用户名: 密码: 验证码:
长江流域不同泥鳅群体的分子遗传差异及生长的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥鳅(Misgurnus anguillicaudatus)属鲤形目、鳅科、花鳅亚科、泥鳅属,是近年来国内外市场需求量不断上升的淡水鱼类之一,而且泥鳅因其适应性强、疾病少、成活率高、运输方便等特点,已成为重要的水产养殖对象。然而,目前用于泥鳅养殖的苗种主要是从天然水域中进行捕捞,来源不同的泥鳅其遗传背景不同,生长性能也不尽相同,给生产管理造成了极大的压力。本研究对长江流域6个不同泥鳅群体的分子遗传学和生长性能进行研究,并对苏州地区泥鳅和大鳞副泥鳅的年龄与生长进行了比较,为进一步开展泥鳅的种质资源保护和遗传育种工作提供理论指导。主要结果如下:
     1长江流域不同泥鳅群体遗传差异的SSR分析
     利用9对微卫星引物对我长江流域泥鳅苏州群体(SZ)、高邮群体(GY)、安徽群体(AH)、湖南群体(HN)、湖北群体(HB)、江西群体(JX)等6个野生泥鳅群体的观测杂合度(HO)、期望杂合度(He)、多态信息含量(PIC)和平均有效等位基因数(Ne)等进行了遗传检测,根据基因频率计算遗传相似系数和Nei氏标准遗传距离,χ2检验估计Hardy– Weinberg平衡,用遗传分化系数(Fst)和基因流(Nm)分析群体的遗传分化及其来源。同时,使用MEGA 3.1软件绘制基于Nei氏标准遗传距离的UPGMA进化树。6个群体共检测到352个片段,长度在105-383bp,多态位点上扩增出的等位基因数目从1到4个不等, 9对微卫星引物共检测到27个等位基因,平均等位基因数为3。统计结果显示:(1)6个野生泥鳅群体的多态性指标均处于中等偏低水平,平均多态信息含量分别为0.2731、0.3928、0.3906、0.2901、0.3351和0.2319,平均有效等位基因数依次为1.5881、1.9577、2.0336、1.6305、1.7652和1.5124,无偏期望杂合度平均值为0.3130、0.4614、0.4658、0.3641、0.4019和0.2866;(2)泥鳅群体间的遗传分化明显,各基因座遗传分化系数的均值为0.2147,基因流的均值为0.9146;(3)遗传相似系数江西群体与湖南群体最高(0.9535),苏州群体与江西群体最低(0.5804),6个泥鳅群体的聚类分析结果与地理分布呈一定相的关性。
     2长江流域不同泥鳅群体的生长性能比较
     2008年8月2日至12月4日,对苏州(SZ)、高邮(GY)、安徽(AH)、江西(JX)、湖南(HN)、湖北(HB)等6个泥鳅群体的各个自繁子一代和苏州群体(♀)×高邮群体(♂)的繁殖子一代(GS)进行了为期124d的生长对比试验。结果表明:(1)绝对增重率(g/d):GS﹥SZ﹥GY﹥AH﹥HN﹥HB﹥JX,GS比GY、SZ分别提高了16.7%、14.0%,GS与其它泥鳅群体的绝对增重率均存在极显著的差异(P﹤0.01),GY和SZ两个群体间的绝对增重率差异不显著(P﹥0.05),且高于AH、JX、HN和HB 4个群体;(2)体重变异系数(%):HN﹥HB﹥JX﹥AH﹥GY﹥GS﹥SZ,SZ的体重变异系数最低(5.75%),JX、AH、HN和HB 4个群体的体重变异系数均高于GS和GY两个群体;(3)成活率:SZ﹥GS﹥GY﹥AH﹥HN﹥JX﹥HB,其中,SZ的平均存活率最高(96.7%),HB的最低(86.0%),SZ、GS与GY三者之间成活率的差异不显著(P﹥0.05)。总之,依据生长性能和成活率评价,在苏州现有的环境条件下,SZ与GY两个泥鳅群体均表现出优良的养殖性能。苏州群体(♀)×高邮群体(♂)群体间繁殖的子一代GS的生长性能超过了其父、母本群体,显示了较好的养殖潜力。
     3泥鳅和大鳞副泥鳅年龄与生长的初步研究
     选取鳞片作为苏州地区泥鳅和大鳞副泥鳅的年龄鉴定材料,并对两种鱼进行了常规生物学测定。结果显示,泥鳅和大鳞副泥鳅的体长与鳞径均呈直线相关,其相关式分别为泥鳅L = 99.577R + 9.7435(r = 0.997);大鳞副泥鳅L = 74.445R + 9.6442(r = 0.995)。两种鱼体长与体重均呈幂函数关系,相关式分别为泥鳅W = 0.0118L2.8644(r = 0.899)和大鳞副泥鳅W = 0.0146L2.8135(r = 0.923)。体长、体重的生长规律能较好地用Von Bertalanffy方程进行拟合(P﹤0.01),其表达式分别为泥鳅:L t = 25.90[1-e-0.191(t+0.806)],Wt = 135.90[1-e-0.191(t+0.806)]3;大鳞副泥鳅:Lt = 25.59[1-e-0.201(t+0.731)];Wt = 169.45[1-e-0.201(t+0.731)]3。3龄以前两种鱼的体长生长速度较快,两种鱼的体重生长拐点年龄分别为4.95龄和4.73龄。
Loach(Misgurnus anguillicaudatus)belongs to Cypriniformes、Cobutudae、Cobitinae、Misgurnus, it is one of the freshwater fish which is very popular in domestic and foreign markets in recent years, and it has become an important object of aquaculture because of its character of good adaptability、less disease、high survive rate and convenient transportation. But, the fry used in the loach cultivation mostly come form natural waters at the