用户名: 密码: 验证码:
可重构模块化机器人建模、优化与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可重构模块化机器人由一组具有相同接口的模块组成,可根据不同的任务组装成不同的构型。与传统的机器人相比,可重构模块化机器人对任务和环境的适应能力更强,更具有柔性。模块化具有简化设计制造和维护、缩短研制周期、降低成本等优点,大大增强了系统构建时的灵活性和弹性,已成为机器人系统研究的热点。对可重构模块化机器人的运动学、型综合、尺度综合、误差及控制等方面的基础和关键技术进行研究可以促进可重构模块化机器人的实用化,具有重要的理论和应用价值。本文对模块化机器人的这些基本和关键问题进行系统深入的研究,主要内容和进展如下:
     (1)数学建模:提出一种可重构模块化机器人运动学、动力学自动建模方法。该方法在装配层将可重构模块化机器人的构型描述成有向树或装配关联矩阵的形式,并根据不同的构型自动生成相应的运动学、动力学模型。为适应不同的任务和模块化机器人构型的多样性,逆解采用了遗传算法和迭代方法相结合的面向任务的求解方法。
     (2)构型和尺度设计:为解决可重构模块化机器人在应用时如何找到合适的构型来满足特定任务的问题,提出了一种面向任务的构型多目标优化方法。该方法具有面向任务和多目标优化等特点,涵盖了自由度、可达性、能耗等多方面的性能优化,适用于模块化机器人的构型设计。尺度设计问题则是在构型确定的情况下,建立通过调整连杆尺寸来获得最优性能的优化模型。该模型通过归一化方法将多个性能评价指标组合成单一的无量纲目标函数值,然后用全局优化算法求最优解。该模型对模块化机器人的设计具有指导意义,同时该模型具有较强的通用型,适应于一般串联机器人的尺度优化。
     (3)结合面建模:由于相邻模块之间需要连接,每个连杆通过接触面由几部分组成,不可避免地破坏了机器人连杆结构的一体性和连续性,降低了模块化机器人整机性能。为分析模块之间的结合面对模块化机器人精度的影响,建立了基于分形理论的模块化机器人模块结合面受力与变形误差的关系模型。不同于一般机械结合面受均匀外载荷时的接触模型,该模型考虑了模块结合面受力非均匀的情况。结合面误差模型的建立为分析模块化机器人模块结合面静态、动态性能奠定了基础。
     (4)控制系统的体系结构与实现:提出了一种具有开放式和分布式结构的模块化机器人控制系统。采用CAN总线通讯,提高了各控制模块之间传送数据的效率;采用模块化设计方法,使之具备了开放性好、开发周期短、易于扩展、可重构等特点。控制系统既满足示教/再现式的传统的一般性控制要求,又满足自主/半自主式的智能化的要求。运动规划部分给出了一种实用的机器人平滑轨迹规划算法,能够很好地实现基本轨迹段之间的过渡和平滑运动,算法简洁易用,而且对加速度和跃度等运动参数的限制更加方便,同时采用单位四元数进行姿态的插补避免了万向节死锁等问题。最后通过对操作臂、爬杆、爬壁等构型的机器人系统的实验,验证了控制系统的合理性及相关关键算法的正确性。
To meet different task requirements, a Reconfigurable Modular Robot (RMR) isdesigned, which can be assembled into different configurations by some modules with thesame connection interfaces. Compared with traditional robots, RMR is more flexible andadaptable for different environments. It also can simplify the design, manufacturing andmaintenance, shorten the development cycle and reduce development costs, etc. It’s worthyand practical to research on the key technologies of RMR, such as kinematics, dynamics, typesynthesis, dimensional synthesis, error and control, etc. The works of this paper areintroduced as follows:
     (1) Mathematical modelling: A method to generate the kinematics and dynamics modularautomatically is proposed. The configuration of RMR is described as a tree structure or anassembly incidence matrix in assembly-level. Kinematics and dynamics models can begenerated automatically according to different configuration. A task-oriented method, whichcombined with genetic algorithm and iterative method, is proposed to solve inversekinematics problem for different task and configurations of RMR.
