用户名: 密码: 验证码:
汽车操纵逆动力学的建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对汽车操纵逆动力学的研究现状,采用仿真分析和实车试验相结合的方法,对汽车操纵逆动力学进行了比较系统的研究。将计算智能方法、控制论中的逆系统理论以及虚拟样机技术应用于汽车操纵逆问题的研究中。在操纵逆问题研究基础上,进行基于逆问题求解的汽车操纵性能的优化,并根据优化方案,分析汽车运动稳定性。
     主要的研究内容和成果有:
     1.以识别汽车方向盘转角输入和方向盘转矩输入为操纵逆动力学研究的出发点。通过求解人—车—路闭环系统的状态空间表达式,利用径向基函数网络建立了汽车横摆角速度、侧向加速度与方向盘转角之间的映射关系。在汽车沿不同路径行驶时,以汽车横摆角速度、侧向加速度为输入,识别方向盘转角,结果表明,这种求逆的方法是可行的,并且具有精度高、运算速度快及抗干扰能力强等优点。
     2.根据车辆的操纵稳定性能以及汽车的结构特点,利用ADAMS软件建立了包含悬架系统、转向系统以及轮胎等结构在内的整车模型;根据ADAMS闭环仿真控制原理,以汽车行驶道路轨迹为输入控制,识别方向盘转角,结果表明,这种方法是可行的,为汽车操纵逆动力学研究提供了可以信任的整车模型。
     3.以二自由度汽车为研究对象,将控制论中的逆系统理论应用于操纵逆问题的研究。将汽车操纵逆问题转化为建立原系统的逆系统,并在该逆系统中求解输出,即归结为正问题的处理。在建立的逆系统中,以侧向加速度为输入,求解汽车方向盘转角,结果表明,该方法是有效的,且精度比较高,运算速度比较快。
     4.将上述三种方法识别的方向盘转角进行对比分析,并通过实车试验数据验证。可以看出,三种方法识别的方向盘转角比较吻合,且数字仿真结果与实车试验数据具有较好的一致性,数字仿真能较好的反映实车试验。
     5.运用计算智能方法,以实车实验为依据,进行汽车操纵逆动力学的研究,建立了基于试验数据的径向基函数网络。由横摆角速度、侧向加速度的试验数据,识别汽车方向盘转角,将识别结果与试验测得的方向盘转角相对比,对比结果验证了该方法的正确性,并且只要试验样本足够多且具有代表性,识别精度会越来越高。
     6.给出了一种基于逆问题求解的闭环系统操纵性能优化的方法。由跟踪路径反求出方向盘转角及汽车的其它响应,进而计算闭环系统的操纵性能评价指标并进行优化。该方法是在不同汽车方案具有相同实际行驶路径的基础上对操纵性能进行分析并优化,从而得到的最优汽车方案在跟踪某一典型路径时具有最好的操纵性能。在此基础上,根据优化得到的汽车方案,在汽车转向运动力矩输入模型和转角输入模型基础上,对汽车在不同附着系数路面上的运动稳定性进行分析。
A brief review of the developing history of vehicle handling inverse dynamics is introduced in this paper. Using computer simulation technology and experimentation design method, the inversion solution study of vehicle handling dynamics is carried out, based on the method of computation intelligent algorithms, inverse system theory and virtual prototype technology. After the solution of inverse problems, an optimization approach is proposed for the purpose of improving the vehicle maneuverability, and then the motion stability of vehicle driving is analyzed based on the result of optimization.
     The main contributions of this work are summarized as follows:
     1. A method of obtaining the steering wheel angle input and steering moment input is presented for further investigation of the vehicle handling inverse dynamics, according to some vehicle responses. Using Radial Basis Function neural networks, the mapping relationship between yaw velocity, lateral acceleration and steering wheel angle is founded. The inverse solution results showed that the proposed inverse solution method is not only practical, but also with high accuracy, little computation requirement and good stability.
     2. Based on the characteristic of handling-stability performance and the vehicle configurations, the parameter 3D model of the vehicle is created successfully, which includes suspension, steering, tire etc. According to the mechanism of ADAMS closed-loop control, the steering angles can be identified with the input of road track. The identification shows this method is effectual, and the trustful vehicle model for handling inverse problems is given.
