用户名: 密码: 验证码:
光伏时空概率模型及其在电力系统概率分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电具有绿色环保、无污染等优点,近年来得到了持续快速发展。然而,光伏发电属于典型的间歇式能源,输出功率严重依赖于辐照度等气象因素,具有较强的随机波动性,光伏发电的大规模接入将给电力系统的安全稳定、经济运行带来新的挑战。因此,需要利用概率理论和方法,充分考虑光伏功率的不确定性,定量评估光伏接入给电力系统规划与运行带来的深刻影响,为运行人员提供全面、科学的参考信息以及辅助决策信息。
     本文在国家自然科学基金资助项目“输电网中长期状态的精细化模拟与概率评估的基础理论研究”(51177178)以及国家高技术研究发展计划(863计划)资助项目“含分布式电源的微电网关键技术研发”(2011AA05A107)的支持下,对考虑光伏电源输出功率随机性/时间相关性/空间相关性的概率建模方法,以及含光伏电力系统的概率潮流/概率最优潮流分析方法等基础性问题展开深入研究,并将其应用到电力系统与虚拟电厂的安全性和经济性分析中。具体内容如下:
     1)基于非参数核密度估计的单变量光伏概率建模方法
     针对现有光伏概率建模中需要假设参数分布和不能全面考虑各种随机因素影响的缺点,本文提出基于非参数核密度估计理论直接建立光伏电源输出功率的概率模型,并给出一种不依赖于总体真实分布的最优带宽改进模型和基于拟合优度检验及后验检验的综合检验指标。用地处重庆及杭州的光伏电站的实测数据进行仿真分析,验证了所提光伏概率建模方法和带宽选取方法的正确性、有效性以及对不同日照条件下光伏功率随机特性的适应性。
     2)考虑空间相关性的光伏-负荷概率建模方法
     位于相邻地区的光伏电源输出功率之间、光伏功率与气象条件敏感负荷之间存在一定的空间相关关系。现有研究在处理此类相关关系时,仅讨论了光伏的Beta概率模型,对光伏无法采用Beta等常规参数分布建模的情况,尚未涉及。针对该问题,本文基于等概率转换原则提出了一种考虑空间相关性的光伏-负荷概率建模方法,该方法能够处理服从任意分布的光伏和光伏、光伏和负荷之间的空间相关关系。在此基础上,结合Monte Carlo模拟,给出了一种考虑光伏-负荷空间相关性的概率潮流计算方法,并进一步引入中值拉丁超立方抽样技术以提高计算效率。以美国某光伏电站的实测数据和69节点配电系统为算例,验证了所提方法的有效性,并定量分析了光伏-负荷的相关性水平对配网安全、经济运行的影响。
     3)考虑时间相关性的光伏概率建模方法
     基于条件概率和两变量核密度估计理论,提出一种考虑时间相关性的光伏概率建模方法,该方法不仅可以计及光伏电源各时刻输出功率的随机波动性和相关性,而且还能够充分考虑光伏电源日功率输出起止时刻的不确定性。另外,针对所提时序建模概率方法,基于舍选法建立了光伏功率时序曲线的随机抽样方法。最后,应用美国、中国三座光伏电站输出功率的实测数据和34节点配电系统进行仿真分析,验证了所提方法的有效性及其对配电网日线损概率评估的适应性。
     4)基于随机响应面法的含光伏电力系统概率潮流计算方法
     基于随机响应面法提出了一种含光伏电力系统的概率潮流计算方法,并针对配点选择这一关键问题,引入基于线性无关原则的最优配点选择方法,进一步提高了概率潮流的计算速度和模拟精度。该方法能够快速、准确地实现概率潮流分析,无需借助级数展开式即可获取输出变量的概率分布,而且能够充分考虑光伏的非参数分布情况以及光伏-负荷之间的相关关系。以34节点配电系统和IEEE39节点输配电系统进行仿真分析,验证了所提算法的有效性,并分析了不同光伏概率模型及光伏-负荷相关性水平对概率潮流计算结果的影响。
     5)含光伏虚拟电厂的概率最优潮流分析
     为定量分析光伏、负荷等随机因素对虚拟电厂经济运行的影响,本文建立了含光伏虚拟电厂的概率最优潮流模型,并结合随机响应面和内点法提出一种概率最优潮流计算方法。所提最优潮流模型的目标函数中考虑了分布式能源(DER,distributed energy resource)和常规火电机组的发电费用、虚拟电厂的外购电费用以及虚拟电厂作为所辖DER总体的代表向外网售电的收益;约束条件中计及了DER出力上下限等技术约束以及网络安全约束等。算法方面,以内点法作为最优潮流的算法,并基于随机响应面法评估光伏及负荷的随机波动对最优潮流结果的影响。用IEEE30节点改进算例系统,验证了本文所提概率最优潮流分析方法的有效性,并对比分析了光伏接入以及不同光伏概率模型、光伏-负荷相关性水平对虚拟电厂经济运行的影响。
Solar photovoltaic (PV) generation with green and unpolluted strengths has kept upthe rapid pace of development in recent years, but it is an intermittent source of energy,whose power output depends seriously on the climate factors like solar irradiation,temperature and so on. Consequently the PV power is random. A large number of PVgenerators connected into power systems are a new challenge for the secure andeconomic operation of power system. The probabilistic analysis methods under thesufficient consideration of PV’s uncertain are thus employed for quantified evaluatingthe impact of PV generation on power system planning and operation. Consequently, therich, all-rounds, and comprehensive information can also be provided for power systemsoperators.
     This dissertation is supported by “Research on the basic theories of mid-long termprobabilistic modeling and evaluation of transmission power system”, subsidized by theNational Natural Science Foundation of China, No.51177178, and “The key technologyresearch and development of micro-grid incorporating distributed generators”,subsidized by The National High Technology Research and Development of China863Program, No.2011AA05A107. The study is carried out for probabilistic modelingmethods considering the randomness/chronological/spatial correlation of PV generation,probabilistic power flow and probabilistic optimal power flow calculation methods forpower system containing PV generators. And finally they are applied into the secure andeconomic analysis of power system or virtual power plant. The detailed study includes:
