用户名: 密码: 验证码:
隧道工程富水断层破碎带注浆加固机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上隧道与地下工程建设规模、数量和难度最大的国家,随着交通基础设施建设重心逐步移向中西部山区和岩溶地区,隧道与地下工程建设面临着“构造复杂、地质环境多变、灾害频发”的严峻考验。据统计,交通和水电等地下工程建设中近80%的重大安全事故由突水(突泥)灾害及处置不当造成,导致重大人员伤亡、经济损失与工期延误,甚至迫使隧道停建或改线。此外,突水(突泥)极易诱发水资源枯竭、地表塌陷等环境地质灾害,严重威胁社会稳定与经济发展。隧道与地下工程施工中遭遇的突水(突泥)灾害治理堪称世界级工程难题。
     富水断层破碎带突水突泥是隧道修建过程中常见的地质灾害之一,注浆法为有效的治理方法。然而,由于地质环境、不同类型浆液、被注介质内部结构自身及其相互作用关系极为复杂,注浆治理理论远远滞后于工程实践,亟需深入研究。本文采用理论分析、室内试验、模拟试验和现场试验相结合的综合研究方法,研究了断层破碎带注浆加固机理,高承压水环境下注浆加固岩体稳定性与渐进失稳规律,以及断层突水突泥灾害复合控制注浆方法,取得一系列研究成果。
     (1)通过调研大量断层突水突泥案例,深入分析了导致断层突水突泥的地质因素和工程因素;以软质岩-硬质岩交互地层区域发育的高倾角断层带为地质背景,建立了超前注浆加固、临灾应急注浆加固及灾后抢险注浆加固三种工程地质模型。
     (2)开展了注浆加固试验。断层岩注浆加固体力学特征显示,注浆压力是加固体强度主控因素,针对断层泥和断层角砾两类松散岩体,初始干密度和注浆材料分别为其次要控制因素。断层泥加固体破坏表现为显著结构效应,而断层角砾加固体破坏特征类似于岩块。不同注浆材料对断层岩力学性能改善具有差异性,水泥单浆液同时提高了加固体浆-岩界面c、φ值,而速凝类水泥基注浆材料仅提高界面c值。微观层面上,浆-岩界面是由胶结面、渗透过渡区及微劈裂过渡区组成的三维结构体。
     (3)揭示了断层岩注浆加固机理。断层泥注浆加固模式为劈裂-压密型,注浆加固划分为直接加固和间接加固两部分。直接加固包括浆脉形成及其与围岩摩擦、嵌锁作用,改变了岩体破坏方式,延缓破坏发生:浆脉对岩土体压密加固称为间接加固,间接加固增强了岩土体内部结合力,改变了土体内部应力场和应力传播途径,提高整体力学性能。断层角砾注浆加固模式主要为渗透型,实质是改变了岩体内部的连接方式,即由水胶连接转变为胶结连接。
     (4)深入研究断层破碎带优势通道系统,发现了优势劈裂注浆现象。基于此建立单一平板注浆优势扩散模型,构建了考虑广义宾汉体浆液粘度时变性的注浆扩散控制方程;理论研究表明,注浆加固范围主要由注浆压力p0,注浆速率q,浆液粘度μ三因素联合控制。含优势通道的断层破碎带注浆加固作用机理包括薄弱带劈裂(渗透、充填)、均质岩体压密、浆液-围岩协调耦合及复合注浆等四个方面。
     (5)研发注浆加固三维模拟试验系统,该试验系统可模拟隧道穿越不良地质体地质灾害发生、演化及其注浆治理过程。注浆模拟试验中,模型岩体内部物理场对注浆压力响应强烈,并表现出时空滞后特征,其中渗透压力对注浆压力敏感程度最高,响应迅速。扰动破坏区注浆扩散具有优势路径,控制了模型岩土体内部物理场时空变化规律。与围岩相比,破碎带注浆加固岩体稳定性差,岩体交界滑移部位存在注浆薄弱.区;h<3ho时,注浆加固体内部损伤缓慢积累,加固岩体处于基本稳定状态;h>3ho后,围岩质量急速劣化,迅速形成管道型突涌通道,造成整体失稳。
     (6)提出复合控制注浆设计方法,建立富水断层破碎带突水突泥地质灾害复合控制注浆治理关键技术体系,研究成果在永莲隧道F2断层地质灾害注浆综合治理工程中进行应用,取得了良好效果,具有广阔的工程应用前景。
The dimension, quantity and difficulty of tunnel and underground engineering construction in our country have become the largest around the world. With the focus of transportation infrastructure construction shifting to the mid-west mountainous area and karst area, tunnel and underground engineering construction is confronted with the problem of "complex geological structure, changeable geological environment and frequent disaster." According to statistics, nearly80%of the significant safety accidents in transportation, hydropower and other underground construction have been caused by inrush of water (mud) disaster or its improper disposal, leading to a large number of casualties, economic loss and construction delay, and even suspension or design alteration of the tunnel construction. Additionally, inrush of water (mud) can easily induce geological disaster like water resources depletion and surface subsidence, which severely threaten social stability and economic development. Thus, inrush of water (mud) encountered in underground construction is a world class engineering problem.