present time, the genetic backgrounds and the growth-performance of different loach populations are not the same, and it has become tremendous pressure to the producton management. In this sdudy, the SSR genetic marks and the growth-performance of different loach populations in the Yangtae River Basin were analyzed comprehensively, and the age and growth of Misgurnus anguillicaudatus and Paramisgurnus dabryanus was studied, providing essential throretical support for further study of germplasm resources protection and genetic breeding. The major results are as following:
     1. Microsatellite DNA Marker Analysis of Genetic Diversity of the Loach (Misgurnus anguillicaudatus) Populations in the Yangtze River Basin
     Nine microsatellite loci were used for analyzing six wild loach populations(Suzhou population, SZ、Gaoyou population, GY、Anhui population, AH、Hunan population, HN、Hubei populations, HN、Jiangxi population, JX), Observed (HO) and expected (He) heterozygosity values, polymorphic information content (PIC) , and number of effective alleles (Ne) were all detected. Genetic similarity index and genetic distance were computed based on the allele frequency. The Hardy-Weinberg Equilibrium was checked according to the test ofχ2. Genetic differentiation and hierarchical partition of genetic diversity were evaluated by Fst and Nm. A clustering dendrogram was made based on the results of UPGMA methods using MEGA 3.1 software. There were totally 352 fragments ranging from 105bp to 383bp in length. 1 to 4 alleles were amplified at the nine loci and 27 alleles in all 6 loach populations. The average number of alleles in each locus was 3. The results showed that:(1)The level of genetic variability was relatively low in the six populations. Polymorphic information contents of the six wild loach populations were 0.2731、0.3928、0.3906、0.2901、0.3351 and 0.2319 respectively. The average numbers of effective alleles were 1.5881、1.9577、2.0336、1.6305、1.7652 and 1.5124. The average expected heterozygosity values were 0.3130、0.4614、0.4658、0.3641、0.4019 and 0.2866 respectively;(2)The genetic differentiation of 6 loach populations was obvious, the average value of coefficient of genetic differentiation for all loci was 0.2147, and the average valure of gene flow(Nm) was 0.9146.(3)The highest genetic similarity index that came form the populations of JX and HN was 0.9535, the lowest index was 0.5804, and it came form the populations of SZ and JX. There was a certain correlation between the clustering result and the geographical distribution.
