用户名: 密码: 验证码:
Rho/Rock通路在大鼠心肌纤维化发生机制中的作用及阿魏酸钠的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌纤维化(myocardial fibrosis,MF)是一种常见的心肌病理改变。无论何种原因引起心肌损害,只要病变持续和病程慢性化,终将导致心肌纤维化。重者可发展成为难治性心力衰竭、心律失常甚至猝死。由于心肌纤维化发生机制较为复杂,目前尚缺乏有效治疗方法。因此,深入研究心肌纤维化的发生机制及防治措施,一直是心血管病领域的研究热点。
     阿魏酸钠(sodium ferulate, SF)是阿魏酸钠盐,具有扩张血管、抑制血小板聚集、改善微循环、抑制炎症反应、抗氧化等药理学作用,目前研究最多的是其抗氧化和内皮素受体拮抗作用。然而,有关SF对心肌纤维化的保护作用及其对Rho/Rock信号通路的影响,迄今国内外尚未见报道。
     本实验应用一次性大剂量皮下注射盐酸异丙基肾上腺素(Iso),建立了心肌缺血缺氧性坏死诱发的心肌纤维化动物模型,应用免疫组化、RT-PCR、ELISA及Western blot等技术,研究了Rho/Rock通路在大鼠MF发生机制中的作用及SF在体内及体外对Rho/Rock通路的影响,以观察Rho/Rock通路在心肌纤维化发生机制中的作用及SF对MF大鼠心脏结构和功能的改善效果。
     研究结果表明,注射Iso后,心肌组织TGF-β1、CTGF、AT1R、COX2及tTG mRNA表达均在24 h达到高峰,其蛋白表达随Iso注射时间的延长而逐渐增加,至3 w蛋白表达量最高,SF能下调上述促纤维化物质的基因和蛋白表达,减轻心肌纤维化大鼠心肌ECM主要成分的沉积;Rho A及RockI的基因表达和蛋白表达与TGF-β1、CTGF等呈平行性表达,提示Rho/Rock信号通路可被多种促纤维化物质激活,该信号通路的激活促进了心肌纤维化的发生发展;SF能减少CFB培养上清中由Iso引起的ColⅠ分泌增加,下调培养上清中促纤维化物质的基因与蛋白表达; SF可改善MF大鼠心脏功能,减轻心肌纤维化大鼠心脏组织的病变程度,说明SF可能具有抑制Rho/Rock信号通路,下调促纤维化物质的表达和保护心脏的多靶点治疗作用。
Mocardial fibrosis involves to various kinds of originality pathogeny, which regulative mechanism is influenced by many factors, and its severity has a close correlation with impairment of myocardial function. No matter what causes myocardial damage, the course of sustained and chronic diseases will eventually lead to myocardial fibrosis and develop into severe refractory heart failure, arrhythmia and even sudden death. The result of complex mechanisms of MF occurrence and development lacked effective treatment. Therefore, the occurrence of MF-depth study of the mechanism and prevention measures has been research in the field of cardiovascular disease hot spots.
     Myocardial fibrosis is the result of excessive deposition of myocardial collagen. Fibroblasts is the main cell by direct synthesis and secretion of collagen. In fibroblast proliferation, differentiation and the formation of collagen will involve a variety of cytokines, especially growth factors, such as transforming growth factor (TGF), fibroblast growth factor (FGF), connective tissue growth factor (CTGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and so on. These growth factors can be generated in the tissue, myocardial damage may also arise from a number of inflammatory cells. A large number of studies have shown that transforming growth factor (TGF-β) and connective tissue growth factor (CTGF) is involved in the formation of multi-organ fibrosis in two important cytokines. AT1R, COX2 and tTG in the liver, kidney and lung fibrosis development also plays an important role, but the relationship between the occurrence of myocardial fibrosis is still a lack of in-depth study. Therefore, to explore these substances in promoting fibrosis have the great significance in MF's role of the development
     Rho and its downstream effectors Rho kinase (Rock) composed of Rho/ Rock signaling pathway and play an important role in fibrosis of vitro and vivo. And Rho/Rock signaling pathway is considered the body of the organization are prevalent in a signal transduction pathway, which may be accompanied by a variety of inflammatory mediators and cytokines after receptor activation and coupling mechanisms activated kinase cascade through the directly involved in the response of bone cells microfilament-based control framework.Cell contraction, chemotaxis, wavering, adhesion, invasion, such as the biological behavior must be adopted by the polymerization of actin and extension to achieve. Therefore, some scholars think that Rho/Rock signaling pathway is to control these cells acts directly upstream signaling pathway. Rho stimulation signal in the upper reaches, which can never combined GDP form of activity into the activity of GTP binding form and the role of the target in the downstream pathway. Research has confirmed that the application of Rho/ Rock pathway selective inhibitor Y-27632 can improve the kidney, lung, liver fibrosis model which was the extent of fibrosis on Rho / Rock pathway and involved in the development of fibrosis. However, Rho / Rock pathway is unclear in the role of myocardial fibrosis.