     Inrush of water and mud in fault fractured zone is a common geological disaster during tunnel construction, while grouting is an effective method of treatment. However, due to the complexion of the interaction relationship of geological environment, different types of grout and the inner structure of injected media, the grouting treatment theory is far behind engineering practice, causing a urgent demand for investigation. This paper investigated grouting consolidation mechanism, characteristic of consolidation body excavation and the law of gradual instability under high water pressure, and compound controlling grouting method in aquiferous fault fracture zone, using a combination of theoretical analysis, laboratory test, simulation test and field test. Then a series of research results were made.
     (1) Geological factors and engineering factors leading to inrush of water and mud were deeply analyzed, through a large amount of data on inrush of water and mud. With the background of high angle fault zone of soft rock-hard rock interaction strata region development and the model of grouting consolidation engineering practice of aquiferous fault fracture zone during tunnel excavation, three engineering geological model types of advancing grouting consolidation, disaster emergency grouting consolidation and post-disaster rescue grouting were established.
     (2) The strength and ductility of homogeneous fault rock grouting consolidation body obtained a relatively high growth; the failure of fault mud consolidation body presented a noticeable structure effect, and the stress-strain curve presented a multi-crest value characteristic; the failure of fault breccia consolidation body was similar to that of rock mass. Grouting pressure is the main factor on the strength of consolidation body, while the dry density is a miner factor, which increases the grouting compression effect as it reduces. Grouting materials distributed in the fault breccia as an cement material, whose influence is larger than the initial dry density. The single liquid slurry increases both the c and φ value on grout-rock interface, while C-S double liquid slurry only increases the c value; compared with the original fault slurry, the c value of the compressing consolidation fault slurry increased which the φ value decreased, which is why the grout-rock interface is the most stable, and the compressing consolidation soil is the most likely to break. Fault gouge transformed from loose flocculent structure into an integral structure; grout-rock interface is a three dimensional structure composed of cement surface, permeability transition zone and micro fracturing transition zone, which combining closely internally.
     (3) The consolidation mechanism of homogeneous fault zone was revealed. Fault gouge mainly follows the fracturing-compressing grouting consolidation model, while fault breccia mainly follows penetration grouting consolidation model. Grouting consolidation was divided into two parts of direct consolidation and indirect consolidation. The former increased the strength on grout-rock interface, changed the failure pattern of the rock mass and prolonged the failure occurrence; indirect consolidation changed the inner stress field and its propagation path, and improved its mechanical properties.
     (4) The advantageous structural surface system of the fault fracture zone was deeply analyzed. The advantageous fracturing grouting concept was proposed. The fault fracture zone grouting diffusing model containing advantageous path was established. The advantageous fracturing grouting diffusing controlling equation considering the time-varying viscosity of the general Bingham slurry was constructed. The consolidation scope is synthetically determined by grouting pressure po, grouting velocity q, grouting viscosity pi and occurrence of the advantageous structural surface (α、b)and other factors, the first three of which are main factors. The heterogeneous fault rock grouting consolidation mechanism involves four aspects of weak band fracturing (penetrating or filling), homogeneous rock compressing, grout-rock coordination and coupling and compound grouting.
     (5) A three dimensional simulation experiment system on adverse geological body grouting consolidation under complicated geological conditions was established, and then consolidation simulation test on post-disaster rescuing grouting consolidation and advancing grouting consolidation in aquiferous fault fracture zone was conducted. During grouting, the reacting space-time characteristics of the model rock physical field was controlled by a combination of the relative position of the monitoring point-grouting point and grouting advantageous diffusing path. Comparing with normal surrounding rock, the stability of the grouting consolidation rock is relatively lower, and the border area of the surrounding rock-disturbing loose fracture consolidation zone generated a grouting weak band with advantageous penetrating path. On condition of h<3ho, inner damage of the grouting consolidation body gradually accumulated, causing a generally stability of the consolidation body; after h>3h0, the quality of the surrounding degrades strikingly, thus forming pipe inrush path, leading to an integral instability.