     2. Comparison of Growth-Performance of different Loach (Misgurnus anguillicaudatus) Populations in the Yangtze River Basin
     The comparative experiments of growth of loach offsprings of Suzhou population (SZ)、Gaoyou population (GY)、Anhui population (AH)、Jiangxi population(JX)、Hunan population(HN)、Hubei population(sHN) and Suzhou population (♀)×Gaoyou population(♂)(GS)were proceeded during 124 days from August 2th to November 4th in 2008:(1)Absolute growth rate(g/d): GS﹥SZ﹥GY﹥AH﹥HN﹥HB﹥JX, GS was 16.7%、14.0% higher than GY and SZ respectively, there was most significant differences between GY and other six loach populations(P﹤0.01), the difference between GY and SZ is not signidicant, and the absolute growth rate of the two population are higher than that of AH、JX、HN and HB.(2)Variation coefficients of body weigh(t%): HN﹥HB﹥JX﹥AH﹥GY﹥GS﹥SZ, the variation coefficients of body weight of SZ was the lowest, and the varitation coefficients of JX、AH、HN and HB were higher than that of GY and GY.(3)Survival rates(%): SZ﹥GS﹥GY﹥AH﹥HN﹥JX﹥HB, thereinto, the average survival rate of SZ was the highest(96.7%), and that of HB was the lowest(86.0%), there were significant differences between any one of four loach populations and GS(P﹤0.05) except GY and SZ(P﹥0.05). In a word, based on the evaluation of growth performance and survival rate, the GY and SZ all shows excellent cultivation performances in the current environmental conditions of Suzhou. The growth performance of GS is superior to its parent populations, and shows better cultural potential.
     3. Primary stydy on the age and growth of the loach ( Misgurnus anguillicadudatus)and large scale loach (Paramisgurnus dabryanus)
     The scale was choosed as age identification materials of Misgurnus anguillicaudatus and Paramisgurnus dabryanus, and the two kinds of fish were determined by the conventional biology methods. The results showed that the relationships between the body length and the scale radius of Misgurnus anguillicaudatus and Paramsigurnus dabryanus is beeline correlative and the expressionses were L = 99.577R + 9.7435(r = 0.997)and L = 74.445R + 9.6442(r = 0.995). The growth trait of the length and weight of these two fishes was similar: W = 0.0118L2.8644(r = 0.899); W = 0.0146L2.8135(r = 0.923). The body groth pattern can be well described by Von Bertallanffy equation(P﹤0.01)and they were Misgurnus anguillicaudatus: Lt = 25.90[1-e-0.191(t+0.806)], Wt = 135.90[1-e-0.191(t+0.806)]3 and Paramsigurnus dabryanus: Lt = 25.59[1-e-0.201(t+0.731)], Wt = 169.45[1-e-0.201(t+0.731)]3。The stage before the age of 3 was a speediness growth phase of body length. The ages of growth turning point of body weight of the two fishes were 4.95 years and 4.73 years respectively.
引文
[1]孟庆闻,苏锦祥,缪学祖.鱼类分类学[M].北京:中国农业出版社, 1995.
    [2]高泽霞,王卫民,周小云. 2种鉴定泥鳅多倍体方法的比较[J].华中农业大学学报, 2007, 26(4):524-527.
    [3]印杰,赵振山,陈小奇,等.二倍体和四倍体泥鳅染色体组型比较[J].水生生物学报, 2005, 29(4):469-472.
    [4]南平,杜启艳,燕帅国,等.人工诱导四倍体泥鳅的研究[J].河南师范大学学报(自然科学版), 2008, 36(1):103-106.
    [5]赵振山.大鳞副泥鳅雄核单北体的早期发育[J].动物学报, 2000, 46( 3) :353-356.
    [6]刘汉勤,易泳兰,陈宏溪.泥鳅雄核发育纯合二倍体的产生[J].水生生物学报, 1987, 11(3):241-246.
    [7]曾柳根,甘云飞,王军花,等.鄱阳湖区泥鳅的微卫星DNA多态性分析[J].南昌大学学报, 2008, 32(1):84-88.
    [8]常重杰,周荣家,于其兴.两种泥鳅不同群体遗传变异的RAPD分析[J].动物学报, 2001, 47(1):89-93.
    [9]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学, 1996, 29:1-10.