     1) The probabilistic modeling method of PV generation based on nonparametrickernel density estimation theory
     The present probabilistic PV power modeling methods are usually based onparametric density estimations which rest on some probabilistic assumption, and cannotconsider the effects of all the stochastic factors involved. A new probabilistic modelingmethod of PV power is proposed based on nonparametric kernel density estimation andan improved optimal bandwidth selecting method without depending on the realdistribution is also developed. The comprehensive test index is also presented based onthe goodness-of-fit and posteriori tests. The proposed probabilistic modeling andbandwidth selection methods are verified using PV power data of Chongqing andHangzhou, which are quite different in sunshine condition. The test results also demonstrate the adaptability of the new probabilistic modeling method to PV powerwith distinct stochastic characteristics.
     2) The probabilistic modeling method for PV generation considering the spatialcorrelation
     The power outputs of PV at the adjacent locations are correlated with each otherand also with the loads which are sensitive to weather conditions. Thus, this dissertationproposes a probabilistic modeling method considering such correlation. The correlationsbetween PV outputs and loads obeying different probability distributions can beconsidered by the proposed method. And a probabilistic power flow analysis methodbased on Monte Carlo is also developed to deal with the randomness and correlation ofPV outputs and loads. The Latin Hypercube Sampling method, an efficient samplingmethod, is also incorporated to decrease the computation burden. The measured powerdata of PV generators in USA and the69-node distribution network are used todemonstrate the correctness and effectiveness of the presented method and analyze theimpacts of different PV probabilistic models and correlations between PV outputs andloads on the probabilistic power flow of distribution networks.
     3) The chronological probability modeling method for PV generation
     A chronological probability modeling method for PV generation is proposed on thebasis of conditional probability and nonparametric kernel density estimation. In additionto randomness of PV power, the correlation of PV powers between adjacent time pointsand the uncertainty of start and end moments of PV output can be represented. Thestochastic sampling method of PV time series is also proposed based on the rejectionsampling technique. The power data of three PV generators in different regions withdistinct weather conditions and34-node distribution network are used to demonstratethe correctness, effectiveness and adaptability of the presented method and itsapplication in the probabilistic evaluation of daily network loss of distribution network.