     (2) Configuration and dimension design: For solving the problem of finding suitablerobot configurations in application of RMR, a task-oriented multi-objective configurationoptimization method is proposed. This method is applicable to the configuration design ofRMR, which take into account performance optimization of degrees-of-freedom, reachability,energy consumption, and so on. Dimension design is to establish an optimal model by resizethe link size based on a fixed configuration. Using the normalization method, multipleperformance metrics are combined into a single dimensionless objective function value in themodel, then, the optimal solution is given by the global optimization algorithm. The modelcan the modular robot design, and has a strong versatility for the dimension optimization ofgeneral serial robot.
     (3) Joint surface modeling: The structure continuity and overall performance of robotlink is destroyed by the fixed joint surface between the adjacent modules. To analyze theinfluence on the accuracy from the joint surface between the modules of RMR, a relationalmodel between force and deformation error of module joint surface is established based onfractal theory. Unlike the contact model of general mechanical joint surface under the uniformexternal load, this model is about non-uniform load. The static and dynamic performance ofRMR can be analysed by joint surface error model.
     (4) Control system: a RMR control system with open and distributed structure isproposed. Via CAN bus communication, the efficiency of data transfer between the controlmodules is improved. Using the modular design method, the proposed control system is open,short in development and reconfigurable. The control system not only meets the traditionalgeneral control requirements of teach/playback, but also meets the intelligence requirementsof autonomous/semi-autonomous. A practical spatial trajectory planning algorithm ispresented in the section of motion planning, which can achieve a good transition between thebasic trajectory segments and smooth motion. This simple and practical algorithm can ensurethe continuity of the trajectory acceleration and effectively reduce the impact. Orientation isinterpolated using unit quaternion to avoid the gimbal lock. Finally, experiments are done onthe manipulator, pole-climbing and wall-climbing robot, verify the reasonableness of thecontrol system and the correctness of the key algorithms.
引文
[1]蔡鹤皋.机器人将是21世纪技术发展的热点[J].中国机械工程,2000,11(1-2):57-60.
    [2] Chen I.M. Theory and applications of modular reconfigurable robotic systems [D]. USA:California Institute of Technology,1994.
    [3] Guan Y.S., Jiang L., Zhang X.M., et al. Development of novel robots with modularmethodology [C].2009IEEE/RSJ International Conference on Intelligent Robots andSystems, St. Louis, MO, USA,2009:2385-2390.
    [4] Hirose S. Biologically Inspired Robots: Snake-like Locomotors and Manipulators [D].Oxford University Press,1993.
    [5] Yim M., Shen W.M., Salemi B., et al. Modular self-reconfigurable robot system [Grandchallenges of robotics][J]. IEEE Robotics&Automation,2007,14(1):43-52.
    [6] Yim M., Duff D.G., Roufas K.D. Polybot: a modular reconfigurable robot [C].Proceedings of the IEEE International Conference on Robotics and Automation, SanFrancisco, CA, USA,2000:514-520.
    [7] Park M., Yim M. Distributed control and communication fault tolerance for the CKbot [J].Reconfigurable Mechanisms and Robots,2009:673-679.
    [8] Castano A., Shen W.M., Will P. CONRO: Towards deployable robots with inter-robotsmetamorphic capabilities [J]. Autonomous Robots,2000,8(3):309-324.
    [9] Moeckel R., Jaquier C., Drapel K., et al. YaMoR and bluemove-An autonomous modularrobot with bluetooth interface for exploring adaptive locomotion [C]. Proceeding of the8th International Conference on Climbing and Walking Robot, London, UK,2005:685-692.
    [10] Yim M., Zhang Y., Duff D. Modular robots [J]. IEEE Spectrum,2002,39(2):30-34.
    [11] Yim M., Roufas K. Duff D, et al. Modular reconfigurable robots in space application [J].Autonomous Robots,2003,14(2):225-237.
    [12] Park M. Configuration recognition, communication fault tolerance and self-reassemblyfor the CKbot [D]. USA: University of Pennsylvania,2009.
    [13] Castano A., Behar A., Will P.M. The Conro modules for reconfigurable robot [J].IEEE/ASME Transactions on Mechatronics,2002,7(4):403-409.
    [14] Gilpin K., Kotay K., Rus D., et al. Miche: Modular shape formation by self-disassembly[J]. International Journal of Robotics Research,2008,27(3-4):345-372.
    [15] Kirby B., Campbell J. Aksak B., et al. Catoms: Moving robots without moving parts [C].Proceedings of the National Conference on Artificial Intelligence, Pittsburgh, PA, USA,2005:1730-1731.
