”;在此基础上应用弹性系数法与水文模拟法定量估算近五十年来人类活动与气候变化对径流影响的贡献量,分析径流对气候变化以及人类活动的响应特征;采用GCMs输出结果耦合流域水文模拟的方法进行考虑人类活动影响的未来径流趋势预估。主要内容及研究成果如下:
     (1)基于长期的气象和水文观测资料,研究东北地区七个样本流域水循环要素的时空演变规律。采用Mann-Kendall秩次相关检验法、线性回归检验法Mann-Whitney-Pettitt突变点分析方法以及累积双曲线法,开展气象水文要素的趋势性检验和突变点诊断研究。在此基础上揭示水循环要素的趋势性与阶段性特征,定性辨识气候变化和人类活动因素对径流的影响。
     (2)结合流域的DEM、土壤、土地利用及气象水文数据,采用SWAT模型对七个样本流域的水循环过程进行了模拟。在总结现有研究的基础上采用以水量平衡为控制条件的多站点多变量模型率定方法,从上游控制站到下游控制站逐级率定模型参数,模拟样本流域的径流过程。模型评价结果表明SWAT模型在样本流域的模拟效果较好,可以用于定量分析气候变化与人类活动对径流的影响。
     (3)针对以往“天然阶段”与“天然径流”合理性无法验证的缺陷,提出了辨识河川径流“自然状态”的双累积曲线法,使“天然阶段”的划分更加合理。该方法依据人类活动对径流影响程度的变化特征,首先采用统计学的突变点分析方法确定人类活动影响显著时期;接着采用最早期的水文气象资料率定水文模型并还原流域的天然径流;然后绘制“降水-径流”与“降水-天然径流”双累积曲线;最后根据两条双累积曲线的分离时间及流域的人类活动影响信息验证“天然阶段”与“天然径流”的合理性。
     (4)采用弹性系数法与水文模拟法定量分析了样本流域气候变化与人类活动对径流影响的贡献量。结果表明:相对于天然阶段,在整个人类活动影响阶段,两种计算方法得到的气候变化与人类活动对径流影响的贡献量在大部分流域取得了比较一致的结果。选取的样本流域中气候变化与人类活动共同对径流产生影响,人类活动对径流的减少起到主导作用。
     (5)详细分析了各样本流域径流对年降水和年平均气温变化的敏感性,以及各样本流域在不同年代、不同年降雨类型下人类活动对径流的影响特征。结果表明:样本流域对降水变化的敏感性远远大于对温度变化的敏感性;随着社会经济的发展,人类活动对径流的影响程度越来越剧烈;修建大型水库的流域,水利工程的调蓄作用严重地改变了径流的丰枯过程;在人类活动影响较小的森林流域,径流的改变很小;人类活动对径流的影响具有区域化特征,不同降水类型下,人类活动对径流的改变程度不尽相同。
     (6)针对未来径流变化预测的研究只考虑了气候变化影响,并没有考虑到人类活动影响或者将其影响参数化的问题,在合理划分天然阶段的基础上采用修正系数法进行考虑人类活动影响的水资源预测研究,为其它流域的相关研究提供参考。该方法首先根据实测降水、径流及还原的“天然径流”率定出人类活动对累积径流的影响系数;然后进行GCMs输出数据的区域化处理,并将降尺度的数据输入到水文模型模拟未来的“天然径流”;最后根据修正公式预估考虑人类活动影响的未来径流状况。
Evaluation of the impacts of climate change and human activities on runoff are important for water resources planning, management and configuration in a catchment. There are temporal and spatial distribution changes for the observed hydro-climatic factors. It was induced by both of the natural variability and human activities including greenhouse gas emissions and the influence of land use/cover changes. Understanding the happened climate change and human activities and their influence on the hydrological process based on observed data is good for future runoff prediction. Selecting seven catchments as the study subjects, this paper estimated the impacts of human activities and climate change on runoff quantitatively and predicted the future runoff considering the influence of human activities. Firstly, the research thoughts of "Reverse verification after preliminary confirmation" were used to determine the "natural period". After that the climatic elastic coefficient method and hydrological simulation method were used to evaluate the runoff responds to climate change and human activities during the last fifty years. The method of downscaling GCM outputs coupled with hydrological simulation was used to future runoff prediction. The main content and results of this study are as follows:
     (1) Long time gradual trend and step change are important indicators of the hydro-climatic change/variables. Based on long term observed data, the Mann-Kendall test, linear regression test and Mann-Whitney-Pettitt change point analysis method were used to detect and diagnose the temporal and spatial distribution changes of the hydro-climatic factors. Dominant factors of the water cycle were analyzed and impacts of climate change and human activities on runoff were identified qualitatively according to the test results.