     4) The probabilistic power flow analysis method based on stochastic responsesurface method for power systems incorporating PV generation
     Based on stochastic response surface method, a probabilistic power flow analysismethod for power system incorporating PV generation is proposed. The collocationpoint selecting method based on linearly independent is also introduced to chooseoptimal collocation points. The proposed method can rapidly solve the probabilisticpower flow with high accuracy as well as considering the nonparametric model of PVgeneration and the correlations between PV outputs and loads. The34-node distribution system and IEEE39-node test system are used to verify the correctness andeffectiveness of the proposed method. The impacts of different probabilistic models ofPV generation and correlations between PV outputs and loads on the probabilisticpower flow are also analyzed.
     5) The probabilistic optimal power flow analysis method for virtual power plantcontaining PV generation
     In order to reflect the impacts of random factors, like PV power and loads, on theeconomic operation of virtual power plant, a probabilistic optimal power flow analysismethod is proposed by combining the stochastic response surface method and interiorpoint method. The optimal power flow model minimizing the generation cost for virtualpower plant containing PV generation is established. The interior point method isemployed to solve the optimal power flow and the stochastic response surface method isused to deal with the randomness of PV outputs and loads. The modified IEEE30-bustest system is used to verify the correctness and effectiveness of the proposed method.The impacts of the PV generation on virtual power plant are also analyzed.
引文
[1]艾欣,韩晓男,孙英云.光伏发电并网及其相关技术发展现状与展望[J].现代电力,2013,01(06):01-07.
    [2] Arthouros Zervos. Renewables2013global status report [EB/OL]. http://www.ren21.net/.
    [3]李春鹏,张廷元,周封.太阳能光伏发电综述[J].电工材料,2006,03(23):45-48.
    [4]胡云岩,张瑞英,王军.中国太阳能光伏发电的发展现状及前景[J].河北科技大学学报,2014,01(21):01-07.
    [5]关于促进光伏产业健康发展的若干意见[EB/OL]. http://www.china-nengyuan.com/news/49734.html.
    [6]陈赟.风力发电和光伏发电并网问题研究[D].上海:上海交通大学,2009.
    [7]陈闽江.光伏发电系统的蒙特卡罗序贯仿真和可靠性分析[D].合肥:合肥工业大学,2004.
    [8] S. Rahman, M. A. Khallat, Z. M. Salameh. Characterization of insolation data for use inphotovoltaic system analysis models [J]. Energy,1988,13(01):63-72.
    [9] E. Kaplani, S. Kaplanis. A stochastic simulation model for reliable PV system sizing providingfor solar radiation fluctuations [J]. Applied Energy,2011,97(01):970-981.
    [10]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [11] S. H. Karaki, R. B. Chedid, R. Ramadan. Probabilistic performance assessment of autonomoussolar-wind energy conversion systems [J]. IEEE Transactions on Energy Conversion,1999,14(03):766-772.
    [12] S. Conti, S. Raiti. Probabilistic load flow using Monte Carlo techniques for distributionnetworks with photovoltaic generators [J]. Solar Energy,2007,81(12):1473-1481.
    [13] K. G. T. Hollands, R. G. Huget. A probability density function for the clearness index withapplications [J]. Solar Energy,1983,30(03):195-209.
    [14] F. J. Ruiz-Rodriguez, J. C. Hernandez, F. Jurado. Probabilistic load flow for radial distributionnetworks with photovoltaic generators [J]. IET Renewable Power Generation,2011,03(06):110-121.
    [15] F. J. Ruiz-Rodriguez, J. C. Hernandez, F. Jurado. Probabilistic load flow for photovoltaicdistributed generation using the Cornish-fisher expansion [J]. Electric Power Systems Research,2011,89(01):129-138.
    [16] G. Y. Saunier, T. A. Reddy, S. Kumar. A monthly probability distribution function of dailyglobal irradiation values appropriate for both tropical and temperate location [J]. Solar energy,1987,38(03):169-177.
    [17] K. G. T. Hollands, S. J. Crha. A probability density function for the diffuse fraction withapplications [J]. Solar Energy,1987,38(04):237-245.
    [18] I. Abouzahr,R. Ramakumar. Loss of power supply probability of stand-alone photovoltaicsystems: a closed form solution approach [J]. IEEE Transactions on Energy Conversion,1991,06(01):01-11.