    [10]傅荣昭,邵朋柱,高文远,等.分子标记在果树上的应用[J].果树科学, 1999, 18(4): 14-18.
    [11] Mullis K B, Faloona F. A specific synthesis of DNA in vitro vai a polymerase chain reaction[J]. Methods Enzymol, 1987, 155: 335-338.
    [12]王永飞,马三梅,刘翠平,等.遗传标记的发展和分子标记的检测技术[J].西北农林科技大学学报(自然科学版), 2001, 29(6): 130.
    [13]李竞雄,宋同明.植物细胞遗传学[M].北京:科学出版社, 1993, 214-257.
    [14] Cruz T A, Thorpe J P, Pullin R S. Enzyme electrophoresis in Tilapia zillii:A patern for determining biochemical genetic markers for use in tilapia stock identification[J]. Aquaculture, 1982, 29:311-329.
    [15] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture, 2004, 238:1-4.
    [16] Botstein D, White R, Skolnick M, et al. Construction of genetic liknage map in man using restriction fragement length polymorphism[J]. American Journal of Human Genetics, 1980, 32:314-331.
    [17]张辉,张俊权,李太平.鲤转铁蛋白和血清酯酶多态性研究[J].水生生物学报, 1993, 17(3):278-281.
    [18] Csizmadia C, Jeney Z, Gorda S. Transferrin polymorphism of some races in a live gene bank of common carp[J]. Aquaculture, 1995, 129:193-198.
    [19]张颖,孙大江,刘红柏.三种鲟鱼血清蛋白的比较研究[J].大连水产学院学报, 2006, 21(3):482-682.
    [20]朱蓝菲,蒋一珪.银鲫种内的遗传标记及其在选种中的应用[J].水生生物学报, 1987, 11(2):105-111.
    [21]朱蓝菲.鱼类同工酶和蛋白质的聚丙烯酰胺梯度凝胶电泳[J].水生生物学报, 1992, 16(2):183-186.
    [22]李传武.兴国红鲤、草鱼及其杂种一代血清蛋白质的电泳分析[J].淡水渔业, 1991, (6):12-14.
    [23]潘锋,胡玫,王和海.奥利亚罗非鱼血清蛋白和组织同工酶电泳图谱的特异性研究[J].淡水渔业, 1993, 23(2):7-10.
    [24]楼允东,沈竑,徐庆登,等.高邮杂交鲫(鲫♀×白鲫♂)及其亲本血清生化组成的比较研究[J].水生生物学报, 1995, 19(2):157-163.
    [25]张克俭,万全,李公行,等.滁州鲫的形态学和血清蛋白电泳谱型[J].水产学报, 1996, 20(4):352-356.
    [26]邹桂伟,潘光碧,罗相中,等.大口鮎和鮎鱼血清蛋白质及同工酶的比较研究[J].遗传, 1997, 19(5):34-36.
    [27] Yang L, Yang S T, Wei X H, et al. Genetic diversity among different colnes of the gynogenetic silver crucian carp, Carassius auralus gibelio, revealed by transferring and isozyme markers[J]. Biochemical Genetics, 2001, 39:213-225.
    [28]李名友,周莉,杨林,等.彭泽鲫的分子遗传分析及其与方正鲫A系的比较[J].水产学报, 2002, 26( 5) :472-476.
    [29] Kaplan N O, Theodore L. Role of the two types of lactic dehydrogenase[J]. Advances in Enzyme Regulation, 1964, 2:203-212.
    [30]朱蓝菲.几种鲤科鱼类及杂种的乳酸脱氢酶同工酶的比较[J].水生生物学集刊, 1992, 7(4):539-545.
    [31]罗莉中,毕世华,王春元.金鱼乳酸脱氢酶的同工酶的发生遗传学研究[J].遗传学报, 1982, 9(5):375-380.
    [32]李思发,王强,陈永乐.长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种群的生化遗传结构与变异[J].水产学报, 1986, 10(4):351-372.
    [33]李力,王仁卿,王中仁,等.青岛耐冬山茶的多样性(Ⅱ) [J].生物多样性, 1996, 4(1):1-6.
    [34] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture, 2004, 238:1-37.