     (2) SWAT model for the seven selected catchments were established with the DEM data, soil data, land use/cover data and hydrometeorological data. Then the multivariable and multistation method was used in model calibration on the basis of water balance. Parameters of the SWAT models were celebrated step by step from upstream to downstream. Evaluation of the SWAT model showed that SWAT model are available and can descript the runoff process reasonably and can be used to evaluate the impacts of climate change and human activities on runoff.
     (3) Detection of the "natural period" is extremely important for quantization of the runoff response to climate changes and human activities. Focusing on the defects that "natural period" cannot be verified in the previous study, this paper proposed a thought of "reverse verification after preliminary confirmation" to verify the "natural period". Determine the significant impacted period firstly with change point analysis method. Then, use the earliest hydrometeorological date to calibrated hydrological model and reconstruct "natural runoff" There after "rainfall-runoff and "rainfall-natural runoff double accumulation curve can be drew in the same coordinate. According to the separation time of the two double accumulation curve and the information of human activities, rationality of the "natural period" and "natural runoff can be verified at last.
     (4) After reasonable division of the "natural period" and reconstruction of the "nature runoff, climatic elastic coefficient method and hydrological simulation method were used to evaluate the impacts of climate change and human activities on runoff quantitatively. The results show that, compared to natural period, contributions of climate change and human activities on runoff change calculated by the two methods are consistent. In the selected catchment, climate change and human activities affect runoff commonly, however, human activities play a leading role.
     (5) Detailed analysis of the climate elasticity of streamflow and human induced runoff change show that:Streamflow is positively related to precipitation while negatively related to temperature; the precipitation-streamflow sensitivity are greater than that of the streamflow-temperature; increasing runoff reductions were found for the catchments studied; inter-annual runoff distribution has been seriously disturbed in the catchments where large reservoirs were built; runoff was little changed in the forest catchment where human activities were weak. Human activities have distinct regional characteristics, and human-induced runoff changes were related to the annual precipitation.
     (6) Human activities as well as climate change are driving factors that induced runoff change. The impacts of human activities are even greater in some catchments in northeast China. However, the traditional hydrological projection was directly estimated by calibrated hydrological model with the output from GCMs, without considering the impacts of human activities on water resources. In this study a correction coefficient method were presented to predict future runoff considering human activities. The hydrological projection was assessed by the following steps:celebrate the revise coefficient according to the observed precipitation, observed runoff and reconstructed nature runoff; downscaling the outputs of GCMs to regional scale, and take it as input data of hydrological model to simulate future "natural runoff; estimate the future runoff tendency considering human activities according to the correction formula.
引文
[1]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.
    [2]祝昌汉.气候变化与人类活动[EB/OL].(2003.03.26).http://www.ccchina.gov.cn/cn/Newslnfo. asp? Newsld=3730.
    [3]IPCC. Climate Change and Water [M]. Cambridge, UK and New York, USA:Cambridge University Press,2008.
    [4]黄强,赵雪花.河川径流时间序列分析预测理论与方法[M].郑州:黄河水利出版社,2008.
    [5]张建云,章四龙,王金星,等近50年来中国六大流域年际径流变化趋势研究[J].水科学进展,2007,18(2):230-234.
    [6]刘卓,刘昌明.东北地区水资源利用与生态和环境问题分析[J].自然资源学报,2006, 21(5):700-707.