    [19] V. Ajjarapu, S. Sarkar. MW resource assessment model for a hybrid energy conversion systemwith wind&solar resources [J]. IEEE Transactions on Sustainable Energy,2011,02(04):383-391.
    [20] K. Zou, A. P. Agalgaonkar, K. M. Muttaqi. Distribution system planning with incorporating DGreactive capability and system uncertainties [J]. IEEE Transactions on Sustainable Energy,2011,03(01):112-123.
    [21] M. Fan, V. Vittal, G. T. Heydt, R. Ayyanar. Probabilistic power flow studies for transmissionsystems with photovoltaic generation using cumulants [J]. IEEE Transactions on PowerSystems,2011,27(04):2251-2261.
    [22]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44.
    [23]王旭东,林济铿.基于网络化简的含分布式电源的配电网可靠性分析[J].电力系统自动化,2010,34(04):38-43.
    [24]王敏,丁明.含大型太阳能发电系统的极限传输容量概率计算[J].电力系统自动化,2010,34(07):31-35.
    [25] M. Aien, F. Firuzabad, M. Rashidinejad. Probabilistic optimal power flow in correlated hybridwind-photovoltaic power systems [J]. IEEE Transactions on Smart Grid,2014,05(01):130-138.
    [26]郭康,徐玉琴,张丽,岳建房,孙利芳.计及光伏电站随机出力的配电网无功优化[J].电力系统保护与控制,2012,40(10):53-58.
    [27]梁双,胡学浩,张东霞,王皓怀,张宏宇.基于随机模型的光伏发电置信容量评估方法[J].电力系统自动化,2012,36(13):32-37.
    [28]余昆,曹一家,陈星莺.含分布式电源的地区电网动态概率潮流计算[J].中国电机工程学报,2011,31(01):20-25.
    [29]丁明,吴兴龙,陆巍,张征凯.含多个不对称光伏并网系统的配电网三相随机潮流计算[J].电力系统自动化,2012,36(16):47-52.
    [30] B. Borkowska. Probabilistic load flow [J]. IEEE Transactions on Power Apparatus and Systems,1974,93(03):752-759.
    [31] Y. Y. Hong, F. J. Lin, Y. C. Hsu. Chaotic PSO-Based VAR control considering renewablesusing fast probabilistic power flow [J]. IEEE Transactions on Power Delivery,2013, PP(99):01-09.
    [32]王俊,蔡兴国,季峰.基于Copula理论的相关随机变量模拟方法[J].中国电机工程学报,2013,36(22):75-82.
    [33] A. Soroudi, M. Ehsan. A possibilistic-probabilistic tool for evaluating the impact of stochasticrenewable and controllable power generation on energy losses in distribution networks: A casestudy [J]. Renewable and Sustainable Energy Reviews,2011,15(01):794-800.
    [34]颜伟,吕志盛,李佐君,等.输电网的蒙特卡罗模拟与线损概率评估[J].中国电机工程学报,2007,27(34):39-45.
    [35]秦志龙,李文沅,熊小伏.考虑风速相关性的发输电系统可靠性评估[J].电力系统自动化,2013,37(16):47-52.
    [36]赵继超,袁越,傅质馨,等.基于Copula理论的风光互补发电系统可靠性评估[J].电力自动化设备,2013,33(01):124-129.
    [37]潘雄,刘文霞,徐玉琴,等.基于SRSM和Nataf方法的含风电场群电力系统暂态稳定分析[J].中国电机工程学报,2013,33(16):56-62.
    [38]胡泽春,王锡凡,张显,等.考虑线路故障的随机潮流[J].中国电机工程学报,2005,25(24):26-33.
    [39]董雷,杨以涵,张传成,等.综合考虑网络结构不确定性的概率潮流计算方法[J].电工技术学报,2012,27(01):210-216.
    [40]胡金磊,张尧,李聪.交直流电力系统概率潮流计算[J].电网技术,2008,32(18):36-40.
    [41] W. El-Khattam, Y. G. Hegazy, M. Salama. Investigating distributed generation systemsperformance using Monte Carlo simulation [J]. IEEE Transactions on Power Systems,2006,21(02):524-532.
    [42] V. H. M. Quezada, J. R. Abbad, T. G. S. Roman. Assessment of energy distribution losses forincreasing penetration of distributed generation [J]. IEEE Transactions on Power Systems,2006,21(02):533-540.