     Sodium ferulate (SF) is the sodium salt of ferulic acid, with the expansion of blood vessels, improve microcirculation, inhibit inflammatory response, antioxidant effect, such as pharmacology. The present study is the largest of its anti-oxidation and the role of endothelin-receptor antagonist, and through the intervention of endothelin and oxygen free radicals and other mechanisms to protect the heart.However, the SF of the MF and its impact on the protective effect of Rho / Rock signaling pathway, has not been reported so far at home and abroad.
     The experimental application of a one-time high-dose subcutaneous injection of 15 mg / kg body weight of isoproterenol hydrochloride (Iso), the establishment of a hypoxic-ischemic myocardial necrosis induced animal models of myocardial fibrosis, combined with in vitro cultured rat cardiac fibroblasts immunohistochemical, high-performance liquid chromatography, RT-PCR, ELISA and Western blot techniques, through in vitro and in vivo studies confirm each other's methods, a systematic study of the Rho / Rock pathway in the development of MF in rats the role of mechanisms and SF of in vitro and in vivo Rho / Rock pathway in order to observe the Rho / Rock pathway in the mechanism of myocardial fibrosis and the role of myocardial fibrosis in rats SF cardiac structure and function to improve the effectiveness of clinical treatment for the provision of myocardial fibrosis useful information.
     The main results of this study are as follows:
     the rats were injected 15 mg/kg body weight Iso and appeared ischemic ECG changes, serum enzymes at different time points in different levels of increased morphological observation also found that injection of Iso after 2 h, myocardial cells that appear point-like degeneration and necrosis, with the injection of Iso time, degeneration and necrosis of an area of gradual change, and 1 w after the injection of clear boundaries, multiple scattered necrotic foci, 3 w after the lesions of fibrosis significantly. Note the use of a one-time multi-point injection 15 mg / kg body weight can be successfully constructed Iso rat model of myocardial fibrosis, myocardial necrosis, the incidence of myocardial fibrosis mechanisms and experimental studies, such as drug screening provides a new model. Iso injection, the myocardial tissue TGF-β1, CTGF, AT1R, COX2 and tTG mRNA expression peaked at 24 h, the protein expression with Iso injection time and gradually increase to 3 w protein expression in the highest, SF can be reduced Desmoplastic material above the gene and protein expression, to reduce myocardial fibrosis in myocardial ECM major components of the deposition; Rho A and RockI of gene expression and protein expression of TGF-β1, CTGF, such as parallel expression, suggesting that Rho / Rock signaling pathway may be a variety of substances Desmoplastic activation, activation of the signaling pathway promotes the occurrence and development of myocardial fibrosis;
     The main conclusions of this study are as follows:
     1. Using a one-time multi-point injection 15 mg / kg ideal body weight Iso-induced rat model MF.
     2. Desmoplastic material (TGF-β1, CTGF, AT1R, COX2 and tTG) in the myocardial fibrosis play an important role in the occurrence; SF can be reduced myocardial fibrosis in promoting myocardial fibrosis genetic material and protein expression; SF can reduce heart rat cardiac muscle fibrosis of the major components of ECM deposition.
     3. Rho/Rock signaling pathway may be a variety of substances Desmoplastic activation, Rho / Rock signaling pathway activation to promote the development of myocardial fibrosis.
     4. In vitro studies further confirmed, SF can reduce the CFB culture supernatant caused by Iso increased secretion of ColⅠ, down in the culture supernatant material promoting fibrosis gene and protein expression.
     These results are provided for clinical prevention and treatment of MF is more comprehensive, the new experimental evidence. The main innovation of this study is: to prove the use of a one-time multi-point injection Iso can induce myocardial fibrosis ideal model; Desmoplastic substances may activate Rho / Rock signaling pathway, thereby promoting the occurrence and development of myocardial fibrosis; SF can Iso-induced reduction of myocardial fibrosis in myocardial fibrosis and promote the material expression of gene and protein to reduce the major components of ECM deposition, the ability to improve myocardial metabolism.
引文
[1] Varagic J, Frohlich ED, Díez J, et al. Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded [J]. Am J Physiol Heart Circ Physiol, 2006, 290(4): H1503-1509.
    [2]张海啸,史栽祥.转化生长因子-β信号传导通路与心肌纤维化心肌纤维化[J].中日友好医院学报, 2007, 2(21): 110-112.
    [3]楚玉峰,陈闻东,朱鼎良,等. RhoA/Rock通路参与血管紧张素Ⅱ诱导的血管外膜成纤维细胞表型转化[J].中华高血压杂志2007, 15(6): 493-496.
    [4]王艾丽,陈玲玲,胡剑峰,等.阿伐他汀对内皮素-1诱导的新生大鼠心肌成纤维细胞增殖和胶原合成的影响[J].中国临床药理学与治疗学, 2007, 12(9): 1058-1061.
    [5] Chena M, Robertsona M, Forrestera J, et al. Complement factorβin retinal pigment epithelial cell is up-regulated by inflammatory cytokine TNF-αand INF-γ[J]. Xlth European Meeting on Complement in Human Disease 2007, 44(12): 3937.