    [7]张爱静,王本德,曹明亮.气候变化与人类活动对径流影响贡献的研究概况[J].东北水利水电,2012,1:6-9.
    [8]任国玉.气候变化与中国水资源[M]. 2007,北京:气象出版社.
    [9]IPCC. Climate Change 2007:Impacts, Adaptation and Vulnerability Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M].2007, Cambridge,UK and New YorK, USA:Cambridge University.
    [10]周淑贞,等.气象学与气候学(第三版)[M].高等学校教材,人民教育出版社.
    [11]芮孝芳.水文学的机遇及应着重研究的若干领域[J].中国水利,2004, 7:22-24.
    [12]张建云,王国庆,等.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [13]张胜利,李悼,赵文林.黄河中游多沙粗沙区水沙变化原因及发展趋势[M].郑州:黄河水利出版社,1998.
    [14]汪岗,范昭,等.黄河水沙变化研究[M].郑州:黄河水利出版社,2002.
    [15]贺伟程,卢琼.河川径流系列一致性处理办法[J].水问题论坛,2002, 4:18-20.
    [16]王国庆,张建云,贺瑞敏.环境变化对黄河中游汾河径流情势的影响研究[J].水科学进展,2006,17(6):853-858.
    [17]Hao Xingming, Chen Yaning, Xu Changchun, et al. Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years [J]. Water Resource Manage,2008,22:1159-1171.
    [18]Budyko, M I. Climate and Life [M]. San Diego, CA.:Academic,1974.
    [19]王国庆,张建云,刘九夫,等.气候变化和人类活动对河川径流影响的定量分析[J].中国水利,2008(2):55-59.
    [20]姚允龙,吕宪国,王蕾.1956年-2005年挠力河径流演变特征及形响因素分析[J].资源科学,2009,31(4):648-655.
    [21]曹明亮,张弛,周惠成,等.丰满上游流域人类活动影响下的降雨径流变化趋势分析[J].水文,2008,28(5):86-89.
    [22]许炯心,孙季.嘉陵江流域年径流量的变化及其原因[J].山地学报,2007,25(02):153-159.
    [23]刘登伟,封志明,延军平.秦岭南北地区人口增长对水资源影响的比较研究[J].干旱区资源与环境,2005,19(7):147-151.
    [24]罗先香,邓伟,何岩,等.三江平原沼泽性河流径流演变的驱动力分析[J].地理学报,2002,57(5):303-310.
    [25]Liu Dedi, Chen Xiaohong, Lian Yanqing and Lou Zhanghua. Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China [J]. Hydrol. Process,2010,24, 1487-1495.
    [26]Li Zhi, Liu Wenzhao, Zhang Xunchang, Zheng Fenli. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China [J]. Journal of Hydrology.2009,337:35-42.
    [27]贺瑞敏,王国庆,张建云.环境变化对黄河中游伊洛河流域径流量的影响[J].水土保持研究,2007,14(2):297-301.
    [28]陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,27(4):559-565.
    [29]Ma Huan, Yang Dawen, Tan Soon Keat, et al. Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment [J]. Journal of Hydrology,2010,389: 317-324.
    [30]李艳,陈晓宏,王兆礼.人类活动对北江流域径流系列变化的影响初探[J].自然资源学报,2006,21(06):910-914.
    [31]Wang Guosheng, Xia Jun, Chen Ji. Quantification of effects of climate variations and human activities on runoff by a monthly water balance model:a case study of the Chaobai River basin in northern China [J]. Water Resources Research,2009,45, WOOA11, doi:10.1029/2007 WR006768
    [32]周红,秦嘉轮,卫江益.人类活动对塔里木河年径流影响量的估算[J].干早区地理,2002,25(1):70-74.
    [33]郝兴明,陈亚宁,李卫红.塔里木河流域近50年来生态环境变化的驱动力分析[J].地理学报,2006,21(3):262-272.
    [34]Li Li juan, Zhang Lu,Wang Hao, et al. Assesing the impact of climate variability and human activities on streamflow from the Wuding river basin in China [J]. Hydrological Processes,2007,21: 3485-3491.