    [43] G. Li, X. P. Zhang. Modeling of plug-in hybrid electric vehicle charging demand inprobabilistic power flow calculations [J]. IEEE Transactions on Smart Grid,2012,03(01):492-499.
    [44] D. Villanueva, J. L. Pazos, A. Feijo. Probabilistic load flow including wind power generation[J]. IEEE Transactions on Power Systems,2011,26(03):1659-1667.
    [45]段玉兵,龚宇雷,谭兴国,等.基于蒙特卡罗模拟的微电网随机潮流计算方法[J].电工技术学报,2011,26(01):274-278.
    [46] H. Yu, C. Y. Chung, K. P. Wong, et al. Probabilistic load flow evaluation with hybrid latinhypercube sampling and cholesky decomposition [J]. IEEE Transactions on Power Systems,2009,24(02):661-667.
    [47] A. G. Marinopoulos, M. C. Alexiadis, P. S. Dokopoulos. Energy losses in a distribution linewith distributed generation based on stochastic power flow [J]. Electric Power SystemsResearch,2011,81(10):1986-1994.
    [48] D. Jakus, R. Goic, J. Krstulovic. The impact of wind power plants on slow voltage variations indistribution networks [J]. Electric Power Systems Research,2011,81(02):589-598.
    [49] M. H. Ahmed, K. Bhattacharya, M. M. A. Salama. Probabilistic distribution load flow withdifferent wind turbine models [J]. IEEE Transactions on Power Systems,2013,28(02):1540-1549.
    [50]陈雁,文劲宇,程时杰.考虑输入变量相关性的概率潮流计算方法[J].中国电机工程学报,2011,31(22):80-87.
    [51]邓威,李欣然,徐振华等.考虑风速相关性的概率潮流计算及影响分析[J].电网技术,2012,36(04):45-50.
    [52]蔡德福,石东源,陈金富.基于多项式正态变换和拉丁超立方采样的概率潮流计算方法[J].中国电机工程学报,2013,33(13):92-100.
    [53]蔡德福,石东源,陈金富.基于Copula理论的计及输入随机变量相关性的概率潮流计算[J].电力系统保护与控制,2013,41(20):13-19.
    [54]王俊,蔡兴国,季峰.基于Copula理论的相关随机变量模拟方法[J].中国电机工程学报,2013,36(22):75-82.
    [55] R. N. Allan, A. M. Leite de Silva, R. C. Burchett. Evaluation methods and accuracy inprobabilistic load flow solutions [J]. IEEE Transactions on Power Apparatus and Systems,1982,100(05):2539-2546.
    [56]李雪,李渝曾,李海英.几种概率潮流算法的比较与分析[J].电力系统及其自动化学报,2009,21(03):12-17.
    [57] R. N. Allan, M. R. G. Al-Shakarchi. Probabilistic AC load flow [J]. Proceedings of theInstitution of Electrical Engineers,1976,123(06):531-536.
    [58] P. Zhang,S. T. Lee. Probabilistic load flow computation using the method of combinedcumulants and Gram-Charlier expansion [J].IEEE Transactions on Power Systems,2004,19(01):676-682.
    [59]蔡德福,钱斌,陈金富,等.含电动汽车充电负荷和风电的电力系统动态概率特性分析[J].电网技术,2013,37(03):590-596.
    [60]别朝红,刘辉,李甘,等.含风电场电力系统电压波动的随机潮流计算与分析[J].西安交通大学学报,2008,42(12):1500-1505.
    [61] J. Usaola. Probabilistic load flow in systems with wind generation [J]. IET Generation,Transmission&Distribution,2009,03(12):1031-1041.
    [62] J. Usaola. Probabilistic load flow with wind production uncertainty using cumulants andCornish-Fisher expansion [J]. International Journal of Electrical Power&Energy Systems,2009,31(09):474-481.
    [63] Y. Yuan, J. Zhou, P. Ju, et al. Probabilistic load flow computation of a power systemcontaining wind farms using the method of combined cumulants and Gram-Charlier expansion[J]. IET Renewable Power Generation,2011,05(06):448-454.