     (6) Theory of compound controlling grouting consolidation and its design method was put forward. Research findings were testified by field test in grouting integrated treatment engineering for water and mud inrush disasters in F2fault fractured zone in Yonglian tunnel, Jilian express way, Jiangxi province, which has generated crucial technical system of composite-control grouting treatment for water and mud inrush disaster in aquiferous fault fractured zone, with a broad prospect of engineering application.
引文
[1]LI Shu-cai,LI Guo-ying. Effect of heterogeneity on mechanical and acoustic emission characteristics of rock specimen[J]. Journal of Central South University of Technology,2010,17:1119-1124.
    [2]金新锋,夏日元,梁彬.宜万铁路马鹿箐隧道岩溶突水来源分析[J].水文地质工程地质,2007,34(2):71-80.
    [3]金新锋.宜万铁路沿线岩溶发育规律及其对隧道工程的影响[D].北京:中国地质科学院硕士学位论文,2007.
    [4]张民庆,黄鸿健,张生学,等.宜万铁路马鹿箐隧道1.21突水突泥抢险治理技术[J].铁道工程学报,2008,25(11):49-61.
    [5]徐华轩.野三关隧道施工地质特征及突水灾害防治研究[D].北京:中国地质大学(北京)硕士学位论文,2010.
    [6]徐红星,邓谊明.野三关隧道DK 124+602突水相关水文地质分析[J].铁道工程学报,2010,27(4):29-34.
    [7]马栋.深埋岩溶对隧道安全影响分析及处治技术研究[D].北京:北京交通大学博士学位论文,2012.
    [8]刘招伟.圆梁山隧道岩溶突水机理及其防治对策[D].中国地质大学博士学位论文,2004.
    [9]刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学,2006,27(2):228-232.
    [10]张民庆,刘招伟.圆梁山隧道岩溶突水特征分析[J].岩土工程学报,2005,27(4):422-426.
    [11]张小华,刘清文.武隆隧道暗河突水特点与整治技术分析[J].现代隧道技术,2005,42(3):59-64.
    [12]杜欣,曾亚武,岳全贵.铁路隧道建设与水环境关系分析[J].铁道工程学报,2009,26(1):82-85,110..
    [13]吴治生.岩溶隧道的环境地质问题[J].铁道工程学报,2006,23(1):70-73..
    [14]刘钦,李术才,李煜航,等.龙潭隧道F2断层处涌水突泥机理及治理研究[J].地下空间与工程学报,2013,9(6):1419-1426.
    [15]黄德发,王宗敏,杨彬.地层注浆堵水与加固施工技术[M].徐州:中国矿业大学出版社,2003.2-5.
    [16]GroppoSembendli.G Sembenelli. Deep jet-grouted Cut-offs in Riverine Alluvia for ErtanCofferDams.Journal of Geotechnical and Geoenvironmental Engineering. 1999,125(2):142-153.
    [17]张春文.高压喷射注浆法处理岭澳核电站DG GB廊道工后沉降的应用[J].电力建设,2002,23(6):16-17.
    [18]Yoshida,Kenji,Kataoka,Isao,Yoshida,Hiroshi,Yokoo,Mitsuru,Horii,Kiyoshi.Analyseshydrodynami c structure of water jet and its application to jet grouting.Proceedings of the 4thASME/JSME Joint Fluids Engineering Conference Volumel part B,Forums,2003,p 741-746.
    [19]Mussger.K,Koinig.J,Reischl.St.Jet grouting in combination with NATM. RoceedingsRapid Excavation and Tunneling Conference,1987,p 292-3082.
    [20]Hong Won-Pyo, Kim Dong-Wook, Lee Mun-Ku.Case Study on ground improvement by high pressure Jet grouting.Proceedings of the 12th(2002)International Offshore and Polar Engineering Conference,2002,p 610-615.
    [21]Johnson. Jet grouting aids drive age in Loose Rock[J].Tunnels and Tunneling,1989,(10):53-54
    [22]Lewis, Dwayne A. Taube, Martin G.North Airfield drainage improvement at Chicago O'Hareintemational airport:Soil stabilization using jet grouting. Geotechnical Special Publication, nl20 I,2003,p 464-473.
    [23]Meyers,John, Myers,Tim Petrasic Kerry.Jet grout stabilization of steeply excavated soilslope.Geotechnical Special Publication,n 120 I,2003,p 318-329.