    [35]江善虎,任立良,雍斌,杨肖丽,刘晓帆.气候变化和人类活动对老哈河流域径流的影响[J].水资源保护,2010,26(6):1-4.
    [36]Ma Zhenmei, Kang Shaozhong. Zhang Lu, et al. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China [J]. Journal of Hydrology,2008,352:239-249.
    [37]仕玉治.气候变化及人类活动对流域水资源的影响及实例研究[D].大连:大连理工大学,2011.
    [38]1PCC WG H.Tecnieal Guidelines for Assessing Climate Impacts and Adaption [R],1994.
    [39]Houghton J T, Ding Y. GriggsD J, et al. Climate Change 2001:The Scientific Basis[M]. United Kingdom and New York:Cambridge University Press,2001:473,476,5362543.585,617.
    [40]王在志,宇如聪,包庆,等.大气环流模式(SAML)海气耦合前后性能的比较[J].大气科学,2007,31(2):202-213.
    [41]1PCC WG 1. Climate change 2007:The physical science basis:Summary for policymakers [EB/OL]. http://www. ipcc.ch/SPM2feb07.pdf.2007.
    [42]Covey C, AchutaRao KM, Lambert S J, et al. Intercomparison of p resent and future climates simulated by coupled ocean atmosphere GCMs [R]. PCMDL Report No 66, p rogram for climate model diagnosis and intercomparison, Lawrence Livermore National Laboratory, University of California, Livermore, CA,2000.
    [43]Houghton J T, Meira Filho L G,Bruce J, et al. Climate Change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios [M]. UK:Cambridge University Press,1994.
    [44]Nakicenovic N, Alcamo J, Davis G, et al. IPCC Special Report on Emission Scenarios [M]. UK, Cambridge:Cambridge University Press,2001:425.
    [45]张雪芹,彭莉莉,林朝晖.未来不同排放情景下气候变化预估研究进展[J].地球科学进展,2008,23(2):174-185.
    [46]秦大河,丁一汇,苏纪兰,等.中国气候与环境演变(上卷):气候与环境的演变及预测[M].北京:科学出版2005:513.
    [47]刘昌明,刘文彬,傅国斌,等.气候影响评价中统计降尺度若干问题的探讨[J].水科学进展,2012,23(3):427-437.
    [48]范丽军,符淙斌,陈德亮.统计降尺度法对未来区域气候变化情景预估的研究进展[J].地球科学进展,2005,20(3):320-329.
    [49]Wilby R L, Dawason C W and Barrow E M. SDSM-a decision support tool for the assessment of regional climate change impacts [J]. Environmental and Modelling Software,2002a,17:147-159.
    [50]Hessami M, Gachon P, Ouarda T B M J. Automated regression-based Statistical Downscaling tool [J]. Environmental Modelling & Software.2008,23:813-834.
    [51]Hellstr M C, Chen D. Statistical downscaling based on dynamically downscaled predictors: Application to monthly precipitation in Sweden [J]. Advances in Atmospheric Sciences,2003,20: 951-958.
    [52]Stockton. Geohydrological implications of climate change on water resources development. USACE Institute for water resources,1979.
    [53]Arnell N W, Reynard N S. Estimating impacts of climatic change on river flows:Some examples from Britain [C]. Proc.Conference on Climate and Water, Helsinki,1989,1:413-425:
    [54]Gleiek P H. The development and testing of a waterbalance model for climate impact assessment: modeling the Saeramento basin [J]. Water Resourees Research.1987,23(6):1049-1061.
    [55]陈英,刘新仁.淮河流域气候变化对水资源的影响[J].河海大学学报,1996, 24(5):111-114.
    [56]Chiew F, Mcmahon T. Application of the Daily Rainfall-Runoff Model Modhydrolog to 28 Australian Catchments[J]. Journal of Hydrology,1994,153(1-4):383-416.
    [57]Dvorak V, Hladny J. Kasparek L. Climate change hydrology and water resources impact and adaptation for selected river basins in the Czech Republic [J]. Climatic Change,1997,36 (1-2): 93-106.