     3. Based on the two-degree-freedom system of vehicle, the inverse system theory is applied for the vehicle handling inverse dynamics. An inverse system is founded relativing to the primary system and the output of the inverse system is solved. The relationship between lateral acceleration and steering angle can be found in the inverse system, and the inverse solution results shows that this method is not only applicable, but also with high accuracy, little computation requirement.
     4. The identification results of the three methods, which include computation intelligent algorithms, inverse system theory and virtual prototype technology, is compared with each other and validated by the real experiment. The comparison shows that the steering angles which are solved through the three methods are approximate. The value of simulation is consistent with real experiment.
     5. Using the method of computation intelligent algorithms, the inversion solution study for the real experiment is carried out. The Radial Basis Function neural networks are established based on the test of vehicle handling and stability. The data of yaw velocity, lateral acceleration are put into the networks, and the identification shows its validity. The precision of identification can be higher, if the experimental data are enough and representative.
     6. Based on solution of inverse problems, an optimization approach is proposed for the purpose of improving maneuverability of driver-vehicle-road closed-loop systems. The mapping relationship between vehicle lateral displacement and steering wheel angle and other responses can be found utilizing Radial Basis Function neural networks. One prescribed path is taken as input of the trained RBF neural networks, then the steering wheel angle and other vehicle responses can be obtained and the maneuverability index of the closed-loop system can be obtained and optimized. It can be seen that different vehicle configurations, based on the inversion solution study, have the inherent ability to follow the same prescribed path, therefore the optimal vehicle configuration has the best maneuverability among all vehicle configurations when they follow some typical path. After the optimization, the motion stability of vehicle driving on different roads is analyzed based on the modal of vehicle with steering angle input and steering moment input.
引文
[1]余志生.汽车理论(第三版).北京:机械工业出版社,2000
    [2]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991
    [3]赵又群,郭孔辉.稳态轮胎偏滑力学的发展极其展望.汽车技术,1997,(3),1~5
    [4]赵又群,郭孔辉.汽车操纵性评价的发展、研究意义与基本问题.汽车技术,1998,(5):1~5
    [5]刘浩学.汽车使用安全技术.人民交通出版社,2002
    [6]秦民.整车动力学控制仿真分析:[博士学位论文].吉林:吉林工业大学,2003
    [7] Dave Crolla,喻凡.车辆动力学及其控制.人民交通出版社,2004 [ 8 ] Broulheit G.“La Suspension de la Direction de la Voiture Automobile: Shimmy et Danadinement”(The Suspension of the Automobile Steering Mechanism:Shimmy and Ttramp), Societe des Ingenieurs Civil de France, bulletin 78, 1925