    [24]陈成宗,何发亮.大瑶山隧道九号断层的特性与工程对策[J].岩石力学与工程学报,1992,11(1):72-78.
    [25]赵继增.青岛胶州湾海底隧道涌水断层全断面帷幕注浆技术研究[J].山东大学学报(工学版),2009,39(6):116-120.
    [26]龚成明,孟庆余,李五红.隧道穿越断层破碎带的安全施工技术[J].铁道工程学报,2012,(5):45-48.
    [27]张民庆,殷怀连.宜万铁路别岩槽隧道F3断层突发性涌水治理[J].铁道工程学报,2006,(1):67-70.
    [28]董裕国.宜万铁路齐岳山隧道F11高压富水断层注浆法与冷冻法方案比选与实施[J].现代隧道技术,2010(2):51-57.
    [29]Cundall P.A. Distinct element models of rock and soil structure,inanalytical and computational methods in engineering[J]. Rock Mechanics,1987, Ch.4, pp.129-163.
    [30]Cundall P A,Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979,29(1):47-65.
    [31]Lorig L J, Brady B H G. Hybrid distinct element-boundary element analysis of jointed rock[J]. International Journal ofRock Mechanics and Mining Sciences &Geomechanics Abstracts,1982, 23(4):303-312.
    [32]Lemos J V. A distinct element model for dynamic analysis of jointed rock with application to dam foundation an fault motion[D]. Minneapolis:Ph. D. thesis, University of Minnesota,1987.
    [33]黄宏伟,杨慧芳,陈杰生.煤气柜地基的劈裂注浆—注水预压处理和分析[J].工业建筑,1996(8),7-11.
    [34]王梦恕.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010..
    [35]邹金锋.劈裂注浆机理分析及应用研究长沙[D].长沙:中南大学博士学位论文,2004.
    [36]冯旭海.压密注浆作用机理与顶升效应关系的研究[D].北京:煤炭科学研究总院,2003.
    [37]契尔金基..聚合物水泥混凝土[M].张留城.译.,北京:地质出版社,1987.14-36.
    [38]Zhu W C, Tang C A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading. International Journal of Rock Mechanics and Mining Sciences,2006,43 (2):236-252
    [39]张农.巷道滞后注浆围岩控制理论与实践[M].徐州:中国矿业大学出版社,2003.9-10..
    [40]宁宇.煤岩体化学加固作用的力学原理分析[J].煤炭科学技术,1996,24(5):35-39.
    [41]周维垣,杨若琼,剡公瑞.二滩拱坝坝基弱风化岩体灌浆加固效果研究[J].岩石力学与工程学报,1993,12(2):138-150.
    [42]胡曙光.聚合物水泥基复合材料其界面增强的机理研究[D].武汉:武汉工业大学,1992.
    [43]Shi G H. Discontinuous deformation analysis:A new numerical model for the statics and dynamics of block system [D]. Berkeley:Ph. D. Thesis, Department of Civil Engineering, University of California,1988
    [44]Lin C T. Extension to the discontinuous deformation analysis for jointed rock masses and other blocky systems [D]. Boulder:Ph. D. Thesis, University of Colorado Boulder,1995.
    [45]李长明.宾汉流体粗糙裂隙注浆理论研究及应用[D].沈阳:沈阳建筑大学硕士论文,2008.
    [46]G.Lombardi水泥灌浆浆液是稠好还是稀好?[C],现代灌浆技术译文集,北京:水利电力出版社,1991:76-81.
    [47]О.Ю.卢什尼科娃,根据钻孔流量仪测定资料确定岩石的裂隙性质[J].国外煤田地质,贺江秋译,1987(2)
    [48]W.Wittke采用膏状稠水泥浆灌浆新技术[C],现代灌浆技术译文集,北京:水利电力出版社,1991:48-58.
    [49]Baker W H以压密灌浆加固已建土石坝坝基[C],现代灌浆技术译文集,北京:水利电力出版社,1991,117-126.
    [50]刘嘉材.裂缝灌浆扩散半径研究[C].中国水利水电科学院科学研究论文集(第8期)[C],北京:水利出版社,1982:186-195.
    [51]阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1),69-73.
    [52]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].长春:吉林大学博士论文,2003.
    [53]孙锋,陈铁林,张顶立,等.基于宾汉体浆液的海底隧道劈裂注浆机理研究[J].北京交通大学学报,2009,33(4):1-6.
    [54]Graf, Edward D. Compaction grouting technique and observations,Journal of the Soil Mechanics and Foundations Division, ASCE,1969:1151-1158.