    [16] Unsal C., Kiliccote H., Khosla P.K. I(CES)-Cubes: A modular self-reconfigurablebipartite robotic system [C]. Proceeding of the1999Sensor Fusion and DecentralizedControl in Robotic Systems II, Boston, MA, USA,1999:258-269.
    [17] Fukuda T., Nakagawa S., Kawauchi Y., et al. Self organizing robots based on cellstructures-CEBOT [C]. IEEE International Workshop on Intelligent Robots,1988:145-150.
    [18] Mondada F., Guignard A., Bonani M., et al. SWARM-BOT: From concept toimplementation [C]. IEEE/RSJ International Conference on Intelligent Robots andSystems, Las Vegas, NV, USA,2003:1626-1631.
    [19] Murata S., Yoshida E., Kamimura A., et al. M-TRAN: Self-Reconfigurable ModularRobotics System [J]. IEEE/ASME Transactions on Mechatronics,2002,7(4):431-441.
    [20] Kurokawa H., Kamimura A., Yoshida E., et al. M-TRAN II: Metamorphosis from afour-legged walker to a caterpillar [C]. IEEE International Conference on InterlligentRobots and Systems, Las Vegas, NV, USA,2003:2454-2459.
    [21] Kurokawa H., Tomita K., Kamimura A., et al. Distributed self-reconfiguration ofM-TRAN III modular robotic system [J]. International Journal of Robotics Research,2008,27(3-4):373-386.
    [22] Shen W.M., Krivokon M., Chiu H., et al. Multimode locomotion via SuperBotreconfigurable robots [J]. Autonomous Robots,2006,20(2):165-177.
    [23] Schmitz D., Khosla P., Kanade T. The CMU reconfigurable modular manipulator system[R]. Pittsburgh: Carnegie Mellon University,1988.
    [24] Cohen R., Lipton M.G., Dai M.Q., et al. Conceptual design of a modular robot [J].ASME Journal of Mechanical Design,1992,114(1):117-125.
    [25] Hui R, Kircanski N., Goldenberg A., et al. Design of the IRIS facility. A Modular,reconfigurable and expandable robot test bed [C]. IEEE International Conference onRobotics and Automation, Atlanta, GA, USA,1993:155-160.
    [26] Yang G. Kinematics, dynamics, calibration, and configuration optimization of modularreconfigurable robots [D]. Singapore: Nanyang Technological University,1999.
    [27] Wurst K.H. Conception and construction of a modular robot system [C]. InternationalSymposium on Industrial Robotics, Brussels, Belg,1986:37-44.
    [28] Ambrose R.O., Tesar D. Modular robot connection design [C]. International Conferenceon Design Theory and Methodology, Scottsdate, AZ, USA,1992:41-48.
    [29] Acaccia G., Bruzzone L., Razzoli R. A modular robotic system for industrial applications[J]. Assembly Automation,2008,28(2):151-162.
    [30] Zhao J., Wei Y., Fan J., et al. New type reconfigurable modular robot design andintelligent control method research [C]. Word Congress on Intelligent Control andAutomation, Dalian, China,2006:8907-8911.
    [31]李树军,张艳丽.可重构模块化机器人模块及构形设计[J].东北大学学报(自然科学版),2004,25(1):78-81.
    [32] Guan Y., Jiang L., Zhang X. Mechanical design and basic analysis of a modular robotwith special climbing and manipulation functions [C]. IEEE International Conference onRobotics and Biomimetics, Sanya, China,2007:502-507.
    [33] Matsumaru T. Design and control of the modular robot system: TOMMS [C]. IEEEInternational Conference on Robotics and Automation, Nagoya, Japan,1995:2125-2131.
    [34] Albu-Schaffer A., Eiberger O., Grebenstein M., et al. Soft robotics [J]. IEEE Roboticsand Automation Magazine,2008,15(3):20-30.
    [35] Paredis C.J.J, Brown H.B., Khosla P.K. A rapidly deployable manipulator system [J].Robotics and Autonomous Systems,1997,21(3):289-304.
    [36]潘新安,王洪光,姜勇,等.一种模块化可重构机器人系统的研制[J].智能系统学报,2013,8(4):1-6.
    [37]刘明尧,谈大龙,李斌.可重构模块化机器人现状和发展[J].机器人,2001,3(23):275-279.