    [9] Lanchester F.W. Moter car suspension and independent spring, proc. Inst, Automobile Engineers, 1936, Vol.XXX: 668-762
    [10] Olley M. Independent wheel suspension-its whys and wherefores. SAE Journal, 1934, Vol.34, No.3:73-81
    [11] Becher G.A., G..O.Burnham, H.Maruhn.“Schwingunge Automobilenkungen”(“Vibration of the Steering Systems of Autobiles”), Krayn, Berlin. 1931
    [12] Evans, R.D. Properties of tires affecting riding, steering and handling. Journal of the Society of Automotive Engineers. 1935, 36(2): 41
    [13] Doebelin E O.系统的建模和响应(童钧芳等译).上海:上海科学技术文献出版社,1986
    [14] Ellis J R. Vehicle dynamics. London: Business Books Ltd, 1969
    [15] Steeds W, Mechanics of Road Vehicles. London: Iliffe and Sons Ltd, 1960
    [16]米奇克M.汽车动力学(桑杰译).北京:机械工业出版社,1972
    [17] Okada T, Takiguchi T, Nishioka M. Evaluation of vehicle handling and stability by computer simulation at the first stage of vehicle planning. SAE paper 730525, 1973, 6: 1685~1707
    [18]郭孔辉.汽车操纵稳定性.长春:吉林人民出版社,1983
    [19]郭孔辉.长春汽车研究所近年来对汽车操纵稳定性的研究.汽车工程,1985,7(1):17~22
    [20] Ellis J R. Vehicle handling dynamics. London:Mechanical Engineering Publications Ltd, 1994
    [21]阿达姆.汽车行驶性能(黄锡朋,解春阳译).北京:科学谱及出版社,1992
    [22] McRuer D T, Allen R W, Weir D, et al. New results in driver steering control models. Human Factors, 1977, 19(4): 381~397
    [23] MacAdam C C. Application of an optimal preview control for simulation of closed-loop automobile driving. IEEE Trans on Systems, Man and Cybernetics, 1981, 11(6): 393~399
    [24] McRuer D T, Allen R W, Weir D, et al., New results in driver steering control models. Human Factors, 1977, 19(4): 381~397
    [25]郭孔辉.人-车-路闭环操纵系统主动安全性的综合评价与优化设计.汽车技术,1993,(4):4~12
    [26]郭孔辉.预瞄跟随理论与人-车闭环系统大角度操纵运动仿真.汽车工程,1992,14(1)
    [27] Guo K H, Fancher P. Preview-Follower method for modeling closed-loop vehicle directional control. In: Symposium of 19th Annual Conference on Manual Control, Cambridge. 1983: 158~187
    [28] Guo K, Guan H. Modeling of driver/vehicle directional control system. Vehicle System Dynamics, 1993, 22(3/4): 141~184
    [29] Suetomi T, Yoshimoto K. Trend in R&D on driving simulators. Journal of JSAE, 1986, 40(3): 319~323
    [30] Casali J G, Wierwille W W. The effects of various design alternatives on moving-based driving simulator discomfort. Human Factors, 1980, 22(6): 741~756
    [31]赵又群,管欣,郭孔辉.开发型驾驶模拟器.公路交通科技,1995,12(3):64~66
    [32] Harada H. Stability Criteria and Evaluation of Steering Maneuver in“Driver-Vehicle System”. JSME Inter. J., Series, 1994, 37(1):115~122
    [33]赵又群,王立功,何小明等.四轮转向汽车运动稳定性分析.中国机械工程,2003,14(14):1246~1248
    [34]赵又群,郭孔辉.驾驶员统计特性对人—车闭环系统响应的影响与汽车主动安全性评价.汽车工程,1999,21(2):87~92
    [35] Zhao Youqun, Zhang Guiyu, Guo Konghui. Handling safety simulation of driver-vehicle closed-loop system with evolutionary random road input. Vehicle System Dynamics, 2000, 33(3):169~181
    [36]赵又群,郭孔辉.汽车操纵性评价指标的研究.汽车工程,2001,23(1):1~4
    [37]赵又群,郭孔辉.驾驶员—汽车闭环系统操纵动力学优化设计的二阶矩方法.机械科学与技术,1999,18(5):737~738
    [38]赵又群,郭孔辉.汽车主动安全性的模糊优化设计.机械科学与技术,1999,18(6):919~921