    [58]Cohen S J, Allsopp T R. Potential impacts of a scenario of CO2-induced climatic change on Ontario,Canada.Journal of Climatology,1988,1(7):669-681.
    [59]张建云,章四龙,朱传保.气候变化与流域径流模拟[J].水科学进展(增刊),1996,7.
    [60]Christensen N S, Wood A W, Voisin N. et al. The effects of climate change on the hydrology and water resources of the Colorado River basin [J]. Climatic Change,2004,62(1-3):337-363.
    [61]袁飞,谢正飞,任立良,等.气候变化对海河流域水文特性的影响.水利学报,2005,36(3):274-279.
    [62]孔凡哲.基于数字化平台的分布式流域水文模型和流域汇流研究[D].南京:河海大学,2003.
    [63]商瑶玲,王东华,吉建培,等.国家1:50000地形数据库的数据设计与建库[J].测绘科学,2006,4(4):74-76.
    [64]史学正,于东升,潘贤章,等.国家科技攻关计划土壤数据库专题研究分析报告[R].南京:中国科学院南京土壤研究所,2003.
    [65]史学正,于东升.“数字土壤”—21世纪土壤学面临的机遇与挑战[J].土壤通报,2000,31(3):104-106.
    [66]张甘霖,龚子同,骆国保,等.国家土壤信息系统的结构、内容与应用[J].地理科学,2001,21(5):401--406.
    [67]张定祥,史学正,于东升,等.中国1:100万土壤数据库建设的基础[J].地理学报,2002,57(7s):82-86.
    [68]张定祥,潘贤章,史学正,等.中国1:100万土壤数抓库建设中的几个问题[J].土壤通报,2003,34(2):81-84.
    [69]张甘霖,史学正,龚了同.中国土壤地理学发展的回顾与展望[J].土壤学报,2008,45(5):792-801.
    [70]史学正,于东升,潘贤章,等.中国1:100万土壤数据库及其应用[c].中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇),北京:科学出版社,2004.
    [71]工国庆,工兴泽,张建云,等.中国东北地区典型流域水文变化特性及其对气候变化的响应.地理科学,2011,31(6):641-646.
    [72]《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.
    [73]刘实,王勇,缪启龙,等.近50年东北地区热量资源变化特征[J].应用气象学报,2010,21(3):266-278.
    [74]Liang L Q, Li L J, Liu Q. Precipitation variability in Northeast China from 1961 to 2008 [J]. Journal of Hydrology,2011,404(1-2):67-76.
    [75]Fu G B, Charles S P, Chiew F H S. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow [J]. Water Resources Research,2007,43(11):W11419.
    [76]曹明亮.丛于多元信息分析人类活动对径流及洪水预报的影响[D].大连:大连理工大学,2011.
    [77]李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展[J].自然资源学报.2007,22(2):117-123.
    [78]Mann H B. Non-parametric tests against trend [J]. Econometrical 1945.13:245-259.
    [79]Kendall M G. Rank Correlation Methods [M]. Charles Griffin, London,1975.
    [80]Sen P K. Estimates of the regression coefficient based on Kendall's tau [J]. Journal of the American Statistical Association.1968,63,1379-1389.
    [81]Von Storch H. Misuses of statistical analysis in climate research, in Analysis of Climate Variability: Applications of Statistical Techniques [M]. New York:Springer-Verlag,1995:11-26.
    [82]Yue S, Pilon P, Phinney B. Canadian streamflow trend detection:impacts of serial and cross-correlation [J]. Hydrological Sciences Journal.2003,48:51-64.
    [83]Yue S, Pilon P, Phinney B, Cava dias G. The influence of autocorrelation on the ability to detect trend in hydrological series [J]. Hydrological Processes,2002,16:1807-1829.
    [84]屠其璞,王俊得,丁裕国,等.气象应用概率统计学[M].北京:气象出版社,1984:222-229.
    [85]Xiong L, Guo S. Trend Test and Change-point Detection for the Annual Discharge Series of the Yangtze River at the Yichang Hydrological Station [J]. Hydrological Sciences Journal,2004,49: 99-112.