    [6] Ohnishia S, Sumiyoshib H, Kitamurac S, et al. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions [J]. FEBS Lett, 2007, 581 (21): 3961-3966.
    [7] Badid C, Vincent M, Fouque D, et al. Myofibroblast: a prognostic marker and target cell in progressive renal disease[J]. Ren Fail, 2001, 23(3-4): 543-549.
    [8] Majno G, Gabbiani G, Hischel BJ, et al. Contraction of granulation tissue in vitro:similarity to smooth muscle[J]. Science, 1971, 173(996): 548-550.
    [9] Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts duing tissue repair in the rat heart [J]. J Mol Cell Cardiol, 1996, 28(5): 851-858.
    [10] Denk P, Hoppe J, Hoppe V, et al. Effect of growth factors on the activation of human Tenon’s capsule fibroblasts[J]. Curr Eye Res, 2003, 27(1): 35-44.
    [11] Aupperle H, M?rz I, Thielebein J, et al. Expression of transforming growthfactor-β1, -β2 and -β3 in normal and diseased canine mitral valves[J]. J Comp Pathol, 2008, 3 (20): 1-11.
    [12] Shephard P, Martin G, Smola-Hess S, et al. Myofibroblast differenttiation is induced in keratinocyte-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor-beta and interleukin-1[J]. Am J Pathol, 2004, 164(6): 2055-2066.
    [13] He FT, Zhang QH, Kuruba R, et al. Upregulation of decorin by FXR in vascular smooth muscle cells [J]. Biochem Biophys Res Commun, 2008, 372(16): 746-751.
    [14] Li RK, Jia ZQ, Richard D, et al. Smooth muscule cell transplantation into myocardial scar tissue improves heart function [J]. J Mol Cell Cardiol, 1999, 31(2): 513-522.
    [15] Zhang L, Hoffman JA, Ruoslahti E. Molecular profiling of heart endothelial cells [J]. Circulation, 2005, 112(11): 1601-1611.
    [16] Urbich C, Dimmeler S. Endothelial progentitor cell characterization and role in vascular biology [J]. Circ Res, 2004, 95(4): 343-353.
    [17] Werner L, Deutsch V, Barshack I, et al.Tansfer of endothelial progenitor cells improves mycocardial performance myocarditis [J]. J Mol Cell Cardiol, 2005, 39(4): 691-697.
    [18] Okruhlicova L, Trbulova N, Weismann P, et al.Ultrastructure and histochemistry of rat myocardial capillary endothelial cells in response to diabetes and hypertension [J].Cell Res, 2005, 15(7): 532-538.
    [19] Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial promote migration of endothelial cells and cardiac resident progenitor cells [J]. J Mol Cell Cardiol, 2005, 39(5): 733-744.
    [20] de Larco JE, Todaro GJ.Growth factors from murine sarcoma virus-transformed Cells [J]. Proc Natl Acad Sci USA, 1978, 75(8): 4001-4005.
    [21] Hartner A, Hilgers KF, Bizer M, et al. Dynamic expression patterns of transform-ing growth factor-beta (2) and transforming growth factor-beta receptors in experimental glomeruonephritis [J]. Mol Med, 2003, 81(1): 32-42.
    [22] Moustakas A, Heldin CH. Non-Smad TGF-beta signals [J]. Cell Sci, 2005, 118 (Pt16): 3573-3584.
    [23] Zhai YS, Gao XR, Wu QM, et al. Fluvastatin decreases cardiac fibrosis possibly through regulation of TGF-β1/Smad 7 expression in the spontaneously hypertensive rats[J]. Eur J Pharmacol, 2008, 587(1-3): 196-203.
    [24] Strutz F, Zeisberg M, Renziehausen A, et al. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor(FGF-2) [J]. Kidney Int, 2001, 59(2): 579-579.
    [25] Eddy AA. Molecular insights into renal interstitial fibrosis [J]. J Am Soc Nephrol, 1996, 7(12): 2495-2508.
    [26] Petrov V, Fagard R, Lijnen P. Stimulation of collagen production by transforming growth factor- beta1 during differentiation of cardiac fibroblasts to myofibroblasts [J]. Hypertension, 2002, 39(2): 258- 263.
    [27] Rosenkranz S, Flesch M, Amann K, et al.Alterations ofβ- adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1[J]. Am J Physiol, 2002, 283: H1253-1262.
    [28] Almendral JM, Sommer D, Macdonald-Bravo H, et al. Complexity of the early genetic response to growth factors in mouse fibroblasts[J]. Mol Cell Biol, 1988, 8 (5):2140-2148.
    [29] Bradham DM, Igarashi A, Potter RL, et al. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10[J]. Cell Biol, 1991, 114(6): 1285-1294.
    [30]吴芳,杨方.结缔组织生长因子与心肌纤维化[J].心脏杂志, 2006, 18(6): 715-718.
    [31] Kothapalli D, Grotendorst GR. CTGF modulates cell progressiong incamparrest -ed NRK fibroblasts [J]. Cell Physiol, 2000, 182(1): 119-126.