    [35]桂建芳.脊椎动物线粒体DNA的进化遗传学[J].动物学杂志, 1990, 23( 1) :50-55.
    [36]肖武汉,张亚平.银鲴自然群体线粒体DNA的遗传分析[J].水生生物学报, 2000, 24(1):1-9.
    [37]单淇.鳙鱼线粒体DNA D-loop区段及微卫星DNA的遗传多样性分析[D].天津:天津师范大学, 2006.
    [38] Avise J C, Helfman G S, Saunders N C, et al. Mitochondrial DNA differentitation in North Atlantic eels: population genetic consequences of an unusual pattern[J]. Evolution, 1986, 83:4350-4353.
    [39] Ikeda M, Taniguchi N. Genetic variation and divergence in populations of ayu Plecoglossus altivelis, including endangered subspecies, inferred from PCR-RFLP analisis of the mitochondrial DNA D-loop region[J]. Fish Sci, 2002, 68:18-26.
    [40] Alves M J, Coelho H, Collares-Pereira M J. Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica: importance for conservation[J]. Heredity, 2001, 87:463-473.
    [41]张四明,龙华.湖北淤泥湖団头鲂mtDNA限制性片段长度多态性的研究[J].水产学报, 1996, 20(4):289-293.
    [42]夏德全,吴晓渊.两种不同地方种群尼罗罗非鱼遗传差异和分子遗传标记研究[J].中国水产科学, 1997, 4(3):7-12.
    [43]黎双飞,刘少军,张轩杰,等.异源四倍体鲫鲤肝组织线粒体DNA的研究[J].水产学报, 2000, 24( 6) :489-493.
    [44] Williams J G, Kublik, A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990, 18:6531-6535.
    [45] Welsh J, Mccleland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research, 1990, 18:7213-7218.
    [46]李建中.异源四倍体鲫鲤的分子遗传标记研究[D].广州:中山大学, 2003.
    [47]张德春,张锡元,杨代淑,等.长江鳙遗传多样性的研究[J].武汉大学学报(自然科学版), 1999, 45(6):857-860.
    [48]陈洪,杨靖,薛国雄,等. RAPD技术在异精激发方正银鲫比较研究中的应用[J],科学通报, 1994, 39(7):661-663.
    [49]凌去非,李思发,张海军,等.丁鱥雌核发育鱼的异源精子诱导及其与亲本的RAPD比较分析[J].水产学报, 2005, 29(1):120-123.
    [50]周莉,樊连春,桂建芳.鲫鱼复合种外来遗传物质整入的RAPD分析[J].水生生物学报, 1998, 22(4)301-306.
    [51] Zhou L, Wang Y, Gui J F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp ( Carassius auratus gibelio Bloch ) as revealed by RAPD assays[J]. Journal of Molecular Evolution, 2000, 51:498-506.
    [52]张四明,汪登强,邓怀,等.长江水系鲢和草鱼遗传结构及变异的RAPD研究[J].水生生物学报, 2001, 25(4)324-330.
    [53]邹曙明,李思发,蔡完其,等.団头鲂良种雌核发育群体的建立及其遗传变异[J].水产学报, 2001, 25(4):311-316.
    [54]龙良启,赵振山,汤保贵,等.泥鳅与大鳞副泥鳅正反交子代遗传变异的RAPD分析[J].水生生物学报, 2000, 24(6):659-662.
    [55]夏德全,曹萤,杨弘,等.用RAPD分析对罗非鱼遗传变异的研究及其对杂种优势的利用[J].水产学报, 1999, 23(1):29-32.
    [56]贾海波,周莉,桂建芳.两个人工雌核发育白锦鲤群体的RAPD标记分析[J].水生生物学报, 2002, 26(1):1-7.
    [57]俞豪祥,吴锦忠,李平,等.雄核发育异域银鲫及其初步应用[J].水产学报, 2000, 24(1):17-21.
    [58] Pazza R, Kavalco K F, Prioli A P, et al. Chromosome polymorphism in Astyanax fasciatus ( Teleostei, Characidae), Part 3: Analysis of the RAPD and ISSR molecular markers[J]. Biochemical systematics and ecology. 2007, 35:843-851.