    [55]Brown, Douglas Rand Warner, James,Compactiongrouting,Journal of the Soil Mechanics and Foundations Division,ASCE,1973:589.
    [56]Baker,W.H,E. J. Cording,and H.H Macpherson, Compaction grouting to control ground movements during tunneling,Underground Space,1982,7(3):205-213.
    [57]李向红.CCG注浆技术的理论研究与应用研究[博士后论文].上海:同济大学,2002.
    [58]黄戡.裂隙岩体中隧道注浆加固理论研究及工程应用[D].长沙:中南大学博士论文,2011.
    [59]丁金粟,孙亚平.土体水力劈裂力学机理剖析[J].第五届土力学及基础工程学术会议论文选集[M8,中国建筑工业出版社,1990,2:534-542
    [60]白云,候学渊.软土地基劈裂灌浆加固的机理和应用[J].岩土工程学报,1991,3:89-93.
    [61]陈愈炯.压密和劈裂灌浆加固地基的原理和方法[J].岩土工程学报,1994,16(2):22-28.
    [62]邝健政,咎月稳,王杰,等.岩土注浆理论与工程实践.北京:科学出版社,2001.
    [63]王广国,杜明芳,苗兴城.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000,19(5):670-673.
    [64]邹金峰.扩孔问题的线性与非线性解析及其工程应用研究[D].长沙:中南大学博士学位论文,2007.
    [65]陈伟.裂隙岩体灌浆压力及其稳定性控制方法研究[D].长沙:中南大学博士学位论文,2008.
    [66]何忠明.裂隙岩体复合防渗堵水浆液试验及作用机理研究[D].长沙:中南大学博士学位论文,2007.
    [67]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].徐州:中国矿业大学博士学位论文,1999.
    [68]周维垣,杨若琼.二滩拱坝注浆电镜扫描结果及分析[A].见熊厚金编.国际岩土灌浆及锚固新进展[C].北京:中国建筑工业出版社,1997:65-91.
    [69]冒海军,杨春和.结构面对板岩力学特性影响研究[J].岩石力学与工程学报,2005,24(20):2651-2656.
    [70]张霄.地下工程动水注浆过程中浆液扩散与封堵机理研究及应用[D].济南:山东大学博士学位论文,2011.
    [71]刘人太.水泥基速凝浆液地下工程动水注浆扩散封堵机理及应用研究[D],济南:山东大学博士学位论文,2012.
    [72]徐志鹏.高压裂隙注浆试验台研制及塑性早强浆材注浆试验研究[D].北京:煤炭科学研究总院,2009.
    [73]何修仁.注浆加固与堵水[M].沈阳:东北工学院出版社,1990.
    [74]湛铠瑜,隋旺华.动水条件下单裂隙注浆模型试验系统设计[J].实验室研究与探索,2011,30(10):19-23,67.
    [75]经来旺,刘飞,张天勇.注浆法治理井壁破裂的机理研究[J].中国矿业,2005,14(9):53-56.
    [76]湛铠瑜.单一裂隙动水注浆模拟试验研究[D].徐州:中国矿业大学硕士学位论文,2010.
    [77]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].长春:吉林大学,2003.
    [78]王档良,隋旺华,黄小明,等.岩体中灌浆压力变化规律试验研究[J].金属矿山,2008,(1):53-56.
    [79]郝哲,王介强,何修仁.岩体裂隙注浆的计算机模拟研究[J].岩土工程学报,1999,21(6):727-730.
    [80]杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7):41-46.
    [81]陈剑平.岩体随机不连续面三维网络数值模拟技术[J].岩土工程学报,2001,23(4):397-402.
    [82]张发明,汪小刚,贾志欣..3D裂隙网络随机模拟及其工程应用研究[J].现代地质,2002,16(1):100-103.
    [83]于青春,大西有三.岩体三维不连续裂隙网络及其逆建模方法[J].地球科学—中国地质大学学报,2003,28(5):522-526.
    [84]KULATILAKE P H S W.et al. Joint network modeling with a validation exercise in Stripa Mine Sweden[J]. Int J Rock MechSci&GeomechAbstr,1993(1):1-23.
    [85]罗平平,朱岳明,赵咏梅.岩体灌浆的数值模拟[J].岩土工程学报,2005,27(8):918-921.
    [86]李宁.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,21(3):326-330.
    [87]吴顺川.袖阀管注浆技术改性土体研究及效果评价[J].岩土力学,2007,28(7):1353-1358.