    [86]Pettitt A N. A nonparametric approach to the change point problem [J]. Appl Stat,1979.28: 126-135.
    [87]Utts J M, Heckard R F. Mind on Statistics [M]. Beijing:China Machine Press.2002.
    [88]Crawshaw J, Chambers J. A Concise Course in A-Level Statistics with Worked Examples [M]. Avon UK:Stanley Thornes Ltd.1990.
    [89]穆兴民,张秀勤,高鹏,等.双累积曲线方法理论及在水文气象领域应用中应注意的问题[J].水文,2010, 30(4):47-51.
    [90]Bartier P M, Keller C P. Multivariate interpolation to incorporate thematic surface data using Inverse Distance Weighting (IDW) [J]. Computer & Geosciences,1996:22(7):795-799.
    [91]Allen R G. Pereira L S, Raes D, Smith M. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements [M]. United Nations Food and Agriculture Organization, Irrigation and Drainage,1998,56.
    [92]Nitta T S, Yamada S. Recent warming of tropical seasurface temperature and its relationship to Northern Hemisphere circulation. J Metror Soc Japan.1989.67:375-383.
    [93]Lau K M, Weng H. Interannual. decadal-interdecadal and Global warming signals in sea surface temperature during 1955-1997. J Climate,1999,12:1257-1267.
    [94]Trenberth K E, Hurrell J W. Decadal atmosphere-ocean variations in the Pacific. Climate Dyn,1994, 9:303-319.
    [95]Graham N E. Decadal scale climate variability in the tropical And North Pacific during the 1970s and 1980s:Observations and model results. Climate Dyn.1994,9:135-162.
    [96]Zhang Y, Wallace J M. Battisti D S. ENSO like interdecadal variability:1900-1993. J Climate,1997. 10:1004-1020.
    [97]丁一汇,戴晓苏.中国近百年来的温度变化[J].气象, 1994, 20(12):19-26.
    [98]付长超,刘吉平,刘志明.近60年东北地区气候变化时空分异规律的研究[J].干旱区资源与环境,2009,23(012):60-65.
    [99]闫敏华,邓伟.马学慧.大面积开荒扰动下的三江平原近45年气候变化[J].地理学报,2001,56(2):159-170.
    [100]张淑杰,张玉书,隋东,等.东北地区参考蒸散量的变化特征及其成因分析[J].自然资源学报,2010(10):1750-1761.
    [101]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2003.
    [102]Yi B Z. The environmental cost by the opening up of the black earth of the Northeast Plains since the Modern Times [M]. Jilin,2002.
    [103]Li L Y, Jiao J Y, Li R, Chen Y. Response characteristics of sediment to human activities in the Songhua River basin [J]. J Sediment Res,2009,2:62-70.
    [104]Compiling Committee of China's natural resources. A Series of China's Natural Resources: Heilongjiang Volume (33) [M]. Beijing:China Environmental Science Press,1995.
    [105]章光新,郭跃东.嫩江中下游湿地生态水文功能及其退化机制与对策研究[J].干旱区资源与环境,2008,1:122-128.
    [106]于潇.建国以来东北地区人口迁移与区域经济发展分析[J].人口学刊,2006,3:29-34.
    [107]Liu B J, Zhang J H. Reservoirs construction and flood control in China [J]. Yangtze River,1999,30: 1-3.
    [108]Feng X Q, Zhang G X, Yin X R. Analysis of the characteristics of runoff in Wuyuerhe river basin [J]. Journal of Natural Resources,2009,24(7):1286-1296.
    [109]张丹,周惠成.大凌河流域上游水资源变化趋势及成因研究[J].水文,2012,31(4):81-87.
    [110]Wu K S, Johnston C A. Hydrologic response to climatic variability in a Great Lakes Watershed:A case study with the SWAT model [J]. Journal of Hydrology,2007,337 (1-2):187-199.
    [111]Schuol J, Abbaspour K C, Srinivasan R, et al. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model [J]. Journal of Hydrology,2008,352 (1-2): 30-49.
