用户名: 密码: 验证码:
多速率CDMA系统下行波束成形、功率控制与数据速率分配联合多变量模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带码分多址技术是第三代移动通信系统的一种杰出无线接入技术,它既能支持各种语音视频业务,也能支持数据业务。这些服务需要更高的数据速率以更高的接收信号功率等级,因此用户之间就会产生更强的干扰。所以十分有必要减小用户间的干扰来有效地提高整个通信系统的容量。空分多址(SDMA)技术,即在基站安装多个天线阵元以便从期望用户接收或向期望用户发送数据信息,是有效抑制干扰的技术之一。空分多址主要包括上行波束成形也包括下行波束成形,上行波束成形由上行链路波束权值生成与上行链路接收信号的分解组成;下行波束成形包含下行链路波束权值的产生与下行链路发送信号的复用合成。理论上,联合两条链路的信道响应对于产生相关波束权值是至关重要的。
    功率控制与数据速率分配是能够在时变信道上提供可靠信息传输的两种基本技术。一般来说,功率控制能够平衡小区内所有用户到达基站的接收信号功率等级,使得小区内不允许存在发射过多功率的用户,以防止它对系统内其余用户引起干扰。功率控制的目标就是对系统内每个用户都分配合理的发射功率,使得该用户对其它用户的干扰程度最小,同时也要满足用户需要的信干比等级。在现有的IS-95系统与即将投入商用的第三代移动通信系统中均采用了功率控制技术。有文献指出,当发射功率恒定时,自适应的数据速率分配的通信系统比起恒定数据速率条件下自适应功率控制通信系统能够提供更多的系统吞吐量。
    此外,联合波束成形技术与功率控制技术也能够进一步提高DS-CDMA系统的上行链路容量。目前,已经存在了基于功率等级的功率控制方案与最大比合成波束成形准则,还有人提出了基于信干比的功率控制与最小均方误差波束成形准则。这两种方案比单天线情况都能明显地提高整个系统容量。在实际中,我们也希望能够提高下行链路的容量以便于提高整个系统的容量。尤其对于下一代支持无线互联网,网上VOD及多媒体服务的无线通信系统来说,下行链路的特性比上行链路的特性更为重要。
    根据上述内容,在本文第三章中,我们研究了多速率DS-CDMA下行波束成形、功率控制与动态资源分配的联合多变量模型。数学分析与计算机仿真结果给出了数据速率分配对总发射功率的影响,以及软目标SIR门限与数
    
    
    据速率分配之间的关系,得出了结论,即用户只有在牺牲其自身的目标SIR门限的条件下才能够获得更多的系统资源。根据这个结论,我们又提出一种新的最优数据速率分配算法,该算法运用了所有用户的软目标SIR门限值和所有用户的空间相关信息。然后又将数据速率分配算法引入V-UBPCT算法,使之与下行波束成形和功率控制结合起来,组成了一种新的改进V-UBPCT算法。为简便说明问题,文中给出IVPW算法的步骤与数学形式,并且列出了计算机仿真实验结果。计算机仿真结果表明,最优数据速率分配算法优越于平均数据速率分配方案。同时,也验证了获取高速率的用户会影响低速率用户的中断率,因此十分有必要限制高速率用户的数目。该新方案十分适用于未来的无线互联网服务,实际上,它既给基站提供了有效的数据速率分配方法及最大系统吞吐量,也保证了所有用户的稳定工作状态。
    空时编码是无线通信的一种新的编码和信号处理技术,它使用多个发射和接收天线进行信息的发射与接收,可以大大改善无线通信系统的信息容量和信息率。空时编码在不同天线发射的信号之间引入时域和空域相关,使得在接收端可以进行分集接收。与不使用空时编码的编码系统相比,空时编码可以在不牺牲带宽的情况下获得更高的编码增益。在接收机结构相对简单的情况下,空时编码的空时结构可以有效提高无线系统的容量。目前,对于波束成形联合空时编码方法的研究有以下几种。将正交发送分集应用于波束;用一对被空时编码过的波束来提高下行链路的特性;采用联合空时编码波束成形实现全分集;可调整波束数目的空时分组编码算法。
    根据上述内容,本论文第四章中,针对上、下行链路提出了一种在基站处采用多天线阵列接收、多天线阵列发射,并在移动终端处也采用多天线阵元接收的联合波束成形与空时编码方案。既结合了波束成形分离并“复制”所有方向信号的优点,又采纳了空时编码在不牺牲带宽的情况下改善系统信息容量和信息率的优点,克服了传统方法的单一性。在基站实现精确确定波束数目和定位方向的情况下,移动终端采用多天线阵元接收,有效地改善了移动终端的误码特性,同时也提高了系统的容量,并用仿真结果证明了这一点。本方案的主要缺点是基于循环统计量的方向定位暂不能区分多径矢量,如果能够克服这个缺点,该方案将是一个非常理想的方案。
    自从20世纪80年代初期第一片数字信号处理器芯片问世以来,DSP就以数字器件特有的稳定性、可重复性、可大规模集成,特别是可编程性和易于实现自适应处理特点,为数字信号处理的发展带来了巨大机遇,并使得信号处理手段更灵活,功能更复杂,应用领域也拓展到国民经济生活的各个方面。近年来,由于半导体制造工艺的发展和计算机体系结构等方面的改进,
    
    
    DSP芯片功能越来越大,这使得信号处理研究的重点在很大程度上可以放在软件算法上,而不用像过去那样需要过多?