    [88]郑鹏武.齐岳山隧道注浆必要性的数值分析与论证[J].铁道建筑,2006,1,36-38.
    [89]Reuben H.Karol.Chemical grouts and their properties [J]. Grouting in Geotechnical Engineering, ASCE,1982,359-377.
    [90]Reuben H. Karol. Chemical grouting and soil stabilization [M].3 rded. New York, NY:Marcel Dekker, Inc.,2003.
    [91]Roy H. Borden, Raymond J.Krizek, Wallace H. Baker.Creep behavior of silicate-grouted Sand[J]. Grouting in Geotechnical Engineering Proceedings of the Conference, ASCE,1982:450-469.
    [92]Baker, Wallace Hayward. Planning and performing structural chemical grouting [J]. Grouting in Geotechnical Engineering, Proceedings of the Conference, ASCE,1982:515-539.
    [93]R.H. Karol Seepage Control with chemical grout [J]. Grouting in Geotechnical Engheering, ASCE, 1982:564-575.
    [94]Almer E. C. van der Stoel. Pile foundation improvement by permeation grouting [J] ASCE GSP 2003,120:728-739.
    [95]Georg Breitsprecher, Paul Stefan Toth. Underpinning of a Pier by microfine cement grouting and compensation grouting[J]. ASCE GSP No.120:740-751.
    [96]M Chuaqui, D.A, Bruce. Mix design and quality control procedures for high mobility cement based grouts[J]. ASCE GSP,2003,120:1153-1168.
    [97]E.Nonveiller,Grouting theory and practice,New York,USA,Elsevier Science Publishers B.V.,1989,1-7.
    [98]NonveillerE灌浆的理论与实践[M].顾柏林译,沈阳:东北工学院出版社,1991.
    [99]Gallagher, Patricia M&Koch, Alyssa J.Model testing of passive site stabilization:A New Grouting Technique[J], ASCE GSP,2003,120:1478-1489.
    [100]TL. Dreese, DB.Wilson, DM. Heenan, ect. State of the art in computer monitoring and analysis of grouting[J]. ASCE GSP,2004,120; 1440-1453.
    [101]Shuttle, DA, Glynn, E. Grout curtain effectiveness in fractured rock by the discrete feature network approach[J] ASCE GSP,2003,120; 1405-1416.
    [102]Wehling, Timothy M, Rennie, David C. California aqueduct foundation repair using multiple grouting techniques[J]. ASCE GSP 2003,120:893-904.
    [103]D.Gouvenot, State of the art in European grouting [J]. Proceedings of the ICE-Ground Improvement,2010,2(2):51-67.
    [104]JoukoLehtonen, Stefan Aronsson. Grouting of micropiles in scandinavian [J]. ASCE GSP,2003, 120; 780-790.
    [105]Weaver, K D, A Retrospective on the history of dam foundation grouting in the U.S[J]. ASCE GSP, 2003,120; 857-868.
    [106]熊厚金.中国化学灌浆的过去现在与未来[C].广州:91全国灌浆技术学术会议论文集,1991:10-18.
    [107]何修仁.注浆加固与堵水[M].沈阳:东北工学院出版社,1990.
    [108]Ke T C. Simulated testing of two dimensional heterogeneous and discontinuous rock masses using discontinuous deformation analysis [D]. Berkeley:Ph. D. Thesis University of California,1993.
    [109]Gebara J M. The Finite Block Method:Its basis and its modification to allow the fracturing of blocks under Hhigh imPact loads [Ph. D. Thesis]. Lafayette:Purdue University,1994
    [110]Pearce C J, Thavalingam A, Liao Z, et al. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture [J]. Engineering Fracture Mechanics,2000, 65:283-298
    [111]Liu H Y,Kou S Q,Lindqvist P A. Numerical simulation of the fracture process in cutting heterogeneous brittle material[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(13):1253-1278.
    [112]Liu H Y,Roquete M,Kou S Q,et al. Characterization of rock heterogeneity and numerical verification [J]. Engineering Geology,2004,72(1/2):89-119.
    [113]战玉宝,宋晓辉,陈明辉.渗透注浆简介及其发展-岩土注浆理论研究进展[J].路基工程,2010(2):20-22.
    [114]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J].铁道勘察,2004,30(1):7-9,18.
    [115]李术才,李树忱,张庆松,等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-225.
    [116]刘高,张帆宇,李新召,等.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报,2005,24(Supp.2):5521-5526.
    [117]晏启祥.软岩隧道施工特性及其动态力学行为研究[J].岩石力学与工程学报,2006,25(3):572-577.