    [59]滕春波,孙效文,沈俊宝,等.利用异源精子激发雌核发育的银鲫及亲本的RAPD分析[J].水产学报, 1999, 23(4):420-423.
    [60]吴滟,傅洪拓,李家乐,等.太湖日本沼虾的遗传多样性分析[J].上海水产大学学报, 2008, 17(5):620-624.
    [61]张岩,肖永双,高天翔,等.钝吻黄盖鲽野生群体多样性的分析[J].水产学报. 2008, 32( 3) :493-495.
    [62]杜合军,朱新平,陈昆慈,等.珠江野生卷口鱼遗传多样性的RAPD分析[J].水产学报. 2006, 30( 3) :305-310.
    [63]夏德全,吴晓渊.两种不同地方种群尼罗罗非鱼遗传差异和分子遗传标记[J].中国水产科学, 1997, 4(3):7-12.
    [64]杨慧荣,江世贵.用RAPD技术探讨5中雕科鱼类的亲缘关系[J].水产学报, 2006, 30(4):469-474.
    [65]何舜平.五种鲤科鱼类的RAPD分析兼论稀有鮈鲫的系统位置[J].水生生物学报, 1997, 21(3):262-267.
    [66]何舜平,王伟.低等鲤科鱼类RAPD分析及系统发育研究[J].水生生物学报, 2000, 24(2):101-106.
    [67]易犁,王伟,李墨怡,等.基于RAPD分析的高体鰟鮍地理分化研究[J].水生生物学报, 2001, 25(3):301-304.
    [68] Iturra P, Medrano J F, Bagley M, et al. Identification of sex chromosome molecular markers using RAPDs and fluorescent in situhybridization in rainbow trout[J]. Genetica, 1998, 101:209-213.
    [69] Balazs K, Sandor E, Richard B, et al. Male-specific DNA markers from African catfish ( Clarias gariepinus ) [J]. Genetica, 2001, 110:267-276.
    [70] Postlethwait J H. A genetic linkage map for the Zebrafish[J]. Science, 1994, 264:699-703.
    [71] Wada H. Genetic linkage map of a fish: the Japanese medaka Oryzias latipes[J]. Molecular Marine Biology and Biotechology, 1995, 4( 3) :269-274.
    [72]张云武,张亚平.微卫星及其应用[J].动物学研究, 2001, 22(4):315-320.
    [73]杜长斌,孙效文,楼允东,等.微卫星在水产动物种质资源研究方面的应用[J].水产学杂志, 2000, 13(1):68-71.
    [74] Garza J C, Slatkin M, Freimer N B. Microsatillite allele frequencies in human and chimpanzees, with implications for constrains on allele size[J]. Mol Biol Evol, 1995, 12:594-603.
    [75] Coppieters W, Vande W, Peelman L, et al. Character of porcine polymorphic microsatellite loci[J]. Anim genet, 1993, 24:163-170.
    [76] Megleez E, Pecsenge K, Varga Z, et al. Comparison of differentiation pattern at allozyme and microsatillite loci in parnassius mnemosym pupulation[J]. Hereditas, 1998, 128:95-103.
    [77]朱晓东.应用微卫星标记分析长江水系野生鲢、鳙群体的遗传多样性[D].上海:上海水产大学, 2007.
    [78]张学勇,李大勇.小麦及其近亲基因组中的DNA重复序列研究进展[J].中国农业科学, 2000, 33(5):14-24.
    [79] Li D Y, Kang D H, Yin Q Q, et al. Microsaltllite DNA Marker Analysis of Genetic Diversity in Wild Common Carp( Cyprinus carpio L.) Populations[J]. Journal of Genetics and Genomics, 2007, 34(11):984-993.
    [80]全迎春,孙效文,梁利群.应用微卫星多态分析4个鲤鱼群体的遗传多样性[J].动物学研究, 2005, 26(6)595-602.
    [81]董仕,谷口顺彦.微卫星DNA鉴别克隆香鱼[J].水产学报, 2003, 27( 4) :295-299.
    [82]周莉,刘静霞,桂建芳.应用微卫星标记对雌核发育银鲫的遗传多样性初探[J].动物学研究, 2001, 22(4):257-264.