    [38] Craig J.J. Introduction to robotics: mechanical and control [M]. Thrid edition. London:Prentice Hall,2005.
    [39] Brokett R.W. Robotic manipulators and the product of exponential formula [C].International Symposium in Mathermatical Theory of Networks and Systems, BeerSheva, Isr,1984:120-129.
    [40] Kelmar L, Khosla P. Automatic generation of kinematics for a reconfigurable modularmanipulator system [C]. IEEE International Conference on Robotics and Automation,Philadelphia, PA, USA,1988:663-668.
    [41] Benhabib B., Zak G., Lipton M.G. A generalized kinematic modeling method for modularrobots [J]. Journal of Robotic Systems,1989,6(5):545-571.
    [42] Li Q., Zhao J. A universal approach for configuration synthesis of reconfigurable robotsbased on fault tolerant indices [J]. Industrial Robot,2012,39(1):69-78.
    [43] Bi Z.M., Zhang W, Chen I.M., et al. Automated generation of the D-H parameters forconfiguration design of modular manipulators [J]. Robotics and Computer-IntegratedManufacturing,2007,23(5):553-562.
    [44] Chen I.M., Yang G. Configuration independent kinematics for modular robots [C]. IEEEInternational Conference on Robotics and Automation, Minneapolis, MN, USA,1996:1440-1445.
    [45] Yang G, Chen I.M., Lim W.K., et al. Design and kinematic analysis of modularreconfigurable parallel robots [C]. IEEE International Conference on Robotics andAutomation, Detroit, MI, USA,1999:2501-2506.
    [46] Chen I.M., Yang G., Tan C.T., et al. Local POE model for robot kinematic calibration [J].Mechanism and Machine Theory,2001,36(11):1215-1239.
    [47]费燕琼,冯光涛,赵锡芳,等.可重组机器人运动学正逆解的自动生成[J].上海交通大学学报,2000,34(10):1430-1433.
    [48] Pan X., Wang H., Jiang Y., et al. Research on kinematics of modular reconfigurablerobots [C]. IEEE International Conference on Cyber Technology in Automation, Control,and Intelligent Systems, Kunming, China,2011:91-96.
    [49] Tarchanidis K.N., Mackay A. S., Lucas J. Flexible kinematics for modular robots [J].Microprocessors and Microsystems,1995,19(9):525-532.
    [50] Paredis C.J.J. An Agent-based approach to the design of rapidly deployable fault tolerantmanipulators [D]. USA: Carnegie Mellon University,1996.
    [51] Chen I.M., Yang G. Inverse kinematics for modular reconfigurable robots [C]. IEEEInternational Conference on Robotics and Automation, Leuven, Belgium,1998:1674-1652.
    [52] Chen I.M., Yang G., Kang I.G. Numerical inverse kinematics for modular reconfigurablerobots [J]. Journal of Robotic Systems,1999,16(4):213-225.
    [53]赵杰,王卫忠,蔡鹤皋.可重构机器人封闭形式的运动学逆解[J].机械工程学报,2006,42(8):210-214.
    [54] Murray R., Li Z.X., Sastry S. A mathematical introduction to robotic manipulation [M].Boca Raton: CRC Press,1994.
    [55] Chen I.M., Yang G. Automatic generation of dynamics for modular robots with hybridgeometry [C]. IEEE International Conference on Robotics and Automation, Albuquerque,NM, USA,1997:2288-2293.
    [56] Chen I.M., Yang G. Automatic model generation for modular reconfigurable robotdynamics [J]. Transactions of the ASME Journal of Dynamic Systems, Measurement,and Control,1998,120:346-352.
    [57]王卫忠,赵杰,高永生,等.基于螺旋理论的可重构机器人动力学分析[J].机械工程学报,2008,44(11):99-104.
    [58]周军,余跃庆.考虑关节柔性的模块化机器人动力学参数辨识[J].机器人,2011,33(4):440-448.
    [59] Chocron O., Bidaud P. Genetic design of3D modular manipulators [C]. IEEEInternational Conference on Robotics and Automation, Albuquerque, NM, USA,1997:223-228.
    [60] Leger C. Automated synthesis and optimization of robot configurations: An evolutionaryapproach [D]. USA: Carnegie Mellon University,1999.
    [61] Chen I.M., Burdick J.W. Enumerating the non-isomorphic assembly configurations ofmodular robotic systems [C]. IEEE/RSJ International Conference on Intelligent Robotand Systems, Yokohama, Jpn,1993:1985-1992.