    [39] Crolla D A, Chen D C. Vehicle handling assessment using a combined subjective-objective approach. SAE paper 980226,1998,6:386~395
    [40]郭孔辉,管欣.汽车性能设计技术的进展.中国机械工程,1997,8(1):94~96
    [41] Fujioka T, Kimura T. Numerical simulation of minimum-time cornering behaviour[J]. JASE Review,1992,13(1): 44~51
    [42] Bernard J, Pickelmann M. An inverse linear model of a vehicle. Vehicle System Dynamics, 1986, 15(4):179~186
    [43] Hatwal H, Mikulcik E C. Some inverse solutions to automobile path-tracking problem with input control of steering and brakes. Vehicle System Dynamics, 1986, 15(2):61~71
    [44] Trom J, Vanderploeg M, Bernard J. Application of inverse models to vehicle optimization problems, Vehicle System Dynamics, 1990, 19(2):97~110
    [45] Casanova D, Sharp R S, Symonds P. Minimum time manoeuvring: The significance of yaw inertia,Vehicle System Dynamics, 2000, 34(2):77~115
    [46] Velenis E, Tsiotras P. Optimal velocity profile generation for given acceleration limits:the half-car model case. IEEE International Symposium on Industrial Electronics(ISIE05), Dubrovnik, Croatia,2005
    [47] Velenis E, Tsiotras P. Optimal velocity profile generation for given acceleration limits:theoretical analysis. American Control Conference, Portland, OR, 2005: 1478~1483
    [48] Velenis E, Tsiotras P. Optimal velocity profile generation for given acceleration limits:receding horizon implementation. American Control Conference, Portland, OR, 2005: 2147~2152
    [49] Bünte T, Sahin A, Bajcinca N. Inversion of vehicle steering dynamics with modelica/dymola. Proceeding of the 4th International Modelica Conference, Hamburg, 2005: 319~328
    [50]许锋,陈怀海,鲍明.机械振动载荷识别研究的现状与未来.中国机械工程,2002,13(6):526~531
    [51] Bernard J, Gruening J, Hoffmeister K. Evaluation of vehicle/driver performance using genetic algorithms. SAE paper 980227,1998,6:396~406
    [52]吴淼,黄民.机械系统的载荷识别方法与应用.徐州:中国矿业大学出版社,1995
    [53]张方,朱德懋.动态载荷时域识别的级数方法.振动工程学报,1996,9(1):1~5
    [54]徐倩,文祥荣,孙守光.结构动态载荷识别的精细逐步积分法.计算力学学报,2002,19(1):53~57
    [55]初良成.工程结构中的动态载荷识别及动力稳定性问题.大连:大连理工大学,1993
    [56]钟万勰.结构动力方程的精细时程积分法.大连理工大学学报,1994,32(2):131~136
    [57]傅志方,饶柱石,周海亭.一种动态载荷的识别方法.上海交通大学学报,1997,31(3):5~7
    [58] Odden S, Lundberg B. Prediction of impact force by impuls responses method. Int J Impact Engng. 1991, 11(2): 149~158
    [59] Briggs J C, Tse M M. Impact force identification using extracted modal parameters and pattern matching. Int J Impact Engng, 1992, 12(3): 361~372
    [60] Inoue H, Ishida H, Kishinoto K, et al. Measurement of impact load by using an inverse analysis technique. JSME Int J Series 1, 1991, 34(4): 453~458
    [61]谢森,王玉.非线性系统完全线性化方法的研究.控制理论与应用,1997,14(1):139~143
    [62] Hunt L R, Luksic M, Su R. Exact linearization of input-output systems. Int J Control, 1986,43(1): 247~255
    [63] Schwartz, C. A.. Linear equivalence of time varying systems. Int J Control, 1987,45(2): 475~480