Wide-band direct-sequence code-division multiple-access (DS-CDMA) is a promising radio access technique for third-generation mobile communication systems due to its flexibility to support a variety of voice, video, and data services. These services will require higher data rates and higher received signal power levels, thus creating larger interference between users. The interference levels have to be reduced effectively in order to obtain high system capacity. Spatial-division multiple access (SDMA), by which a plurality of antenna elements are equipped at the base station in order to receive and transmit data information from and to the desired user, has been proposed as an effective technique to suppress interferences. The main operations in SDMA include uplink beamforming and downlink beamforming. Uplink beamforming consists of uplink beamforming weight generation, and uplink signal demultiplexing; downlink beamforming includes downlink beamforming weight generation and downlink signal multiplexing. Theoretically, in both links, the associated link channel responses are of critical importance in order to generate the relevant beamforming weights.
    Power control and data rate allocation are two fundamental techniques for providing reliable transmission over a time-varying channel. In very general terms, power control balances received powers of all users so that no user creates excessive interference to other users in the system. The aim of power control is to assign users with transmitter power levels so as to minimize the interference users create to each other while having a certain quality of service which is defined in terms of the signal to interference ratio (SIR). Even though power control is adopted in IS-95 and third generation systems, it was shown in some reference that adaptive rate allocation with constant transmission power provides larger system throughput than adaptive power control with constant data rate.
    On the other hand, joint beamforming and power control can further increase uplink capacity of DS-CDMA systems. At present, power-based power control scheme and maximal-ratio combining (MRC) beamforming criterion are developed; while signal-to-interference ratio (SIR)-based power control and
    
    
    minimum mean-sequence-error (MMSE) beamforming criterion are proposed. Both methods can dramatically improve the whole system capacity as compared with single antenna case. In practice, it is also desirable to increase downlink capacity in order to improve the whole system capacity. In particular, downlink performance is even more important for the next-generation communication systems in which wireless internet, video-on-demand, and multimedia services are to be required.
    According to the above content, the problem of joint downlink beamforming, power control and dynamic data rate allocation for multi-rate DS-CDMA mobile radio is formulated in Chapter 3. Mathematical analysis and computer simulations are given to study how the data rate allocation affects the total transmitted power, and the relation of soft target SIR thresholds and data rate allocation. We draw the conclusion that user has to sacrifice its target SIR threshold to obtain more resource from the system. With that conclusion, a new optimal data rate allocation algorithm is proposed by using all users’ soft target SIR thresholds and spatial correlation information. Then this rate allocation algorithm is introduced to V-UBPCT algorithm, combined with downlink beamforming and power control to present a modified V-UBPCT algorithm. For simplicity, the steps and mathematical formation of IVPW algorithm are proposed. Computer simulation results show that the optimal data rate allocation approach is superior to the scheme with uniform rate allocation, and the higher rate user would affect the outage of the lower rate user. Thus, it is necessary to limit the number of the higher rate users. Therefore, the new approach is well applicable in future wireless internet services; and in fact, it provides the base station an efficient method of h
引文
柳柏濂,组合矩阵论,科学出版社,1996年.
    陈景良,陈向晖,特殊矩阵,清华大学出版社,2001年.
    戴天时,矩阵论,吉林科学技术出版社,2000年.
    张贤达,时间序列分析-高阶统计量方法,清华大学出版社,1996年.
    Dandawate A.V. and Giannakis G.B., Asymptotic throyof mixed time averages and kth order cyclic-moment and cumulant statistics, IEEE Trans. Information theory, vlo.41, pp216-232, 1995.
    张贤达,保铮,通信信号处理,国防工业出版社,2000年.