    [112]郝芳华,程红光,杨胜天.非点源污染模型—理论方法与应用[M].北京:中国环境科学出版社,2006.
    [113]王林,张明旭,陈兴伟.基于SWAT模型的晋江西溪流域径流模拟[J].亚热带资源与环境学报,2007,2(1):28-33.
    [114]张东,张万昌,朱利,等SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,2005,25(4):434-440.
    [115]Galvan L, Olias M. de Villaran RF. et al. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of transported pollutant load [J]. Journal of Hydrology,2009, 377 (3-4):445-454.
    [116]Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large area hydrologic modeling and assessment, Part I. Model development [J]. J Am Water Resour Assoc 1998,34(1):73-89.
    [117]Neitsch S L. Arnold J G, Kiniry J R, et al. Soil and water assessment tool input/output file documentation, version 2005. http://swatmodel.tamu.edu/media/1291/swat 2005io.pdf.
    [118]Neitsch S L, Arnold J G. Kiniry J R. Williams J R. Soil and water assessment tool:theoretical documentation, version 2005. http://swatmodel.tamu.edu/media/1292/swat2005theory.pdf
    [119]Morris M D. Factorial sampling plans for preliminary computational experiments [J]. Technometrics. 1991,33(2):161-174.
    [120]Mekay M D, Beckmlan R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code [J]. Technometrics,1979,21(2): 239-245.
    [121]Cao W Z, William B, Bowden T D, et al. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability [J]. Hydrologocal processes, 2006,20(5):1057-1073.
    [122]Benaman J, Shoemaker C A, Haith D A. Calibration and validation of soil and water assessment tool on an agricultural watershed in upstate New York [J]. Journal of hydrologic engineering,2005,10(5): 363-374.
    [123]Robert S. Ah1 Scott W, Woods Hans R Z. Hydrologic calibration and validation of SWAT in a snow-dominated rocky mountain watershed, Montana, USA [J]. Journal of the American water resources association,2008,44(6):1411-1430.
    [124]White K L, Chaubey I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model [J], Journal of the American water resources association,2005,41(5): 1077-1089.
    [125]郭兵.太阳总辐射与日照时数相关关系的区域模型分析[D].西安:西安建筑科技大学,2006.
    [126]欧春平.流域水资源系统不确定性分析及其建模研究—以海河流域为例[D].北京:中国科学院地理科学与资源研究所.2007.
    [127]魏怀斌,张占庞,杨金鹏.SWAT模型土壤数据库建立方法[J].水利水电技术,2007,38(6):15-18.
    [128]Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 2007,50:885-900.
    [129]Schreiber P. U" ber die beziehungen zwischen dem niederschlag und der wasserfu"hrung der flu" Be in mitteleuropa [J]. Meteorologische Zeitschrift.1904,21(10):441-452.
    [130]Ol'dekop E M. On evaporation from the surface of river basins:Transactions on meteorological observations, lur-evskogo (in russian) [R]. Tartu:University of Tartu,1911.
    [131]Pike J G. The estimation of annual runoff from meteorological data in a tropical climate [J]. Journal of Hydrology.1964,2:116-123.
    [132]Fu B P. On the calculation of the evaporation from land surface [J]. Chinese Journal of Atmospheric Sciences.1981,5(1):23-31.
    [133]Zhang L, Dawes W R, Walker G R. The response of mean annual evapotranspiration to vegetation changes at catchment scale [J].Water Resources Research,2001,37:701-708.
    [134]Milly P C, Dunne K A. Macroscale water fluxes 2. Water and energy supply control of their inter-annual variability [J].Water Resource Research,2002,38(10):241-249.
    [135]李慧赞.植被变化与气候变化的径流响应研究[D].大连:大连理工大学,2011.
    [136]Zhang L, Hickel K, Dawes W R, et al. A rational function approach for estimating mean annual evapotranspiration [J].Water Resources Research,2004,40, W02502, doi:10.1029/2003 WR002710.
    [137]Vivek K A. The use of the aridity index to assess climate change effect on annual runoff [J]. Journal of Hydrology,2002,265:164-177.