    [64] F. Miao, V. Vijay, et al. Probabilistic power flow studies for transmission systems withphotovoltaic generation using Cumulants [J]. IEEE Transactions on Power Systems,2012,27(04):2251-2261.
    [65]朱星阳,刘文霞,张建华.考虑大规模风电并网的电力系统随机潮流[J].中国电机工程学报,2013,33(07):77-85.
    [66]石东源,蔡德福,陈金富,等.计及输入变量相关性的半不变量法概率潮流计算[J].中国电机工程学报,2012,32(28):104-113.
    [67]刘小团,赵晋泉,罗卫华,赵军.基于TPNT和半不变量法的考虑输入量相关性概率潮流算法[J].电力系统保护与控制,2013,22(05):78-83.
    [68] J. M. Morales, J. Perez-Ruiz. Point estimate schemes to solve the probabilistic power flow [J].IEEE Transactions on Power Systems,2007,22(04):1594-1601.
    [69]艾小猛,文劲宇,吴桐,等.基于点估计和Gram-Charlier展开的含风电电力系统概率潮流实用算法[J].中国电机工程学报,2013,33(16):16-22.
    [70]吴晨曦,文福拴,陈勇,等.含有风电与光伏发电以及电动汽车的电力系统概率潮流[J].电力自动化设备,2013,33(10):08-15.
    [71]杨欢,皱斌.含相关性随机变量的概率潮流三点估计法[J].电力系统自动化,2012,36(15):51-55.
    [72] J. M. Morales, L. Baringo, A. J. Conejo, R. Minguez. Probabilistic power flow with correlatedwind sources [J]. IET Generation, Transmission&Distribution,2010,04(05):641-651.
    [73]卫志农,余爽,孙国强,等.虚拟电厂欧洲研究项目述评[J].电力系统自动化,2013,37(21):196-202.
    [74]欧洲FENIX项目介绍[EB/OL]. http://www.fenix-project.org/.
    [75]陈春武,李娜,钟朋园,等.虚拟电厂发展的国际经验及启示[J].电网技术,2013,37(08):2258-2263.
    [76]杨黎晖,许昭.电动汽车在含大规模风电的丹麦电力系统中的应用[J].电力系统自动化,2011,35(14):43-47.
    [77]杨新法,苏剑,吕志鹏,刘海涛,李蕊.微电网技术综述[J].中国电机工程学报,2014,34(01):57-70.
    [78]姜文.计及风力发电的电力系统可靠性与动态经济调度研究[D].上海:上海交通大学,2012.
    [79]季阳.基于多代理系统的虚拟发电厂技术及其在智能电网中的应用研究[D].上海:上海交通大学,2011.
    [80]卫志农,余爽,孙国强,孙永辉,袁阳,王丹.虚拟电厂的概念与发展[J].电力系统自动化,2013,37(13):01-09.
    [81] D. Pudjianto, C. Ramsay, G. Strbac. Virtual power plant and system integration of distributedenergy resources [J]. IET Renewable Power Generation,2007,01(01):10-16.
    [82] E. Mashhour, S. M. Moghaddas-Tafreshi. Bidding strategy of virtual power plant forparticipating in energy and spinning reserve markets-Part I: Problem formulation [J]. IEEETransactions on Power Systems,2011,26(02):949-956.
    [83] E. Mashhour, S. M. Moghaddas-Tafreshi. Bidding strategy of virtual power plant forparticipating in energy and spinning reserve markets-Part II: Numerical analysis [J]. IEEETransactions on Power Systems,2011,26(02):957-964.
    [84] H. Yang, D. Yi, J. Zhao, et al. Distributed optimal dispatch of virtual power plant via limitedcommunication [J].2013,24(05):949-956.
    [85] M. Giuntoli, D, Poli. Optimized thermal and electrical scheduling of a large scale virtual powerplant in the presence of energy storages [J].2013,22(10):765-771.
    [86] M. Peikherfeh, H, Seifi, M. K. Sheikh-El-Eslami. Optimal decision making for virtual powerplant operation [C]. IPEC,2010Conference Proceedings, Singapore,2010.
    [87] I. Kuzle, M. Zdrilic, H. Pandzic. Virtual power plant dispatch optimization using linearprogramming [C].10th International Conference on Environment and Electrical Engineering,Rome, Italy,2011.