    [62] Chen I.M., Burdick J. Enumerating the non-isomorphic assembly configurations ofmodular robotic systems [J]. International Journal of Robotics Research,1998,17(7):702-719.
    [63] Pan X., Wang H., Jiang Y., et al. Research of topological analysis of modularreconfigurable robots [C]. IEEE International Conference on Robotics and Biomimetics,Tianjin, China,2010:327-332.
    [64]于海波,于靖军,毕树生,等.基于图论的可重构机器人构形综合[J].机械工程学报,2005,41(8):79-83.
    [65] Wang M., Ma S., Li B., et al. Configuration analysis for reconfigurable modularplanetary robots based on MSV and CSM [C]. IEEE/RSJ International Conference onIntelligent Robot and Systems, Beijing, China,2006:3191-3196.
    [66] Yang G., Chen I.M. Task-based optimization of modular robot configurations: Minimizeddegree-of-freedom approach [J]. Mechanism and Machine Theory,2000,35(4):517-540.
    [67] Farritor S., Dubowsky S. On modular design of field robotic systems [J]. AutonomousRobots,2001,10(1):57-65.
    [68] Chocron O. Evolutionary design of modular robotics arms [J]. Robotica,2008,26(3):323-330.
    [69] Han J., Chung W.K., Youm Y., et al. Task based design of modular robot manipulatorusing efficient algorithm [C]. IEEE International Conference on Robotics andAutomation, Albuquerque, NM, USA,1997:507-512.
    [70] Bi Z.M., Zhang W.J. Concurrent optimal design of modular robotic configuration [J].Journal of Robotic Systems,2001,18(2):77–87.
    [71] Mohamed R.P., Xi F., Finistauri A.D. Module-based static structural design of a modularreconfigurable robot [J]. Journal of Mechanical Design, Transaction of the ASME,2010,132(1):0145011-0145017.
    [72] Gao W., Wang H., Jiang Y., et al. Task-based configuration synthesis for modular robot[C]. IEEE International Conference on Mechatronics and Automation, Chengdu, China,2012:789-794.
    [73] Bi Z.M., Lang S.Y.T. General modular robot architecture and configuration design [C].IEEE International Conference on Mechatronics and Automation, Niagara Falls, ON,Canada,2005:268-273.
    [74] Liu X., Zhang M., Liu W. Study on modular configuration design method for specialrobot [C]. IEEE International Conference on Robotics and Biomimetics, Tianjin, Beijing,2010:908-913.
    [75] Suh N.P. Axiomatic design: Advances and application [M]. New York: OxfordUniversity Press,2001.
    [76] Liu X., Zhang M., Liu W. Function-based modular robot system [C]. IEEE InternationalConference on Mechatronics and Automation, Changchun, China,2009:3190-3195.
    [77] Chen W., Yang G., Goh K.M. Kinematic control for fault-tolerant modular robots basedon joint angle increment redistribution [C]. International Conference on Control,Automation, Robotics and Vision, Marine Mandarin, Singapore,2002:369-401.
    [78] Melek W.W, Goldenberg A.A. Neurofuzzy control of modular and reconfigurable robots[J]. IEEE/ASME transactions on mechatronics,2003,8(3):381-389.
    [79]李英,李元春.可重构机械臂模糊神经补偿控制[J].吉林大学学报(工学版),2007,37(1):206-211.
    [80] Biglarbegian M., Melek W.W., Mendel J.M. Design of novel interval type-2fuzzycontrollers for modular and reconfigurable robots: Theory and experiments [J]. IEEETransactions on Industrial Electronics,2011,58(4):1371-1384.
    [81] Kirchoff S., Melek W.W. A saturation-type robust controller for modular manipulatorsarms [J]. Mechatronics,2007,17(4-5):175-190.
    [82] Zhu M., Li Y. Decentralized adaptive fuzzy control for reconfigurable manipulators [C].IEEE Conference on Robotics, Automation and Mechatronics,2008:404-409.
    [83]李元春,朱路,董博,等.可重构机械臂分散自适应迭代学习控制[J].吉林大学学报(工学版),2012,42(2):469-475.
    [84] Zhu W., Lamarche T. Modular robot manipulator based on virtual decomposition control[C]. IEEE International Conference on Robotics and Automation, Rome, Italy,2007:2235-2240.