    Y. Lu and R. W. Brodersen, “Intergrating power control, error correction coding, and scheduling for CDMA downlink system,” IEEE JSAC, vol.17, No.5, pp.978-989, 1999.
    D. G. Jeong and W. S. Jeon, “CDMA/TDD system for wireless multimedia services with traffic unbalance between uplink and downlink,” IEEE JSAC, vol.17, No.5, pp.939-946, 1999.
    S. W. Kim, “Adaptive rate and power DS/CDMA communications in fading channels,” IEEE Communications Letters, vol.3, No.4, pp.85-87, April 1999.
    S. W. Kim and Y. H. Lee, “Combined rate and power adaptation in DS-CDMA communications over Nakagami fading channels,” IEEE Trans. on Communications, vol.48, No.1, pp.162-168, Jan. 2000.
    B. Hashem and E. Sousa, “A combined power/rate control scheme for data transmission over a DS/CDMA system,” Proc. of VTC’98, pp.1096-1100, 1998.
    F. Rashid-Farrokhi, K. J. R. Liu and L. Tassiulas, “Transmit beamforming and power control for cellular wireless systems,” IEEE JSAC, vol.16, No.8, pp.1437-1449, Oct. 1998.
    A. F. Naguib, A. Paulraj and T. Kailath, “Capacity improvement with base-station antenna arrays in cellular CDMA,” IEEE Trans. on Vehicular Technology, vol.43, No.4, pp.691-698, Aug. 1994.
    Y. -C. Liang, F. Chin and K. J. R. Liu, “Downlink beamforming and power control for DS-CDMA mobile radio with multimedia services,” Proc. of VTC’99-Fall, pp.17-21, Sep. 1999.
    Y.-C. Liang and F. Chin, “Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA systems,” IEEE JSAC, vol.19, No.2, pp.222-231, Feb. 2001.
    Alamouti S. Space block coding: A simple transmitter diversity technique
    
    
    for wireless communications. IEEE JSAC, No.16, pp.1451-1458, 1998.
    Tarokh V, Jafarkhani H, Calderbank R A. Space-time block coding for wire- less communications: Performance results. IEEE JSAC, No.17, pp.451-460, 1999.
    Robert H. Morelos-Zaragoza and Moha- mmad Ghavami, “Combined Beamforming and Space- Time Block Coding for High Speed Wireless Indoor Communications,” [EB/OL] http://citeseer.nj.nec.com /499118.html
    R. Negi, A.M. Tehrani and J. Cioffi, “Adaptive Antennas for Space-Time Coding over Block-Time Invariant Multi-path Fading Channels,” Proc. IEEE VTC1999, pp.70-74, 1999.
    王际兵,赵明,周世东,姚彦. TDD-CDMA系统的一种新的多径分集方案[J]. 电子学报,1999(S1).
    PECORA L M, CARROLL T L. Synchronization in chaoic systems [J]. Phys Rev Lett, 64:821-823, 1990.
    KOCAREV L, HELLE K. Experimental demonstration of secure communications via chaotic synchronization [J]. Int J Bifurcation and Chaos, 2(3): 709-713, 1992.
    MURALI K, LAKSHMANAN M. Synchronization through compound chaotic signal in Chua’s circuit and Murali-Laksshmanan-Chua circuit [J]. Int J Bifurcation and Chaos,7: 415-421, 1997.
    PARLITZ U, KOCAREV L, STOJANOVSKI T, et al. Encoding message using chaotic synchronization [J]. Phys Rev E, 53(5): 4351-4361, 1996.
    MURALI K, LAKSHMANAN M. Efficient signal transmission by synchronization through compound chaotic signal [J]. Phys Rev E, 56(1): 251-255, 1997.
    PARTLIZ U, CHUA L O. Transmission of digital signal by chaotic synchronization [J]. Int J Bifurcation and Chaos, 2(4): 937-977, 1992.
    CUOMO K M, OPPENHEIM A V. Circuit implementation of synchronized chaos with applications to communications [J]. Phys Rev Lett, 71(1): 65-68, 1993.
    CUOMO K M, OPPENHEIM A V. Robustness and signal recovery in a synchronized chaotic system [J]. Int J Bifurcation and Chaos3, 3(6): 1629-163, 1998.
    DEDIU H, KENNEDY M P. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits [J]. IEEE Trans Circuits Syst,40(10): 634-642, 1993.
    YANG T, CHUA L O. Secure communication via chaotic parameter modulation [J]. IEEE Trans on Circ Systems I, 43(9): 817-819, 1996.
    
    YANG T, CHUA L O. Channel-independent chaotic secure communication [J]. Int Bifurcation and Chaos, 6(12), 2653-2660, 1996.
