用户名: 密码: 验证码:
纳米粒介导人arresten基因转染对兔移植静脉内膜增生的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景对长段或多节段中小血管慢性阻塞而不适于血管腔内干预的患者,采用血管旁路术行冠状动脉或肢体动脉转流手术,目前仍然是挽救患者生命和肢体功能的主要手段。自体静脉是血管旁路移植物的金标准,与其他类型的移植物相比,自体静脉最大的特质就是静脉血管术后对于动脉环境的适应性改变,这种适应性改变通常被称为“静脉动脉化”。自体静脉移植物术后动脉化的能力是其他人造移植物无法替代的。从1950年开始自体静脉被广泛应用于缺血性疾病患者的血管重建手术,但是20-50%的静脉移植物由于其手术以后的重塑过程导致血栓形成、再狭窄等,最终导致血管移植手术失败。一旦血管重建术后再狭窄形成,就需要再次进行血管移植术或血管内支架置入术等血管重建手术,手术引起的血管损伤,日后仍会导致血管再狭窄形成。目前仍没有有效的治疗方法来减轻移植静脉血管壁的过度增厚,移植血管再狭窄的机制及其防治措施一直是临床研究的热点。
     从目前的研究结果来看,移植静脉早期再狭窄与缺氧、手术过程损伤等原因导致的血管内皮损伤部位急性血栓形成有关;移植静脉中后期再狭窄与中膜血管平滑肌细胞、外膜成纤维细胞的迁移与增殖、细胞增生与凋亡失去平衡、新生内膜过度增生密切相关。血管平滑肌细胞过度增殖并向内膜迁移是新生内膜增生的重要病理基础,是各种因素导致血管重建术后血管再狭窄的关键环节。因此,抑制血管平滑肌细胞过度增殖及迁移是防治静脉移植术后再狭窄的有效策略。
     移植静脉内膜增生的发生过程是多种细胞因子和血管活性物质介导的局部血管重构的过程,涉及到一系列复杂的病理过程,目前临床使用的药物都未能有效降低再狭窄的发生率。基因转移技术是防治移植静脉新生内膜过度增生的重要方法,选择适当的靶基因进行局部转染表达,针对血管再狭窄不同时期病变的进程,抑制内膜增生的病理过程。国内外学者已经作了许多这一方面的研究,但目前尚未找到一种满意的移植血管基因转移方法,实际应用时如何选择相应的血管基因转移技术(选取高效低毒的载体、提高转染率、减轻副作用等),可能是今后研究的方向之一。
     纳米基因载体是将DNA.RNA等治疗分子包裹在纳米颗粒之中或吸附在其表面,在细胞摄取作用下进入细胞内,实现目的基因持续稳定的表达。可生物降解的PLGA(乳酸-乙醇酸共聚物)纳米粒载药系统因其具有缓释作用而成为纳米粒子研究中的热点。但是由于治疗基因多是高度亲水的大分子物质,将其包封于疏水性的PLGA纳米粒中存在一定困难,而且DNA从疏水性的PLGA纳米粒中的释放过于缓慢,从而影响DNA的起效时间,因而有必要对PLGA进行结构修饰以提高其亲水性,以改善载基因纳米粒的包封率和释放性能。
     Arresten基因是2000年由Colorado等研究发现的一种基底膜来源的内源性血管生成抑制因子,由230个氨基酸残基组成,其分子量约为26kD,是Ⅳ型胶原a1链的羧基末端NCl结构域多肽片段。研究证实,arresten抑制新血管形成及肿瘤生长和转移效果明显,其活性为现今热点研究中的Endostatin的3-10倍,因此,arresten被认为是继Endostatin之后新的极具潜力的血管生长抑制因子。arresten在IV型胶原聚集、基底膜形成、调节细胞生物学行为方面发挥重要作用,能抑制内皮细胞、血管平滑肌细胞的增殖和迁移,诱导内皮细胞的凋亡。
     综合既往关于血管移植术后再狭窄和基因治疗及纳米载体研究的理论成果和结论,我们提出一个新的关于血管移植术后再狭窄治疗的假设:把arresten基因治疗和纳米粒载体系统两种方法联合起来,利用经过PEG修饰的PLGA纳米粒子介导arresten基因局部转染移植静脉,增强基因耐核酸酶的能力,改善载基因纳米粒的包封率和释放性能,延长纳米粒在体内血液循环的时间。课题根据这一个假设进行设计,拟明确纳米粒介导arresten基因转染对移植静脉内膜增生的影响,并研究其发挥作用的机制,从而为临床提高血管重建术的中远期疗效提供治疗思路。
     目的研究构建arresten基因真核表达载体;以PEG-PLGA为载体材料,制备出生物可降解型载基因纳米粒;建立兔自体静脉移植模型,局部定位转染arresten基因纳米粒,通过移植静脉病理图像分析、病理组织学观察、免疫组化分析、荧光定量PCR等手段,探讨纳米粒介导人arresten基因局部转染对兔移植静脉内膜增生的作用及其可能的作用机制。
     方法
     (1)设计arresten序列进行人工合成,根据构建需求在5’端添加ATG起始密码子,并添加增强表达的kazak序列GCCACC3'端去除终止密码子,共计708bp,并在上游引入Hind Ⅲ酶切位点,下游引入BamH Ⅰ酶切位点。序列合成后装载至pUC57中间载体,并进行酶切及测序验证。双酶切pUC57-arresten和pEGFP-N1质粒,在T4DNA连接酶的作用下进行连接反应。采用内切酶BamH Ⅰ和EcoR Ⅰ进行双酶切鉴定重组质粒pEGFP-N1-arresten。取纯化的重组质粒样品,进行核苷酸序列测定,以确认目的基因序列是否正确。
     (2)采用改良的纳米粒沉淀法制备包封型载arresten基因PEG-PLGA纳米粒。称取20mg PEG-PLGA,接着将其溶解在lml DMSO的溶液中(含200μg的DNA),然后把此溶液在微量注射泵的配合下滴入20m1的F127(0.5%,w/v)的乳化剂中以制备载基因的纳米粒混悬液。最后,混悬液经低温高速的离心作用后,收集其离心上清液应用PicoGreen荧光分光光度法测定载基因纳米粒的包封率及理化性质。
     (3)以新西兰大白兔为研究对象,动物随机分为3组:空白组、对照组、arresten组,每组10只。采用游离的颈外静脉间位移植至颈总动脉的方法建立兔自体静脉移植模型。在行血管吻合术前,将移植段血管置于纳米粒介导的重组质粒pEGFP-N1-arresten溶液中浸泡,转染移植静脉。术后1周及术后4周分别应用彩超观察静脉桥通畅情况。手术4周后取出移植静脉,常规行HE及Masson染色,运用计算机图象分析技术来检测兔移植静脉的内膜与中膜的厚度;采用免疫组化的方法来检测金属基质蛋白酶-2(MMP-2)、金属基质蛋白酶-9(MMP-9)、平滑肌细胞肌动蛋白(a-SMA)、细胞增殖核抗原(PCNA)的阳性表达情况,荧光定量PCR方法检测移植静脉中arresten基因mRNA转录水平。
     结果
     (1)重组质粒序列比对分析显示,插入到表达载体的目的基因的序列与人arresten基因片段序列完全一致,目的基因序列正确,证明arresten基因准确的克隆至表达载体中,试验成功地构建出arresten基因真核表达载体pEGFP-N1-arresten。
     (2)试验顺利制备了一种包封型的载arresten基因的PEG-PLGA纳米粒。这种纳米粒呈均匀的球形,纳米粒的粒径分布不宽,arresten基因能够高效的包封于PEG-PLGA纳米粒中(包封率96.64±0.202%),DNA的结构得到保持。