    [85] Liu G., Abdul S., Goldenberg A.A. Distributed control of modular and reconfigurablerobot with torque sensing [J]. Robotica,2008,26(1):75-84.
    [86]王君,魏洪兴,孙凯.一种模块化机器人可重构控制器研究[J].济南大学学报(自然科学版),2007,21:63-65.
    [87] Kurokawa H., Tomita K., Kamimura A., et al. Distributed self-reconfiguration control ofmodular robot M-TRAN [C]. IEEE International Conference on Mechatronics andAutomation, Niagara Falls, ON, Canada,2005:254-259.
    [88]王明辉,马书根,李斌,等.可重构机器人体系结构及模块化控制系统的实现[J].仪器仪表学报,2006,27(10):1178-1182.
    [89] Hong K.S., Choi K.H., Kim J.G., et al. A PC-based open robot control system: PC-ORC[J]. Robotics and Computer-Integrated Manufacturing,2001,17(4):355-365.
    [90] Fujita M., Kitano H., Kageyama K. A reconfigurable robot platform [J]. Robot andAutonomous Systems,1999,29(2):119-132.
    [91] Wei H., Li S., Zou Y., et al. A middleware based control architecture for modular robotsystems [C]. IEEE/ASME International Conference on Mechatronics and EmbeddedSystems and Applications, Beijing, China,2008:327-332.
    [92] Stewart D.B., Volpe R.A., Khosla P. Design of dynamically reconfigurable real-timesoftware using port-based objects [J]. IEEE Transactions on Softsware Engineering,1997,23(12):759-776.
    [93] Nesnas I.A.D., Simmons R., Gaines D., et al. CLARAty: Challenges and steps towardreusable robotic software [J]. International Journal of Advanced Robotic Systems,2006,3(1):23-30.
    [94] Cao Y., ElMaraghy H.A., Azab A. Reconfigurable control structure for robots inassembly [J]. Journal of Interlligent and Robotic Systems,2007,50(4):419-439.
    [95] Rossmann J., Schluse M., Schlette C., et al. A modular system architecture for thedistributed simulation and control of assembly lines based on active databases [C].International Conference on System Science and Simulation in Engineering, Iwate, Japan,2010:244-252.
    [96]曹建福,汪霖.模块化工业机器人嵌入式控制系统的研究[J].控制工程,2013,20(2):289-294.
    [97] Guan Y., Jiang L., Zhang X., et al.1-dof robotic joint modules and their applications [C].IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand,2008:1905-1910.
    [98]周雪峰,江励,朱海飞,等.一个模块化机器人平台的设计[J].华南理工大学学报(自然科学版),2011,39(4):50-61.
    [99] Cai C., Zhu H., Jiang L., et.al. A biologically inspired miniature biped climbing robot [C].IEEE International Conference on Mechatronics and Automation, Changchun, China,2009:2653-2658.
    [100] Guan Y., Jiang L., Zhu H., et al. Climbot: A modular bio-inspired biped climbing robot[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, SanFrancisco,2011:1473-1478.
    [101] Guan Y., Zhu H., Wu W., et al. A modular biped wall-climbing robot with high mobilityand manipulating function [J]. IEEE/ASME Transactions on Mechatronics, in press.
    [102] Guan Y., Zhou X., Zhu H., et al. A novel6-dof biped walking robot-Walking gaits,patterns and experiments [C]. IEEE International Conference on Robotics andAutomation. Shanghai, China,2011:3542–3547.
    [103] Guan Y., Shi X., Zhou X., et al. A novel mobile robot capable of changing its wheeldistance and body configurable [C]. IEEE International Conference on Robotics andBiomimetics, Guilin, China,2009:806-811.
    [104]蔡传武,管贻生,周雪峰,等.双手爪式仿生攀爬机器人的摇杆控制[J].机器人,2012,24(3):363-368.
    [105] Guan Y., Jiang L., Zhang X.M., et al. Climbing gaits of a modular biped climbing robot[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,Singapore,2009:532-537.
    [106]江励,管贻生,蔡传武,等.仿生攀爬机器人的步态分析[J].机械工程学报,2010,46(15):17-22.
    [107] Jiang L., Guan Y., Zhou X., et al. Grasping analysis for a biped climbing robot [C].IEEE International Conference on Robotics and Biomimetics, Tianjin, China,2010:579-584.