    [32] Gore-Hyer E, Shegogue D, Markiewicz M, et al. TGF-βand CTGF have overlap -ing and distinct fibrogenic effects on humanrenal cells [J]. Am J Physiol, 2002, 283 (4): F707-F716.
    [33] CreanJK, FinlayD, MurphyM, et al. The role of p42/p44 MAPK and protein kinase B in connective tissue growth factor induced extracellular matrix protein production,cell migration, and actin cytoskeletal rearrangement in human mesangial cells [J]. J Biol Chem, 2002, 277(46): 44187-44194.
    [34] IgarashiA, Okochi H, Bradham Dm, et al. Regulation of connective tissue growth factor gene expressionin human skin fibroblasts and during wound repair [J]. Mol Biol Cell, 1993, 4(6): 637.
    [35] Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury [J]. Nat Med, 2003, 9(7): 964-968.
    [36] Mori T, Kawara S, Shinozaki M, et al.Role and interaction of connective tissue growth factor with transforming growth factorbeta in persist ent fibrosis:A mouse fibrosis model [J]. Cell Physiol, 1999, 181(1): 153.
    [37] Caramori ML, Mauer M. Diabetes and nephropathy [J]. Curr Opin Nephrol Hypertens, 2003, 12(3): 273-282.
    [38] Yang M, Huang HC, Li JZ, et al. Connective tissue growth factor synergistically with transforming growth factor beta 1 to promote renal fibrosis [J]. Zhonghua Yi Xue Za Zhi, 2004, 84(7): 569-573.
    [39]杨敏,黄海长,李惊子,等.结缔组织生长因子增加TGF-β活化成肌纤维细胞的作用[J].基础医学与临床, 2005, 25(1): 25-29.
    [40] Eskin SG, Turner NA, McIntire LV. Endothelial cell cytochrome P450 1A1 and 1B1: up-regulation by shear stress [J]. Endothelium, 2004, 11(1): 1-10.
    [41] Inamoto S, Iwata S, Inamoto T, et al.Crk- associated substrate lympho-cyte type regulates transforming growth factor-beta signaling by inhibiting Smad6 andSmad7[J]. Oncogene, 2007, 26(6): 893.
    [42] Ruiz- Ortega M, Rodriguez- Vita J, Sanchez- Lopez E, et al.TGF- beta signaling in vascular fibrosis [J].Cardiovasc Res, 2007, 74(2):196.
    [43] Pannu J, Nakerakanti S, Smith E, et al.Transforming Growth Factor-beta Receptor Type I- dependent Fibrogenic Gene Program Is Mediated via Activation of Smad1 and ERK1/2 Pathways[J]. Biol Chem, 2007, 282(14): 10405.
    [44] Heusinger-Ribeiro J, Eberlein M, Wahab NA, et al. Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of RhoA and Camp [J]. J Am Soc Nephrol, 2001, 12(9): 1853-1861.
    [45] Chen MM, Lam A, Abraham JA, et al. CTGF expression is induced by TGF- beta in cardiac fibroblasts and cardiac myocytes:a potential role in heart fibrosis[J]. Mol Cell Cardiol, 2000, 32(10): 1805.
    [46] Dean RG, Balding LC, Candido R, et al.Connective tissue growth factor and cardiac fibrosis after myocardial infarction[J]. J Histochem Cytochem, 2005, 53(10): 1245.
    [47] Rupérez M, Lorenzoó, Blanco - Colio LM, et a1. Connective tissuegrowth factor is a mediator of angiotensinⅡinduced fibrosis [J]. Circulation, 2003, 108(12): 1499.
    [48] Koitabashi N, Arai M, Kogure S, et al. Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis[J]. Hypertension, 2007, 49(5): 1120.
    [49] Nattel S. New ideas about atrial fibrillation 50 years [J]. Nature, 2002, 15 (6868): 219.
    [50] Pan CH, Lin JL, Lai LP, et al. Downregulation of angiotensin converting enzymeⅡis associated with pacing- induced sustained atrial fibrillation[J]. FEBS Lett, 2007, 581(3): 526.
    [51] Everett TH, Olgin JE. Atrial fibrosis and the mechanisms of atrial fibrillation[J].Heart Rhythm, 2007, 4(3 Suppl): S24.
    [52] Wang XP, Zhang R, Wu K, et al. Angiotensin II mediates acinar cell apoptosis during the development of rat pancreatic fibrosis by AT1R[J]. Pancreas, 2004, 29(4): 264-270.
    [53] Kumagai K, Nakashima H, Urata H, et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation[J]. Am Coll Cardiol, 2003, 41(12): 2197-2204.
    [54]魏红山,李定国,陆汉明,等.血管紧张素Ⅱ受体阻断剂抗肝纤维化的实验研究[J].中华肝脏病杂志,2000, 8(5): 302-304.
    [55] Bosso FJ, Jarjoura DG, Polati CF, et al. Role of angiotensinⅡin sympathetic nervous system induced left ventricular dysfunction [J]. Can Physiol Pharmacol, 1999, 77: 806-812.