    [83] Jeferys A J, Witlson V, Thein S L. Positiveid entification of an immigration test case using human DNA fingerprints[J]. Nature, 1985, 317:8181-8190.
    [84] Postlethwati J H. A Genetic linkage map for the Zebrafish[J]. Science, 1994, 264( 29) :699-703.
    [85] Knapik E W, Goodman A, Atkinson O S, et al. A reference cross DNA panel for zebrafish( Daniorerio) anchored with simple sequence length polymorphisms[J]. Development, 1996, 123:451-460.
    [86]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学, 2000, 7(1):1-5.
    [87] Sun X W, Liang L Q. A genetic linkage map of common carp(Cyprinus carpio L.) and mapping of a locus associated with cold tolerance[J]. Aquaculture, 2004, 238:165-172.
    [88] Cnaani A, Hallerman E M, Ron M, et al. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid[J]. Aquaculture, 2003, 223:117-128.
    [89] Whittaker J C, Curnow R N, Haley C S, et al. Using Marker-maps in marker-assisted selection[J]. Genet Res, 1995, 66( 3) :255-265.
    [90] Xie C, Xu S. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits[J]. Heredity, 1998, 80( 1) :489-498.
    [91] Ollivier L. The accuracy of marker-assisted selection for quantitative traits within populations in linkage equilibrium[J]. Genetics, 1998, 148( 3) :1367-1732.
    [92] Moreau L, Charcosset A, Hospital F, et al. Marker-assisted selection efficiency in populations of finite size[J]. Genetics, 1998,148(3):1367-1372.
    [93] Luo Z W, Thompson R, Woolliams J A. A population genetics model of marker-assisted selection[J]. Genetics, 1997, 146( 3):1173-1183.
    [94]孙其信,倪中福,陈希勇,等.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学学报, 1997, 2(1):64-116.
    [95] Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics[J]. Aquaculture, 2004, 238:15.
    [96]吴清江,桂建芳.鱼类遗传育种工程[M].上海:上海科学技术出版社, 1999.
    [97] Sambrook J, Fritsch E F, Maniatus T. Molecular Cloning: a Laboratory Manual[M]. New York: Cold Spring Harbour Laboratory Press, 1989.
    [98] Morishima K, Nakayama I, Arai K. A genetic linkage map of the loach Misgurnus anguillicaudatus(Teleostei:Cobitidae)[J]. Aquaculture, 2007, 272: 238-321.
    [99] Chistiakov D A, Hellemans B, Filip A M. Microsatellites and their genomic distribution, evolution, function and Applications: A review with special reference to fish genetics[J]. Aquaculture, 2006, 255:12.
    [100] Bostein D, White R L, Skolnick M, et al. Construction of linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Animal Genetics, 1980, 32:314-331.
    [101] Wright. Evolution and the genetics of populations[M]. Chicago: University of Chicago Press, 1978.
    [102] Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in pupulations[J]. Evolution, 1975,29:1-10.
    [103] Xu Z, Primavera J P, Pena L D, et al. Genetic diversity of wild and cultured black tiger shrimp( Penaeus monodom) in the Philippines using microsatellites[J]. Aquaculture, 2001, 199:13-40.
    [104] Beardmore J A, Mair G C, Lewis R I. Biodiversity in aquaticsystems in relation to aquaculture[J]. Aquaculture Res, 1997, 28:829-839.
    [105] DeWoody J A, Avise J C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals[J]. Journal of Fish Biology, 2000, 56:461-473.
    [106]游翠红.两种小型鱼类的某些基因组特征研究[D].武汉:中国科学院水生生物研究所, 2007.
    [107]陈景星.中国花鳅亚科鱼类系统分类的研究[C].鱼类学论文集(第一辑).北京:科学技术出版社, 1981, 21-32.
    [108]侯宁,张研,鲁翠云,等.微卫星DNA标记分析德国镜鲤的遗传潜力[J].遗传, 2007, 29(12):1509-1518.
    [109]全迎春,李大宇,曹鼎辰,等.微卫星DNA标记探讨镜鲤的种群结构与遗传变异[J].遗传, 2006, 28(12):1541-1548.