    [118]徐开礼,朱志澄.构造地质学[M.北京:地质出版社,2006.
    [119]杜炜平.隧道开挖地质灾害规律与防治对策研究[D].长沙:中南大学博士学位论文,2001.
    [120]曲永新.某水利工程泥化夹层的形成及变化趋势的研究[J].地质科学,1977(4):363-371.
    [121]肖树芳.泥化夹层蠕变全过程的模型及微结构的变化[J].岩石力学与工程学报,1987,6(2):113-124.
    [122]周瑞忠.岩爆发生的规律和断裂力学机理分析[J].岩土工程学报,1995,17(6):111-117.
    [123]徐则民,黄润秋,张悼元,复式山岭隧道沟谷段岩爆机理[J].中国地质灾害与防治学报,2000,11(3):15-19.
    [124]韩忠存.隧道及地下工程结构防排水技术的发展和应用[J].现代隧道技术,2001,38(4):6-8,13.
    [125]钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报,2012,31(10):1945-1956.
    [126]张霄,李术才,张庆松,等.矿井高压裂隙涌水综合治理方法的现场试验[J].煤炭学报,2010,35(8):1314-1318.
    [127]张霄,李术才,张庆松,等.关键孔注浆方法在高压裂隙水封堵中的应用研究[J].岩石力学与工程学报,2011,30(7):1414-1421.
    [128]李术才,张霄,张庆松,等.地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J].岩石力学与工程学报,2011,30(12):2377-2396.
    [129]张伟杰.基于渗流—应力耦合作用的裂隙型底板突水机理及危险性预测研究[D].青岛:山东科技大学硕士学位论文,2010.
    [130]雷军.宜万铁路施工期隧道岩溶突水地质灾害形成规律与危险性评估方法研究[D].北京:北京交通大学,2011.
    [131]王遇国.岩溶隧道突水灾害与防治研究[D].中国铁道科学研究院博士学位论文,2010.
    [132]武强,周英杰,刘金韬,等.煤层底板断层滞后型突水时效机理的力学试验研究[J].煤炭学报,2003,28(6):561-565.
    [133]周瑞光,成彬芳,叶贵钧,等.断层破碎带突水的时效特性研究[J].工程地质学报,2000,8(4):411-415.
    [134]代长青,何廷峻.承压水体上采煤底板断层突水规律的研究[J].安徽理工大学学报(自然科学版),2003,23(4):6-8.
    [135]谌文武.断层岩的工程性质与环境效应[D].兰州:兰州大学博士学位论文,2004.
    [136]Yehuda Ben-Zion, Charles G S. Characterization of faultzone [A]. In:Yehuda Ben-Zion, eds. Pure and AppliedGeophisics:Seismic waves and fault zone structure [C].Springer,2003,160: 677-715.
    [137]付晓飞,方德庆,吕延防,等.从断裂带内部结构出发评价断层垂向封闭性的方法[J].地球科学——中国地质大学学报,2005,30(3):328-336.
    [138]陈伟,吴智平,侯峰,等.断裂带内部结构特征及其与油气运聚关系[J].石油学报,2010,31(5):774-780.
    [139]D.U.Wise.对断层岩术语的建议[J].地质科技情报,1985,4(3):79-83.
    [140]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J]。岩石力学与工程学报,2004,23(16):2792-2797.
    [141]周峰.山岭隧道塌方风险模糊层次评估研究[D].长沙:中南大学硕士学位论文,2008.
    [142]王汉鹏,高延法,李术才.岩石峰后注浆加固前后力学特性单轴试验研究[J].地下空间与工程学报,2007,3(1):27-31.
    [143]刘长武,陆士良.水泥注浆加固对工程岩体的作用与影响[J].中国矿业大学学报.2000,29(5):454-458.
    [144]张农,侯朝炯,陈庆敏,等.岩石破坏后的注浆固结体的力学性能[J].岩土力学.1998,19(3):50-53.
    [145]程盼,邹金锋,李亮,等.冲积层中劈裂注浆现场模型试验[J].地球科学——中国地质大学学报,2013,38(3):649-654.
    [146]韩月旺,钟小春,虞兴福.盾构壁后注浆体变形及压力消散特性试验研究[J].2007,3(6):1142-1147.
    [147]陈四利.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报,2003,22(4)547-551.
    [148]张俊峰,王协群,邹维列,等.土-格栅界面强度参数和剪切刚度试验研究[J]长江科学院院报,2014,31(3):77-83.