     (3)成功建立兔自体静脉移植模型30只,手术过程无死亡,1只术后20天死于消化道感染,余均健康存活。29只存活动物手术后无活动功能障碍,术后精神、饮食、活动正常,切口愈合好,无红肿、渗出或脓肿形成。取材前检查存活动物移植静脉27例通畅,静脉搏动良好,血管与周围组织有粘连,未见移植静脉破裂,无深部感染,1例移植静脉重度扩张导致血管瘤形成,2例闭塞。术后第1、4周分别观察到1只动物移植静脉闭塞。切取标本行荧光定量PCR,结果显示重组质粒pEGFP-N1-arresten转染的血管组织中有目的基因mRNA的表达;通过病理计算机图象技术分析可知,转染arresten纳米粒组的内膜厚度以及中膜厚度均分别比对照组、空白组小,转染arresten纳米粒组的内膜增生的程度分别比空白组、对照组轻(P<0.05)。血管平滑细胞是增生内膜中主要的细胞;转染arresten纳米粒组的移植静脉的PCNA阳性细胞数量与表达指数,均比空白组、对照组更小(P<0.05);转染arresten纳米粒组的MMP-2及MMP-9表达均少于空白组及对照组(P<0.05),差异有统计学意义。
     结论
     采用改良的纳米粒沉淀法成功制备了包封型载pEGFP-N1-Arresten基因PEG-PLGA纳米粒,质粒DNA可以行之有效地包封在PEG-PLGA纳米粒里面(研究结果显示,这种包封率超过95%),也较好地保持了DNA结构的完整性。采用游离的颈外静脉间位移植至颈总动脉的方法可以成功建立兔自体静脉移植模型,具有成功率高、损伤小、围手术期死亡率低等优点。采用移植静脉浸泡于基因纳米粒中的方法可以成功将目的基因导入移植静脉细胞中,PEG-PLGA纳米粒可以介导局部定位转染人arresten基因,从而有效抑制兔移植静脉内膜的增生,人arresten基因抑制兔移植静脉内膜的增生的作用机制,可能是通过抑制MMP-2、MMP-9的表达,从而抑制血管平滑肌细胞的迁移和增殖。人arresten基因在预防静脉动脉化过程内膜过度增生方面具有很好的临床前景,其对血管壁各种细胞迁移及增殖的作用,以及其抑制移植静脉内膜增生的具体信号传导机制等有待进一步探讨。
BACKGROUND For patients with coronary artery disease or limb ischemia, placement of a vein graft as a conduit for a bypass is an important and generally durable strategy among the options for arterial reconstructive surgery. Autogenous Vein is the gold standard for vascular graft conduits. Compared with other types of graft conduits, the most distinctive property of the vein graft is the adaptive response to the arterial environment during the post-surgical process; this adaptation is thought to be responsible for the superior performance of vein grafts compared with prosthetic grafts. However, it is also known that abnormal, or uncontrolled, adaptation may lead to abnormal vessel wall remodeling with excessive neointimal hyperplasia with deposition of smooth muscle cells (SMC) and extracellular matrix (ECM), ultimately vein graft failure and clinical complications. Since1950autogenous vein has been widely used in patients with ischemic disease, but20-50%of vein grafts are ultimately failure because of its remodeling process leading to thrombosis, restenosis et al. Once restenosis occur after revascularization, vascular reconstructive surgery may be taken, which will lead to the formation of restenosis again. There is currently no effective treatment to reduce excessive thickening of the graft wall. The mechanism and prevention measures of graft restenosis have been the focus of clinical research.
     Numerous physiologic and molecular mechanisms of vein graft adaptation have been discovered. However, this complex process has yet to be characterized well, and we do not yet have the ability to therapeutically control graft wall thickening. Early restenosis is associated with acute thrombosis, intimal proliferation.Long-term restenosis is the pathematology alteration after operation. Vascular smooth muscle cells and extracellular matrix are the essential component of the neointima.