    [108] Guan Y., Xiao Z., Wu W., et al. Gripper self-alignment for autonomous pole-graspingwith a biped climbing robot [C]. IEEE International Conference on Robotics andBiomimetics, Guangzhou,2012:181-186.
    [109] Zhu H., Guan Y., Wu W., et.al. The superior mobility and function of W-Climbot–Aboi-inspired modular biped wall-climbing robot [C]. IEEE International Conference onRobotics and Biomimetics, Phuket, Thailang,2011:509-514.
    [110]张联盟,管贻生,朱海飞,等.双足爬壁机器人吸附模块位姿的检测[J].机器人,2012,34(6):758-763.
    [111] Zhou X., Guan Y., Jiang L., et al. Stability of biped robotic walking with frictionalconstraints [J]. Robotica,2013,31(4):573-588.
    [112] Thomas M., Tesar D. Dynamic modeling of serial manipulators arms [J]. Journal ofDynamic Systems, Measurement, and Control,1982,104(9):218-227.
    [113] Manocha D., Canny J.F. Efficient inverse kinematics for general6r manipulators [J].IEEE Transactions on Robotics Automation,1994,10(5):648-657.
    [114] Chapelle F., Bidaud P. Closed form solutions for inverse kinematics approximation ofgeneral6r manipulators [J]. Mechanism and Machine Theory,2004,39(3):323-338.
    [115] Mavroidis C., Ouezdou F.B., Bidaud P. Inverse kinematics of sixdegree offreedom’general’ and’special’ manipulators using symbolic computation [J]. Robotica,1994,12(5):421-430.
    [116] Tsai L.W., Morgan A.P. Solving the kinematics of the most generalsix-and-five-degree-of-freedom manipulators by continuation methods [J]. Journal ofMechanisms, Transmissions, and Automation in Design,1985,107(2):189-200.
    [117] Oyama E., Maeda T., Gan J.Q., et al. Inverse kinematics learning for robotic arms withfewer degrees of freedom by modular neural network systems [C]. IEEE/RSJInternational Conference on Intelligent Robots and Systems, Edmonton, AB, Canada,2005:833-840.
    [118] Koker R. A genetic algorithm approach to a neural-network-based inverse kinematicssolution of robotic manipulators based on error minimization [J]. Information Sciences,2013,222:528-543.
    [119] Salisbury J.K., Craig J.J. Articulated hands: Force control and kinematic issues [J].International Journal of Robotics Research,1982,1(1):4-17.
    [120]于靖军,刘辛军,丁希仑,等.机器人机构学的数学基础[M].北京:机械工业出版社,2009.
    [121] Vinogradov I.B., Kobrinski A.E., Stepanenko Y.E., et al. Details of kinematics ofmanipulators with the method of volumes [J]. Mekhanika Mashin,1971,27:5-6.
    [122] Kumar A.V., Waldron K.J. The workspace of a mechanical manipulator [J]. Journal ofMechanical Design,1981,103(3):665-672.
    [123] Yoshikawa T. Dynamic manipulability of robot manipulators [J]. Journal of Intelligentand Robotic Systems,1985,2(1):113-124.
    [124] Angeles J., Lopez-Cajun C.S. The dexterity index of serial-type robotic manipulators[J]. American Society of Mechanical Engineers, Design Engineering Division,1988,15(3):79-84.
    [125] Gosselin C., Angeles J. New performance index for the kinematic optimization ofrobotic manipulators [C], Trends and Development in Mechanisms, Machines, andRobotics, Kissimmee, FL, USA,1988:441-447.
    [126]石志新,罗志峰,陈红亮,等.机器人机构的全域性能指标研究[J].机器人,2005,27(5):38-40.
    [127] Geng Q., Han L., Guo X. Research on acceleration performance indices for serialmechanism [C]. IEEE International Conference on Automation and Logistics, Jinan,China,2007:2160-2164.
    [128] Kucuk S., Bingul Z. Comparative study of performance indices for fundamental robotmanipulators [J]. Robotics and Autonomous Systems,2006,54(7):567-573.
    [129] Gosselin C., Angeles J. A global performance index for the kinematic optimization ofrobotic manipulators [J]. Transactions of the ASME,1991,113(3):220-226.