    [149]吴景海,陈环,王玲娟,等.土工合成材料与土界面作用特性的研究[J].岩土工程学报,2001,23(1):89-93.
    [150]包承纲.土工合成材料界面特性的研究和试验验证[J].岩石力学与工程学报,25(9):1735-1744.
    [151]邹健.桩端后注浆浆液扩散机理及残余应力研究[D].杭州:浙江大学博士学位论文,2010.
    [152]刘伟,李银平,霍永胜,等.盐岩地下储库围岩界面变形与破损特性分析[J]岩土力学,2013,34(6):1621-1628.
    [153]孙广忠,孙毅.岩体力学原理[M].北京:科学出版社,2011.
    [154]Caine J S, Evans J P, Forster C B. Fault zone architecture and permeability structure[J]. Geology, 1996,24(11):1025-1028.
    [155]张西娟,曾庆利,马寅生.断裂带中的流体活动及其作用[J].西北地震学报,2006,28(3):274-279.
    [156]Chang Hong. Hydraulic fractures in particulate materials[D]. Atlanta:Georgia Institute ofTechnology,2004.
    [157]李术才,张伟杰,张庆松,等.富水断裂带优势劈裂注浆机制及注浆控制方法研究[J].岩土力学,2014,2014,35(3):744-752.
    [158]张西娟,曾庆利,马寅生.断裂带中的流体活动及其作用[J].西北地震学报,2006,28(3):274-279.
    [159]王乾,曲立清,郭洪雨,等.青岛胶州湾海底隧道围岩注浆加固技术[J].岩石力学与工程学报,2011,30(4):790-802.
    [160]阮文军.基于浆液黏度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709-2714.
    [161]钱自卫,姜振泉,曹丽文,等.弱胶结孔隙介质渗透注浆模型试验研究[J].岩土力学,2013,34(1):139-143.
    [162]TE Grotenhuis R. Fracture grouting in theory:modelling of fracture grouting in sand[D]. Delft: Delft University of Technology,2004.
    [163]刘人太,李术才,张庆松,等.一种新型动水注浆材料的试验与应用研究[J].岩石力学与工程学报,2011,30(7):1454-1459.
    [164]李术才,韩伟伟,张庆松,等.地下工程动水注浆速凝浆液黏度时变特性研究[J].岩石力学与工程学报,2013,32(1):1-7.
    [165]张庆松,韩伟伟,李术才,等.灰岩角砾岩破碎带涌水综合注浆治理[J].岩石力学与工程学报,2012,31(12):2412-2419.
    [166]李利平,李术才,赵勇,等.超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J].岩石力学与工程学报,2012,31(3):550-560.
    [167]蔚立元,李术才,徐帮树,等.水下隧道流固耦合模型试验与数值分析[J].岩石力学与工程学报,2011,30(7):1468-1474.
    [168]张强勇,李术才,李勇,等.大型分岔隧道围岩稳定与支护三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(Supp.2):4051-4059.
    [169]张强勇,李术才,尤春安,等.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007,26(1):143-148.
    [170]李术才,李利平,李树忱,等.地下工程突涌水物理模拟试验系统的研制及应用[J].采矿与安全工程学报,2010,27(3):299-304.
    [171]李术才,孙子正,刘人太,等.基于裂隙动水注浆的水泥-水玻璃浆液相界面特征研究[J].岩石力学与工程学报,2013,8(32):1640-1646.
    [172]中国地质大学(武汉).钟家山隧道水文地质调查成果报告[R].2013.
    [173]翟成,李全贵,孙臣,等.松软煤层水力压裂钻孔失稳分析及固化成孔方法[J].煤炭学报,2012,37(9):1431-1436.
    [174]李大鹏,唐德高,李治中.基于拱效应的钻探塌孔机理分析及对策[J].江南大学学报(自然科学版),2012,11(1):70-77.
    [175]Karl T. Theoretical soil mechanics[M].4thed.NewYork:JohnWileyandSons,1947:66-76.
    [176]BradyBHG, BrownET. Rockmechanicsfor undergroundmining[M].London: GeorgeAllenandUnwin,1985:212-213.
    [177]Kovari K. Erroneousconceptsbehindthenewaustriantunnellingmethod[J]. TunnelsandTunnelling,1994(11):38-41.
    [178]HuangZ. Stabilizingof rockcavernroofs byrockbolts[D].Norway:NorwegianUniversityof ScienceandTechnology,2001.
    [179]李利平.高风险岩溶隧道突水灾变演化机理及其应用研究[D].济南:山东大学博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700