    [56] Hiroyuki Kobori, Atsuhiro Ichihara, Hiromichi Suzuki, et al. Role of the rennin angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism [J]. Am J Physiol, 1997, 273(2 Pt 2): H593- H 599.
    [57] Paukku K, Kalkkinen N, Silvennoinen O, et al. p100 increases AT1R expression through interaction with AT1R 3'-UTR[J]. Nucleic Acids Res, 2008, 36(13): 4474-87.
    [58] Pfeffer, M.A., McMurray, J.J.V., Velazquez, E.J., et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both[J]. N Eng J Med, 2003, 349(20):1893–1906.
    [59] Yoshihiko Oishi, Ryoji Ozono, Masao Yoshizumi, et al. AT2 Rreceptor mediates the cardioprotective effects of AT1R receptor antagonist in post-myocardial infarction remodeling [J]. Life Sciences, 2006, 3(80): 82-88.
    [60] Slight SH, JoSeph J, Ganjam VK, et al. Extra-adrenal mineralocorticoids and cardiovascular tissue [J]. Mol Cardiol, 1999, 31(6):1175-1184.
    [61]王小君,杨方.血管紧张素II与心肌纤维化[J].华北煤炭医学院学报,2006, 8(5): 617-618.
    [62] Wu JN, Berecek KH. Prevented genetic hypertensive rats with the angiotensin converting enzyme inhibitor captopril[J].H ypertension, 1993, 22(3): 139-145.
    [63] Yamamoto K, Arakawa T, Ueda N,et al.Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor nucrosis factor al2 phadependent induction of cycloocygenase-2 in MC3TS-E1 cells[J]. J Biol Chem, 1995, 270(52): 31315-31320.
    [64] Williams CS et al. Prostaglandin endoperoxide synthase: why two isoforms? [J]. Am J Physiol, 1996, 270(1): G393-G400.
    [65]梁子敬,曾量波,叶政,等.特异性COX2抑制剂对压力负荷性心肌肥厚大鼠左心室重构的影响[J].中华急诊医学杂志,2005,6(14): 195-181.
    [66] Jones RA, Nicholas B, Mian S, et al. Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin[J]. Cell Sci, 1997, 110 (Pt 19): 2461-2472.
    [67] Johnson TS, Skill NJ, El Nahas AM, et al. Transglutaminase transcription and antigen translocation in experimental renal scarring[J]. J Am Soc Nephrol, 1999, 10(10): 2146-2157.
    [68] Gaudry CA, Verderio E, Aeschlimann D, et al. Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain[J]. J Biol Chem, 1999, 274(43): 30707-30714.
    [69] Gaudry CA, Verderio E, Jones RA, et al. Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta (1) integrin [J]. Exp Cell Res,1999, 252(1): 104-113.
    [70] Lu W, Strohecker A, Ou Jh JH. Post-translational modification of the hepatitis C virus core protein by tissue transglutaminase[J]. J Biol Chem, 2001, 276(51): 47993-47999.
    [71] Citron BA,Zoloty JE, Suo Z, et al.Tissue transglutaminase during mouse centralnervous system development: lack of alternative RNA processing and implications for its role(s) in murine models of neurotrauma and neurodegeneration [J].Mol Brain Res, 2005, 135(27): 122–33.
    [72]刘俊兰,程丽静.转化生长因子β1对人肾间质成纤维细胞组织型转谷氨酰胺酶表达的影响[J].中华肾脏病杂志, 2005, 21(12): 753-755.
    [73] Nardacci R, Lo Iacono O, Ciccosanti F, et al. Transglutaminase type II plays a protective role in hepatic injury [J]. Am J Pathol, 2003, 162(4): 1293-1303.
    [74] Schnaper HW, Hayashida T, Poncelet AC. It’s a Sand word: regulation of TGF-beta signaling in the kidney[J]. J Am Soc Nephrol, 2002, 13(4): 1126-1128.
    [75] Ryoji Kitamura, Tomosaburo Takahashi, Norio Nakajima,el at . Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells[J]. Circ Res, 2007, 101(1): 78-87.
    [76] Jia Q, McDill BW, Li SZ, et al. Smad signaling in the neural crest regulates cardiac outflow tract remodeling through cell autonomous and non-cell autonomous effects[J]. Dev Biol, 2007, 311(16):172-184.
    [77] Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology [J]. Mol Med, 2002, 80(10):629-638.
    [78] Ishizaki T, Naito M, Fujisawa K,et al. p160ROCK, a Rho-associatd coiled-coil forming protein kinase works downstream of Rho and induces focal adhesions [J]. FEBS Lett, 1997, 404(2-3): 118-124.
    [79] Narumiya S. The small GTPase Rho: cellular functions and signal transduction [R].Biochem, 1996, 120(2): 215-228.
    [80] Kimura K,Ito M,Amano M,et al .Regulation of myosin phosphatase by Rho and Rho2associated kinase ( Rho-kinase) [J] .Science, 1996 , 273 (5272): 245-248.