    [110] Slatkin M. Gene flow and the geographic structure of natural populations[J]. Science, 1987, 236:787-792.
    [111] Thorp J P. The molecular dock hypothesis: Biochemical evolution, genetic differentiation, and systematic[J]. Annual Review of Ecology Systematic, 1982, 13( 1) :139-168.
    [112] Li D Y, Kang D H, Yin Q Q, et al. Microsatellite DNA Marker Analysis of Genetic Diversity in Wild Common Carp (Cyprinus carpio L.) Populations[J]. Journal of Genetics and Genomics, 2007, 34(11):984-993.
    [113]李思发,李晨虹,李家乐,等.尼罗罗非鱼五品系生长性能评估[J].水产学报, 1998, 22(4):289-292.
    [114]李家乐,李晨虹,李思发.不同组合尼罗罗非鱼(♀)奥利亚罗非鱼(♂)养殖性能差异研究[J].上海水产大学学报, 1997, 6(2):96-101.
    [115] Wohlfarth G W, Moav R. The regression of weight gain of initial weight in carp:Ⅰ.Methods and result[J]. Aquaculture, 1972, 1:7-28.
    [116] Wohlfarth G W, Moav R. Genetic testing of common carp in cages.2. Influence of variation in initial weight on weight gain[J]. Aquaculture, 1993, 109:245-256.
    [117] Eknath A E, Tayamen M M, Paladade, Palada-de Vera M S, et al. Genetic improvement of farmed tilapias: the growth performance of eight strains of Orechromis niloticus tested in different farm environments[J]. Aquaculture, 1993, 111:171-188.
    [118]杜荣骞.生物统计[M].北京:高等教育出版社, 1987.
    [119]何学军,李思发,韩风进,等.红罗非鱼和尼罗罗非鱼正反交后代体色和生长性能的评价[J].水产科技情报, 2002, 29(4):147-152.
    [120]李思发,蔡完其.团头鲂双向选育效应研.水产学报, 2000, 24(3):201~205.
    [121]楼允东.鱼类育种学[M].北京:中国农业出版社, 1999.
    [122]王元军,李殿香.大鳞副泥鳅雌雄个体的形态分析[J].四川动物, 2005, 24(2):159-160.
    [123]雷逢玉,王宾贤.泥鳅繁殖和生长的研究[J].水生生物学, 1990, 14(1):60-68.
    [124]王敏,王卫民,鄢建龙.泥鳅和大鳞副泥鳅年龄和生长的比较研究[J].水利渔业, 2001, 21(1):7-9.
    [125]袁凤霞.泥鳅年龄和生长的研究[J].华中农业大学学报, 1986, 5(2):163-167.
    [126]殷名称.鱼类生态学[M].北京:中国农业出版社, 1999, 15-61.
    [127]李思发.中国淡水主要养殖鱼类种质研究[M].上海:上海科学技术出版社, 1998, 34-35.
    [128]仇玉林.最小二乘法在Von Bertalanffy生长公式参数值计算中的应用[J].淡水渔业, 1981, 4:41-45.
    [129] John S G, Clear N P, Carter T I. et al. Age and growth in southern bluefin tuna, Thunnus maccoyii ( Castelnau):Directestimation from otoliths, scales and vertebrae[J]. Fisheries Research, 2008, 92:207-220.
    [130] Cazorla A L, Sidorkewicj N. Age and growth of the largemouth perch Percichthys colhuapiensis in the Negro river, Argentine Patagonia[J]. Fisheries Research, 2008, 92:167-179.
    [131]沈素娟,黄琇 .低龄草鱼鳞片环纹的增长及幼轮和年轮特征的初步研究[J].水生生物学报, 1986, 10(3):244-252.
    [132]朱邦科,谢从新,王明学,等.保安湖沙塘鳢的食性、繁殖、年龄及生长的研究[J].水生生物学报, 1999, 23(4):316-323.
    [133]陈马康,童合一,陈兆祥,等.钱塘江几种经济鱼类的生长研究[J].生态学报, 1984, 4( 2) :181-187.
    [134]许品诚.太湖翘嘴红鲌的生物学及其养殖问题的探讨[J].水产学报, 1984, 8(4):275-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700