    [64] Cossalter V, Lio D, Lot R. A new general method for the evaluation of vehicle maneuverability with special emphasis on motorcycles, Vehicle System Dynamics, 1999, 31(2):113~135
    [65]梁艳春.计算智能与力学反问题中的若干问题.力学学报,2000,30(3):321~331
    [66]董聪,郦正能,夏人伟等.多层前向网络研究进展及若干问题.力学进展,1995,25(2):186~196
    [67]梁化楼,戴贵亮.人工神经网络与遗传算法的结合:进展及展望.电子学报,1995,23(10):194~220
    [68]张方,朱德懋.基于神经网络模型的动载荷识别.振动工程学报,1997,10(2):156~162
    [69] Bernard J, Gruening J, Hoffmeister K. Evaluation of vehicle/driver performance using genetic algorithms. SAE paper 980227,1998,6:396~406
    [70]梁艳春,王政,杨晓伟等.基于神经网络方法的包装件非线性特性识别的研究.力学学报.1997,29(4):497~500
    [71]梁艳春,周春光,王在申.人工神经网络应用于地下洞室围岩参数识别的研究.模式识别与人工智能,1996, 9(1):71~77
    [72]梁艳春,王在申.应用人工神经网络BP算法时密集型数据的预处理方法.吉林大学自然科学学报,1995(3):19~22
    [73]黄祖永.地面车辆原理.北京:机械工业出版社,1985
    [74]周开利,康耀红.神经网络模型及其matlab仿真程序设计.清华大学出版社,2005
    [75]冯康.数值计算方法.北京:国防工业出版社,1979
    [76]王文成.神经网络及其在汽车工程中的应用.北京:北京理工大学出版社,1998
    [77]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001
    [78]于瑞.汽车操纵逆动力学的仿真研究:[硕士学位论文].南京,南京航空航天大学,2006
    [79]吴杰,赵又群,杨国权.汽车方向盘角输入识别的研究.机械科学与技术.2006,25(10):1175~1177
    [80]陈立平,张云清,任卫群等.机械系统动力学仿真及ADAMS应用教程.清华大学出版社,2005:1~306
    [81]李军,邢俊文,覃文浩等.ADAMS实例教程.北京理工大学出版社,2002,(7):119~138
    [82]张越今,宋健等.多体系统动力学分析的两大软件-ADAMS和DADS.汽车技术,1997,3:16~19
    [83]张越今著.汽车多体动力学及计算机仿真.吉林科学技术出版社,1998
    [84]王国强等编.虚拟样机技术及其在ADAMS上的实践.西北工业大学出版社
    [85]周俊龙,吴铭.应用ADAMS/CAR对轿车悬架系统进行建模仿真.ADAMS中国用户年会会议论文,2001:93~196
    [86] ADAMS/CARTM USER’S REFERENCE MANUAL CERSION 10.01, MDI. 1999
    [87]钱德猛.汽车空气悬架系统的参数化建模、分析及设计理论和方法研究:[博士学位论文].安徽,合肥工业大学
    [88]陈涛.人-车-路(环境)联合运行虚拟仿真理论与实现技术研究:[博士学位论文].西安,长安大学,2005
    [89]尹念东.汽车-驾驶员-环境闭环系统操纵稳定性虚拟试验技术的研究:[博士学位论文].北京,中国农业大学,2001年
    [90]中华人民共和国国家标准.汽车操纵稳定性试验方法.GB/T 6323-1994
    [91]鲍晓峰.汽车试验与检测.机械工业出版社,1995
    [92]胡寿松.自动控制原理.北京:科学出版社,2001
    [93]魏星原,宋斌,郑效忠.载荷识别的逆系统法.振动、测试与诊断,1995,15(3):35~43
    [94]赵又群,尹浩等.汽车操纵逆动力学的现状与发展.中国机械工程,2005,6(1):77~82
    [95]王树凤.汽车操纵稳定性虚拟试验系统的研究:[博士学位论文].北京,中国农业大学,2002年
    [96]伊鸿慧.基于虚拟样机技术的整车操纵稳定性建模与试验研究:[硕士学位论文].浙江,浙江大学,2006
    [97]《汽车工程手册》编辑委员会.汽车工程手册试验篇.北京:人民交通出版社,2000
    [98]孙义刚.基于神经网络的汽车-驾驶员-环境闭环系统操纵稳定性研究:[博士学位论文].北京,中国农业大学,1996
    [99]林英姿.基于神经网络和模糊理论汽车-驾驶员-环境闭环系统操纵稳定性研究:[博士学位论文].北京,中国农业大学,1997
    [100]李世雄.基于模糊控制理论的汽车-驾驶员-环境闭环系统操纵稳定性研究:[博士学位论文].北京,中国农业大学,1998
    [101]刘文苹,巢凯年,李平飞.汽车操纵稳定性试验方法国内外标准对比.四川工业学院学报,2004,23(3):7~9
    [102]吴杰,赵又群,吴珂.基于逆问题求解的汽车操纵性能分析.中国机械工程,2006,17(4):435~439
    [103]林柏忠,郭孔辉.汽车高速移线操纵性能分析与优化.汽车工程,1997,19(5):263~267
    [104]朱宏巍.人-车闭环系统方向控制策略与优化问题的研究.吉林工业大学,1997
    [105] Segel L. Theoretical prediction of the response of the automobile to steering control. Transactions of the ASME, Series B, 1966; 88(3):283-295
    [106]安部正人.汽车的运动和操纵.北京:机械工业出版社,1998
    [107]赵又群,林棻.角输入腜拖缕翟硕榷ㄐ苑治觯悼蒲в爰际酰?003,22(增刊):89~91
    [108]赵又群,王立公,何小明等.四轮转向汽车运动稳定性分析.中国机械工程,2003,14(14):1246~1248
    [109]赵又群,林棻,郭孔辉.矩阵摄动法在四轮转向汽车运动稳定性分析中的应用.机械科学与技术,2004,23(7):89~91
    [110]钟万勰.应用力学对偶体系.北京:科学出版社,2002
    [111]闻邦春等.高等转子动力学-理论、技术与应用.北京:机械工业出版社,2000
    [112]陈塑寰.结构动态设计的矩阵摄动理论.北京:科学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700