    [81] Nagatoya K, Moriyama T, Kawada N, et al. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction[J]. Kidney Int, 2002, 61(5): 1684-1695.
    [82] Hocking DC, SottileJ, Langenbach KJ. Stimulation of integrinmediated cell contractility by fibronectin polymerization[J]. J Biol Chem, 2000, 275(14): 10673-10682.
    [83] Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology[R]. Mol Med, 2002, 80(10): 629-638.
    [84] Shimizu Y, DobashiK, Iizuka K, et al. Contribution of small GTPaseRho and its target protein Rock in a murine model of lung fibrosis [J]. Am Respi Crit Care Med, 2001, 163(1): 210-217.
    [85] Tada S, Iwamoto H, Nakamuta M, et al. A selective ROCK inhibitor, Y27632, prevents dimethy lnitrosamine-induced hepatic fibrosis in rats[J]. J Hepatol, 2001, 34 (4): 529-536.
    [86] Peters SL, Michel MC. The RhoA/Rho kinase pathway in the myocardium [J]. Cardiovas Res, 2007, 75(1):3-4.
    [87]Masszi A, Di CianoC, Sirokmany G, et al. Central role for Rho in TGF-beta1 induced alpha-smooth muscle actin expression during epithelialmesenchy maltransition[J]. Am J Physiol Renal Physiol, 2003, 284(5): F911-F924.
    [88] Yee HF Jr. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton [J]. Hepatology, 1998, 28(3): 843-850.
    [89] Tian YC, Fraser D, Attisano L, et al. TGF-beta1-mediated alterations of renal proximal tubular epithelial cell phenotype[J]. Am J Physiol Renal Physiol, 2003, 285(1): F130-142.
    [90] Masamune A, Kikuta K, Satoh M, et al. Rho kinase inhibitors block activation of pancreatic stellate cells [J]. Br Pharmacol, 2003, 140(7): 1292-1302.
    [91] Murata T, Arii S, Nakamura T, et al. Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells [J].Hepatol, 2001, 35(4): 474-481.
    [92] Patel K, Harding P, Haney LB, et al. Regulation of the mesangial cellmyofibroblast phenotype by actin polymerization[J].Cell Physiol. 2003, 195(3):435-445.
    [93] Mack CP, Somlyo AV, HautmannM, et al. Smooth muscle differentiation marker gene expression isregulated by RhoA-mediated actin polymerization[J]. J Biol Chem,2001, 276: 341-347.
    [94] Seasholtz TM, Majumdar M, Kaplan DD, et al. Rho and Rho kinase mediate thrombin-stimulatedvascular smooth muscle cell DNA synthesis and migration [J]. Circ Res,1999, 84: 1186-1193.
    [95] Kawano H,Doys,KawanoY,et al.AngiotensinII has multiple profibrotic effects in human cardiac fibroblasts [J]. Circulation, 2000, 101(10):1130-1137.
    [96] Danesh FR, Sadeghi MM, Amro N, et al. 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/ p21 signaling pathway: Implications for diabetic nephropathy[J]. Proc Natl Acad Sci U S A, 2002, 99(12): 8301-8305.
    [97] Haydont V, Math D, Bourgier C, et al. Induction of CTGF by TGF-β1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives [J]. Radiothe Oncol, 2005, 76 (2): 219-225.
    [98] Bishop AL, Hall A. Rho GTPases and their effector proteins [J]. Biochem, 2000, 348 Pt 2: 241-255.
    [99]Essig M, Vrtovsnik F, Friedlander G. Inhibitors of HMG CoA reductase: new modes of action, new indications ? [J]. Therapie, 2000, 55 (1): 43-49.
    [100] Eberlein M, Heusinger-Ribeiro J, Goppelt-Struebe M. Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins)[J].Br Pharmacol, 2001,133 (7): 1172-1180.
    [101] Sato M, Tani E, Fujikawa H, et al. Involvement of Rho-kinasemediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm [J].Circ Res, 2000, 87(3): 195-200.
    [102]赵同锋,邓华职.阿魏酸钠药理研究新进展[J].西北药学杂志, 2001:16:135-6.
    [103]傅春景,张健芳,黄幼田,等.阿魏酸钠对大鼠离体心肌缺血再灌注的影响[J].河南医科大学学报, 1994, 29(l): 344-346.
    [104]傅颖君,何明.阿魏酸钠对心肌细胞缺氧复氧损伤的保护作用及其机制[J].药学学报, 2004, 39: 325-7.
    [105]王生锋,欧阳静萍,张敬芳,等.阿魏酸钠对肿瘤坏死因子诱导人脐静脉内皮细胞NOS基因表达的影响[J].微循环学杂志, 2003,13:28-30.
    [106]李友清,张坚松,蔡宏伟.阿魏酸钠对兔心肌缺血再灌注损伤MDA、SOD、ET和NO的影响[J].中华麻醉学杂志, 1998, 11: 688-690.
    [107]刘季春,康健,邵立建,等.一氧化氮介导的阿魏酸钠预处理对离体大鼠心脏保护作用[J].中华医学杂志, 2006, 14(86): 987-991.