    138] Zhang L J, Qian Y F. Annual distribution features of the yearly precipitation in China and their interannual variations. Acta Meteor. Sinica,2003,17(2),146-163.
    [139]Yang C G, Lin Z H, Yu Z B, et al. Analysis and simulation of human activity impact on runoff in the Huaihe river basin with a large-scale hydrologic model [J]. J Hydrometeor,2010, 11:810-821.
    [140]Wang J H, Hong Y, Gourley J, Adhikari P, et al. Quantitative assessment of climate change and human impacts on long-term hydrologic response:a case study in subbasin of the Yellow River, China [J]. International Journal of Climatology,2010,30:2130-2137.
    [141]Jiang S H, Ren L L, et al. Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods [J]. Hydrological Processes,2011,25(16):2492-2505.
    [142]Yu H, Diao Y T, Nie L B. Water resources of Shenyang [D]. Shenyang:Northeastern University Press,2007.
    [143]Zhang Aijing, Zhang Chi, Fu Guobin, et al. Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China [J]. Water Resources Management.2012 (26):2199-2217.
    [144]Cao Mingliang, Zhou Huicheng, Zhang Chi, Zhang Aijing. et al. Research and Application of Flood Detention Modeling for Ponds and Small Reservoirs Based on Remote Sensing Data [J]. Sci China Ser E-Tech Sci,2011 (54):2138-2144.
    [145]Sang X F, Zhou Z H, Wang H, et al. Development of Soil and Water Assessment Tool Model on Human Water Use and Application in the Area of High Human Activities, Tianjin, China [J]. J lrrig Drain Eng,2010,136:23-30.
    [146]高歌,陈德亮,徐影.未来气候变化对淮河流域径流的可能影响[J].应用气象学报,2008,19(6):741-748.
    [147]Bao Zhenxin, Fu Guobin, Wang Guoqing, et al. Hydrological projection for the Miyun Reservoir basin with the impact of climate change and human activity [J]. Quaternary International,2012,282 (19):96-103.
    [148]郭靖.气候变化对流域水循环和水资源影响的研究[D].武汉大学,2010.
    [149]李林,申红艳,戴升,等.黄河源区径流对气候变化的响应及未来趋势预测[J].地理学报,201],66(9):]261-]269.
    [150]向亮,刘学锋,郝立生,等.未来百年不同排放情景下滦河流域径流特征分析[J].地理科学进展,2011,30(7):861-867.
    [151]胡彩虹,刘丽娜,吴泽宁,等.未来气候情景下覆被变化对径流量的影响[J].人民黄河,2012,34(1):19-24.
    [152]Wilby R L, Dettinger M D. Streamflow changes in the Sierra Nevada, CA, simulated using a statistically downscaled General Circulation Model scenario of climate change. In:Linking Climate Change to Land Surface Change, McLaren, S.J. and Kniveton, D.R. (Eds.), Kluwer Academic Publishers, Netherlands,2000:91-121.
    [153]Wilby R L, Dawson C W, Barrow E M. SDSM, a decision support tool for the assessment of regional climate change impacts [J]. Environmental and Modelling Software,2001.
    [154]Wilby R L, Hassan H, Hanaki K. Statistical downscaling of hydrometeorological variables using general circulation model output [J]. Journal of Hydrology,1998,205:1-19.
    [155]李发鹏,徐宗学,刘星才,等.大气环流模式在松花江流域的适用性评价[J].水文,2011,31(6):24-31.
    [156]Cavazos T, Hewitson B C. Performance of NCEP-NCAR reanalysis variables in statistical downscaling of daily precipitation [J]. Climate Research,2005.28:95-107.
    [157]Murphy J M. An evaluation of statistical and dynamical techniques for downscaling local climate [J]. Journal of Climate,1999,12:2256-2284.
    [158]Beckmann B R, Buishand T A. Statistical downscaling relationship for precipitation in the Netherlands and North Germany [J]. International Journal of Climatology,2002,22:15-32.
    [159]IPCC. Climate Change 1995, Impacts, Adaptation, and Mitigation [M]. Cambridge:Cambridge University Press,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700