    [130] Schaffer J.D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Proceedings of the1st International Conference on Genetic Algorithms, Pittsburgh,PA, USA,1985:93-100.
    [131] Deb K., Pratap A., Agarwal S., et al. A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [132]江励.双手爪式模块化仿生攀爬机器人的研究[D].广州:华南理工大学,2012.
    [133] Konak A., Coit D.W., Smith A.E. Multi-objective optimization using genetic algorithms:a tutorial [J]. Reliability Engineering and System Safety,2006,91(9):992-1007.
    [134] Zhang G.P., Huang Y.M., Shi W.H., et al. Predicting dynamic behaviours of a wholemachine tool structure based on computer-aided engineering [J]. International Journalof Machine Tools and Manufacture,2003,43(7):699-706.
    [135] Jiang S., Zhu H., Zheng Y. A contact stiffness model of machined plane joint based onfractal theory [J]. ASME Journal of Tribology,2010,132(1):011401.1-7.
    [136] Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces [J]. Proceedingsof the Royal Society of London. Series A, Mathematical and Physical Sciences,1966,295(1442):300-319.
    [137] Chang W.R., Etsion I., Bogy D.B. An elastic-plastic model for the contact of roughsurfaces [J]. ASME Journal of Tribology,1987,109(2):257-263.
    [138] Majumdar A., Bhushan B. Fractal model of elastic-plastic contact between roughsurfaces [J]. ASME Journal of Tribology,1991,113(1):1-11.
    [139] Zhao Y., Maietta D.M., Chang L. An asperity microcontact model incorporating thetransition from elastic deformation to fully plastic flow [J]. ASME Journal of Tribology,1999,122(1):86-93.
    [140] Borodich F.M., Mosolov A.B. Fractal roughness in contact problems [J]. Journal ofApplied Mathematics and Mechanics,1992,56(5):681-690.
    [141] Kogut, L., Etsion, I. A finite element based elastic-plastic model for the contact ofrough surfaces [J]. Tribology Transactions,2003,46(3):383-390.
    [142] Tian H., Li B., Liu H., et al. A new method of virtual material hypothesis-baseddynamic modeling on fixed joint interface in machine tooles [J]. International Journalof Machine Tools and Manufacture,2011,51(3):239-249.
    [143]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005.
    [144] Mandelbrot B.B. Stochastic models for the earth’s relief, the shape and the fractaldimension of the coastlines, and the number-area rule for islands [J]. Proceedings of theNational Academy of Sciences of the United Sates of America,1975,72(10):3825-3828.
    [145] Zhu H., Ge S., Huang X., et al. Experimental study on the characterization of wornsurface yopography with characteristic roughness parameter [J]. Wear,2003,255(1-6):309-314.
    [146] Fujimoto T., Kagami J., Kawaguchi T., et al. Micro-displacement characteristics undertangential force [J]. Wear,2000,241(2):136-142.
    [147]黄平,郭丹,温诗铸.界面力学[M].北京:清华大学出版社,2013.
    [148] Pritschow G., Daniel C., Junghans G., et al. Open system controllers-A challenge forthe future of the machine tool industry [J]. CIRP Annals–Manufacturing Technology,1993,42(1):449-452.
    [149] Brecher C., Verl A., Lechler A., et al. Open control systems: State of the art [J].Production Engineering,2010,4(2):247-254.
    [150]付宜利,曹政才,王树国,等.传感器在多关节机器人系统实时避障中的应用[J].机器人,2003,25(1):74-79.
    [151] Aguirre-Salas L., Begovich O., Ramirez-Trevino A. Optimal sensor choice forobservability in free-choice Petri nets [C]. IEEE International Symposium on IntelligentControl, Mexico,2001:270-275.
    [152] Weiss L.E. Dynamic visual servo control of robots: an adaptive, image-based approach[D]. USA: Department of Electrical and Computer Engineering, Carnegie MellonUniversity,1984.
    [153] Wijesoma S.M., Wolfe D.F.H., Richards R.J. Eye-to-hand coordination forvision-guided robot control applications [J]. International Journal of Robotics Research,1993,12(1):65-78.
    [154] Dam E.B., Koch M., Lillholm M. Quaternions, interpolation and animation [R].Denmark: University of Copenhagen,1998.
    [155] Yue M., Minor M., Xi N., et al. Kinematic workspace analyses of a miniature walkingrobot [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,Kyongju,1999:1798-1803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700