    [88] O. Arslan, O. E. Karasan. Cost and emission impacts of virtual power plant formation inplug-in hybrid electric vehicle penetrated networks [J]. Energy,2013,60(05):116-124.
    [89] M. Vasirani, R. Kota, R. L. G. Cavalcante, et al. An agent-based approach to virtual powerplants of wind power generators and electric vehicles [J]. IEEE Transactions on Smart Grid,2013,04(03):1314-1322.
    [90] N. Ruiz, I. Cobelo, J. Oyarzabal. A direct load control model for virtual power plantmanagement [J]. IEEE Transactions on Power Systems,2009,24(02):959-966.
    [91] A. Schelenberg. Probabilistic and stochastic optimal power flow [D]. Alberta, Canada:University of Calgary,2006.
    [92]潘炜,刘文颖,杨以涵.概率最优潮流的点估计算法[J].中国电机工程学报,2008,28(16):28-33.
    [93]李雪.考虑负荷和风电随机变化的电力系统概率最优潮流问题研究[D].上海:上海大学,2009.
    [94]王敏.分布式电源的概率建模及其对电力系统的影响[D].合肥:合肥工业大学,2010.
    [95] P. Siano, G. Mokryani. Probabilistic assessment of the impact of wind energy integration intodistribution networks [J]. IEEE Transactions on Power Systems,2013,25(07):1739-1746.
    [96] A. Tamtum, A. Schellenberg, W. D. Rosehart. Enhancements to the cumulant method forprobabilistic optimal power flow studies [J]. IEEE Transactions on Power Systems,2009,24(04):1739-1746.
    [97] M. Rosenblatt. Remarks on some nonparametric estimates of a density function [J]. Annals ofMathematical Statistics,1956,27(03):832-837.
    [98]赵渊,张夏菲,周家启.电网可靠性评估的非参数多变量核密度估计负荷模型研究[J].中国电机工程学报,2009,29(31):27-33.
    [99] Z. Qin, W. Li, X. Xiong. Estimating wind speed probability distribution using kernel densitymethod [J]. Electric Power Systems Research,2011,81(12):2139-2146.
    [100]赵渊,谢开贵.电网可靠性指标概率密度分布的解析计算模型[J].中国电机工程学报,2011,31(04):31-38.
    [101]赵渊,袁蓉,芦晶晶.配电网可靠性概率分布的解析模型和非参数估计[J].电力系统自动化,2014,38(01):38-43.
    [102]E. Parzen. On estimation of a probability density function and model [J]. Annals ofMathematical Statistics,1962,33(03):1065-1076.
    [103]叶阿忠.非参数计量经济学[M].天津:南开大学出版社,2003.
    [104]V. A. Epanechnikov. Nonparametric estimation of a multidimensional probability density [J].Theory of Probability and Application,1969,14(01):153-158.
    [105]陈希孺,柴根象.非参数统计教程[M].上海:华东师范大学出版社,1993.
    [106]郭照庄,霍东升,孙月芳.密度核估计中窗宽选择的一种新方法[J].佳木斯大学学报(自然科学版),2008,26(03):401-403.
    [107]杨虎,刘琼荪,钟波.数理统计[M].北京:高等教育出版社,2004.
    [108]杨振海,程维虎,张军舰.拟合优度检验[M].北京:科学出版社,2011.
    [109]F. O. Hocaoglu. Stochastic approach for daily solar radiation modeling [J]. Solar Energy,2011,85(02):278-287.
    [110]重庆市气候概况[EB/OL]. http://www.cqmb.gov.cn/ecms/qixiangfuwu/qhzk/2008-12-29/317.html.
    [111]杭州市气候概况[EB/OL]. http://www.hzqx.com/gzhfw/disremo.asp?no=55.
    [112]P. L. Liu, A. D. Kiureghian. Multivariate distribution models with prescribed marginals andcovariances [J]. Probabilistic Engineering Mechanics,1986,01(02):105-112.
    [113]盛骤,谢式千,潘承毅.概率论和数理统计[M].北京:高等教育出版社,2001.
    [114]Z. Qin, W. Li, X. Xiong. Generation system reliability evaluation incorporating correlations ofwind speeds with different distributions [J]. IEEE Transactions on Power Systems,2013,28(01):551-558.