    [108]谢可鸣,茆勇,谢平,等.阿魏酸钠对小鼠炎性肝损伤的抑制效应及其与ICAM-1和E-selection表达的关系研究[J].中国病理生理杂志, 2004, 20: 2330-2335.
    [109]吴俊芳,王大元.阿魏酸钠对离体大鼠心肌顿抑的保护作用[J].中国循环杂志, 1994, 9(1):36-38.
    [110]刘涛,胡晋良,曹建华,等.阿魏酸钠对大鼠贮脂细胞株HSC-T6增殖的作用及机制[J].武汉大学学报, 2000, 21(5):423-425.
    [111]贺德,曾志良,曹建华,等.阿魏酸钠抗大鼠肝纤维化[J].世界华人消化杂志, 2002, 10(2):240-241.
    [112] Han HG, Wang ZW, Zhang NB, et al. Role of nitric oxide during early phase myocardial ischemic preconditioning in rats [J]. Chin Med J (Engl). 2008, 121 (13): 1210-4.
    [113] Murphy M, Godson C, Cannon S, et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells [J]. J Biol Chem, 1999, 274(9): 5830-5834.
    [114] J Yu, W K Leung, M P A Ebert, et al. Increased expression of survivin ingastric cancer patients and in first degree relatives [J]. Br J Cancer, 2002, 87(1): 97-7.
    [115]élise Rousse, Martin Gaudreau,éric Plante, et al. Early responses of the left ventricle to pressure overload in Wistar rats [J]. Life Sci, 2008, 82(5-6): 265-272.
    [116]刘亚红,程丽静,高政南.组织型转谷氨酰胺酶在糖尿病大鼠肾组织中的表达及意义[J].中华肾脏病杂志, 2006, 22(9): 559-563.
    [117] Karthikeyan K, Sarala Bai BR, Devarai SN, et al. Cardioprotective effect of grape seed proanthocyanidins on isoproterenol induced myocardial injury in rats [J]. International Journal of Cardiology, 2007, 115(3): 326–333.
    [118] Karthikeyan K, Sarala Bai BR., Niranjali Devarai S, et al. Grape seed proanthocyanidins ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes: An in vivo study [J]. Life Sci, 2007, 81(23-24): 1615–1621.
    [119] Claus P, Weidemann F, Dommke C, et al. Mechanisms of Postsystolic Thickening in Ischemic Myocardium: Mathematical Modelling and Comparison With Experimental Ischemic Substrates [J]. Ultras Med Biol, 2007, 33(12): 1963-1970.
    [120] Pauschinger M,Knopf D,Petschauer S,et al.Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio[M]. Circulation, 1999, 99(5): 2750-2756.
    [121]徐叔云.药理学实验方法[M]. 2版.北京:人民卫生出版社, 1991: 1160-1162.
    [122]朱彤莹,黄国英,顾勇,等.两种心衰模型大鼠心功能的比较[J].中国实验动物学报, 2002, 10(1): 51-53.
    [123]谷新荣,姜丽红,李艾丽,等.加味阳和汤对实验性心肌缺血鼠心肌的保护作用[J].长春中医药大学学报, 2007, 23(2): 23-26.
    [124]白冰,顾明,滕宗艳,等.异丙肾上腺素致大鼠心肌损伤肥大时骨架蛋白的变化及意义[J].中国地方学杂志, 2005, 24(3): 281-285.
    [125]冯琳,孟丹,陈相健,等.黄芪总皂苷对异丙肾上腺素致大鼠心肌损伤的保护作用[J].中国药学杂志, 2006, 41(17):1313-1317.
    [126]贾广乐,董培智.对肾上腺素性心肌缺血模型大鼠相关指标的探讨[J].中国实验动物学报, 2005, 13(2): 106-110.
    [127]李才主编.人类疾病动物模型的复制[M].第1版.北京:人民卫生出版社,2008:202-204.
    [128]李永梅,任立群,王芯蕊.早期心肌缺血缺氧性坏死心肌中周细胞数量的变化[J].心脏杂志, 2009, 21(2): 211-214.
    [129]罗陆一,古宏晖,陈鹏毅,等.心舒对犬心肌缺血模型心肌酶谱的影响[J].中医药学刊, 2006, 24(5): 787-788.
    [130] Evans RA, Tian YC, Steadman R,et al. TGF-beta1-mediated fibroblast myofib -roblast terminal differentiation the role of Smad proteins [J]. Exp Cell Res, 2003, 282(2): 90-100.
    [131] Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-beta- Induced alpha-smooth muscle actin expression [J]. J Am Respir Cell Mol Biol, 2003, 29(3 Pt 1): 397-404.
    [132] Gu L, Zhu YJ, Yang X, et al. Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation[J]. Acta Pharmacol Sin, 2007, 28(3): 382-391.
    [133] Zhou G, Li C, Cai. L.Advanced glycation end-products induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor beta-independent pathway [J]. Am J Pathol, 2004, 165 (6): 2033-2043.
    [134] Mimura Y, Ihn H, Jinnin M, et al. Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts[J]. Invest Dermatol, 2005, 124(5): 886-892.