    HAYES S, GREBOGI C, Ott E, Communicating with chaos [J]. Phys Rev Lett, 70: 3031-3034, 1993.
    HENSOUR B, LONGTIN A. Controlling chaos to store information in delay-differential equations [J]. Phys Lett A, 205:18-24, 1995.
    LAI Y C, BOLT E, GREBOGI C. Communicating with chaos using two-dimensional symbolic dynamics [J]. Phys Lett A, 255:75-81, 1999.
    KOLUMBAN G, KENNEDY M P, CHUA L O. The role of synchronization in digital communications using chaos- part I: fundamentals of digital communications [J]. IEEE Trans on Circ Syst I, 44(10):927-935, 1997.
    KOLUMBAN G, KENNEDY M P, CHUA L O. The role of synchronization in digital communications using chaos- part II: chaotic modulation and chaotic and chaotic synchronization [J]. IEEE Trans Circ Syst I, 45(11):1129-1139, 1998.
    KOLUMBAN G, KENNEDY M P, CHUA L O. The role of synchronization in digital communications using chaos- part III: performance bounds for correlation receivers [J]. IEEE Trans on Circ Syst I, 47(12): 1673-1683, 2000.
    GHOBAD H G, MCGILLEM C D. A chaotic direct-sequence spread-spectrum communi- cation system [J]. IEEE Trans on Comm, 42(2/3/4): 1524-1527,1994.
    MAZZINI G, SETTI G. Chaotic complex spreading sequences for asynchronous DS-CDMA –part I: system modeling and results [J]. IEEE Trans on Circ Syst I, 44(10): 937-947, 1997.
    VOVATTI R, SETTI G. Chaotic complex spreading sequences for asynchronous DS-CDMA –part II: some theoretical performance bounds [J]. IEEE Trans on Circ Syst I, 45(4): 496-506, 1998.
    ITOH M. Spread spectrum communication via chaos [J]. Int J Bifurcation Chaos, 9(1): 155-213, 1999.
    CARROLL T L. Spread-spectrum sequences from unstable periodic orbits [J]. IEEE Trans on Circ Syst I, 47(40): 443-447, 2000.
    王金龙,沈良,任国春,蔡跃明,陈瑾,吴启晖,无线通信系统的DSP实现,人民邮电出版社,2002.
    李庆扬,王能超,易大义,数值分析,武汉:华中理工大学出版社,1995.
    刘益成,TMS320C54x DSP应用程序设计与开发,北京航空航天大学出版社,2002.
    汪芙平,王赞基,郭静波,混沌通信系统的若干问题及研究现状[J]. 通
    
    
    信学报,vol.23,No.10 pp:71-80,2002.
    FARMER J D. Chaotic attractors of infinite dimensional differential equations [J]. Physica D4, 366-393, 1982.
    DING M Z, DING E J. Control and synchronization of chaos in high dimensional systems: review of some recent results [J]. Chaos, 7(4): pp. 664-652, 1997.
    MURALI K, LAKSHMANN M. Efficient signal transmission by synchroni- zation through compound chaotic signal [J]. Phys Rev E, 56(1): pp.251-255, 1997.
    王安义,保铮,廖桂生. 下行波束形成与上行RAKE接收机的联合处理技术[J]. 通信学报,22(03):124-128,2001.
    王安义,廖桂生. 利用上行信道信息进行CDMA信号下行波束形成[J]. 西安电子学报,2000(06).
    宋荣方,毕光国. CDMA系统中时空综合干扰抑制的约束优化模型及神经网络实现[J].电子学报,29(4):475-478,2001.
    杨馨,董霄剑,尤肖虎。WCDMA系统STTD发送分集RAKE接收机的性能分析。电路与系统学报,2001(02):29-33.
    杨馨,董霄剑,尤肖虎。WCDMA系统发送分集技术的性能分析。电子学报,2002(07):986-989.
    李建军,樊平毅,曹志刚。一种基于灌水原理的多载波CDMA系统子信道分配方案。电子学报,2001(10):1301-1305.
    张骏凌,王睦重,苏莉,朱维乐. 多载波CDMA系统中的频域线性相位内插算法。通信学报,2002(04):82-90.
    代琳,周世东,姚彦。宏分集对于CDMA系统前向容量的影响。电子学报,2002(07):974-977.
    张忠培,王艺,周世东。多载波CDMA系统中联合检测译码方法研究。电子学报,2002(07):978-980.
    康绍莉,裘正定,李世鹤。TD-SCDMA系统中基于上行参数的下行波束赋形算法。通信学报,2002(08):67-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700