    [115]Y. Chen, J. Wen, S. Cheng. Probabilistic load flow method based on nataf transformation andLatin Hypercube Sampling [J].2013,04(02):394-401.
    [116]H. Yu, C. Y. Chung, K. P. Wong, et al. Probabilistic load flow evaluation with hybrid latinhypercube sampling and cholesky decomposition [J]. IEEE Transactions on Power Systems,2009,24(02):661-667.
    [117]Matpower工具箱[EB/OL]. http://www.pserc.cornell.edu/matpower.
    [118]M. E. Baran, F. Wu. Optimal capacitor placement on radial distribution systems [J]. IEEETransactions on Power Delivery,1989,04(01):725-734.
    [119]Z. Qin, W. Li, X. Xiong. Incorporating multiple correlations among wind speeds, photovoltaicpowers and bus loads in composite system reliability evaluation [J]. Applied Energy,2013,110:285-294.
    [120]光伏功率实测数据[EB/OL]. http://solardata.uoregon.edu/SelectArchival.html.
    [121]吕志盛.输电网络线损率的概率评估方法[D].重庆:重庆大学,2007.
    [122]Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, R. Seethapathy. Optimal renewable resourcesmix for distribution system energy loss minimization [J]. IEEE Transactions on power systems,2010,25(02):360-370.
    [123]W. K. H rdle, M. Müller, S. Sperlich, A. Werwatz. Nonparametric and semiparametric models
    [M]. New York: Springer,2004.
    [124]P. G. Hoel, S. C. Port, C. J. Stone. Introduction to probability theory [M]. Boston: HoughtonMifflin,1971.
    [125]W. H rmann, J. Leydold, G. Derflinger. Automatic nonuniform random variate generation [M].Berlin: Springer,2004.
    [126]A. K. Sharma. Text book of correlations and regression [M]. New Delhi: Discovery PublishingHouse,2005.
    [127]S. S. Isukapalli, A. Roy, P. G. Georgopoulos. Stochastic response surface methods foruncertainty propagation: Application to environmental and biological systems [J]. RiskAnalysis,1998,03(05):75-82.
    [128]鲍海波,韦化.考虑风电的电压稳定概率评估的随机响应面法[J].中国电机工程学报,2012,32(13):77-85.
    [129]潘雄,刘文霞,徐玉琴,等.基于SRSM和Nataf方法的含风电场群电力系统暂态稳定分析[J].中国电机工程学报,2013,33(16):56-62.
    [130]S. S. Isukapalli. Uncertainty analysis of transport-transformation models [D]. New Jersey, USA:The State University of New Jersey,1999.
    [131]D. Li, Y. Chen, W. Lu, et al. Stochastic response surface method for reliability analysis of rockslopes involving correlated non-normal variables [J]. Computers and Geotechnics,2011,38(01):58-68.
    [132]S. Huang, S. Mahadevan, R. Rebba. Collocation-based stochastic finite element analysis forrandom field problems [J]. Probabilistic Engineering Mechanics,2007,22(02):194-205.
    [133]E. Haesen, C. Bastiaensen, J. Driesen, et al. A probabilistic formulation of load margins inpower systems with stochastic generation [J]. IEEE Transactions on Power Systems,2009,24(02):951-958.
    [134]李典庆,周创兵,陈益峰,等.边坡可靠度分析的随机响应面法及程序实现[J].岩石力学与工程学报,2010,29(08):1513-1523.
    [135]刘志刚,刘欢,柳杰.计及风电场概率模型的多目标无功优化[J].电力系统保护与控制,2013,41(01):197-203.
    [136]J. Villadsen, M. L. Michelsen. Solution of differential equation models by polynomialapproximation [M]. New Jersey: Prentice-Hall,1978.
    [137]蒋水华,李典庆,周创兵.随机响应面法最优概率配点数目分析[J].计算力学学报,2012,29(03):345-351.
    [138]W. Li, Z. Lu, D. Zhang. Stochastic analysis of unsaturated flow with probabilistic collocationmethod [J]. Water Resources Research,2009,45(08):53-60.
    [139]R. M. Ciric, F. A. Padilha, I. Denis. Observing the performance of distribution systems withembedded generators [J]. European Transactions on Electrical Power,2004,114(06):347-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700