    [135] Burgess HA, Daugherty LE, Thatcher TH, et al. PPAR{gamma} agonists inhibit TGF-{beta}induced pulmonary myofibroblast differentiation andcollagen production implications for therapy of lung fibrosis [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 288(6): L1146-1153.
    [136] Batra V, Musani AI, Hastie AT, et al. Bronchoalveolar lavage fluid concen -trations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts[J]. Clin Exp Allergy, 2004, 34(3): 437-444.
    [137] Haydont V, Bourgier C, Pocard M., et al. Pravastatin inhibits the Rho/CCN2/Extracellular Matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats [J]. Human Cancer Biology, 2007, 13(15): 5331-5340.
    [138] Murata T, Arii S, Mori A, et al. Therapeutic significance of Y-27632,a Rho- kinase inhibitor, on the estabilished liver fibrosi[J]. Surg Res, 2003, 114: 64-71.
    [139] Yuan YC,Xia ZK, Wang DJ, et al. Role and significance of connective tissue growth factor expression in a rat model of chronic heart allograft rejection [J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 31(12): 6191-6196.
    [140] Ma J, Nishimura H, Fogo A, et al. Accelerated fibrosis and collagen deposition develop in the renal interstitium of angiotensin type 2 receptor null mutant mice during ureteral obstruction.[J] Kidney Int, 1998, 53(4): 937-44
    [141]李文歌,陈香美,叶一舟,等.血管紧张素Ⅱ2型受体抑制成纤维细胞增殖和纤维连接蛋白分泌[J].中华医学杂志, 1998, 78(10): 738-740
    [142] Unger T, Chung O, Csikos T, et al. Angiotensin receptors [J]. Hypertens. 1996; 14(l5):s95- 103.
    [143] Daub H, Weiss U, Wallasch C, et al. Role of transactivation of the EGF receptor insignal ling by G-protein-coupl edreceptors [J]. Nature, 1996, 379: 557-560.
    [144] Cheng J, Imanishi H, Iijima H, et al. Expression of cyclooxygenase2 and cytosolic phospholipase A2 in the liver tissue of patients with chronic hepatitis and liver cirrhosis [J]. Hepatol Res, 2002, 23: 185 - 195.
    [145]邵建国,谢幸尔,姚建国,等.环氧合酶-2在慢性肝炎、肝硬化组织中的表达及临床意义[J].临床肝胆病杂志, 2006, 6(22): 422-425.
    [146] Miyajima A, Ito K, Asano T, et al. Does cyclooxygenase2 inhibitor p revent renal tissue damage in unilateral ureteral obstruction [J]. J Urol, 2001, 166(3): 1124-1129.
    [147] Benitah SA,Valeron PF, Lacal JC. ROCK and nuclear factor-kB–dependent activation of cyclooxygenase-2 by Rho GTPases: effects on tumor growth and therapeutic consequences [J]. Mol Biol Cell, 2003, 14(6): 3041–3054.
    [148] Anna Janiak, Evgeny A. Zemskov, Alexey M, et al. Cell Surface transglutaminase Promotes RhoA Activation via Integrin Clustering and Suppression of the Src–p190RhoGAP Signaling Pathway [J].Originally published as MBC in Press, 2006, 17(4): 1606-1619.
    [149] Nunes I, Gleizes PE, Metz CN, et al. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-depend -ent cross-linking of latent transforming growth factor-beta [J]. J Cell Biol, 1997, 136(5): 1151-1163.
    [150] Verderio E, Gaudry C, Gross S, et al. Regulation of cell surface tissue transglutaminase: effects on matrix storage of latent transforming growth factor-beta binding protein-1 [J]. J Histochem Cytochem, 1999, 47(11): 1417-1432.
    [151] Douthwaite JA, Johnson TS, Haylor JL, et al. Effects of transforming growth factor-beta1 on renal extracellular matrix components and their regulating proteins[J]. J Am Soc Nephrol, 1999, 10(10): 2109-2119.
    [152] Ritter SJ, Davies PJ. Identification of a transforming growth factor-beta1/bone morphogenetic protein 4 (TGF-beta1/BMP4) response element within the mouse tissue transglutaminase gene promoter [J]. J Biol Chem, 1998, 273(21):12798-12806
    [153]Matthias Pauschingera, Andrea Doernera, Andrew Remppisb et al.Differential myocardial abundance of collagen type I and type III mRNA in dilated cardiomyopathy: effects of myocardial inflammation [J]. Cardiovas Res, 1998, 37(1): 123-129.
    [154] Mori T, Kawara S, Shinozaki M, et al. Role and interaction of connective tissue growth factor with transforming growth factorbeta in persistent fibrosis: A mouse fibrosis model [J]. Cell Physiol, 1999, 181(1): 153.
    [155] Kishimoto C, Kitazawa M, Hiraoka Y, et al. Extracellular matrix remodeling in Coxsackie virus B3 myocarditis [J]. Clin Immunol Immunopathol, 1997, 85 (1): 47-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700