     The pathophysiology of vein graft failure involved a complex mechanism. Conventional pharmacotherapy had limited impact on intima proliferation of vein graft. Along with the development of gene engining and molecular biology, gene therapy may become the method to solve the problem. DNA/RNA can be encapsulated in nanoprecipitation or adsorbed into the surface of nanoprecipitation, which can be uptakeen into the cell to achieve the purpose of sustained and stable expression of the gene. Biodegradable PLGA nanoprecipitation play an important role in the study of nanoparticles because of sustained-release drug delivery systems.
     Arresten is the26kDa C-terminal globular non-collagenous(NC1) domain of the al chain of type IV collagen (al[IV]NCl)(Colorado et al.,2000), with molecular weight about26kD. It was initially isolated from human placental basement membrane. In recent years, some study showed that arresten could inhibit the endothelial cells'proliferation and migration, induce endothelial cells'apoptosis and also inhibit tumor growth and metastasis. In early study, arresten showed effective in the inhibition of proliferation of vascular smooth muscle cells and neovascularization. So arresten play an important roll in neintimal hyperplasia and restenosis after vscular recomstructive operation.
     OBJECTIVE Construction of eukaryotic expression vector of Arresten gene. Construction of Arresten gene loaded nanoparticles biodegradable composed of biodegradable and biocompatible materials PEG-PLGA, to construct rabbit autogenous vein transplantation model, and then the recombinant plasmid was locally transformed into the vein graft; and the influence on neointimal hyperplasia of vein graft was explored.
     METHODS
     (1) A synthetic design arresten sequences, according to building requirements at the5'end to add start codon ATG, and add the enhanced expression of kazak sequence GCCACC, remove the termination codon at the3'end. After loading sequence synthesis to pUC57carrier, enzyme digestion and sequencing were conduct. The conduction was inserted into pEGFP-Nl vector.The target gene sequence were affirmed correctly.
     (2) A modified nanoprecipitation method was established to formulate the target gene loaded PEG-PLGA nanoparticles. Accurately weighted (20mg) PEG-PLGA was dissolved in1mL DMSO containing200μg of plasmid DNA. The resulting clear solution was slowly (30mL/h) injected by a microsyringe pump into20mL magnetic ally stirring0.5%(w/v) Pluronic F127aqueous solution (600rpm) and agitated for5hours at room temperature. The DNA-loaded PEG-PLGA nanoparticles formed instantaneously.
     (3) Preparation of rabbit autogenous vein graft model, and the recombinant plasmids pEGFP-N1-arresten were locally transfected into vein graft. Detection of arresten expression in vein graft by RT-PCR. Intimal and medial hyperplasia degree was measured by the thickness, which was measured by computer after hematoxylin eosin stain and Masson stain. Smooth muscle alpha-actin (a-SMA)、Proliferating cell antigen (PCNA)、matrix metalloproteinase(MMP-2) and MMP-9of vein graft were analysised by immunohistochemical labeling.
     RESULTS
     (1) Sequence analysis showed that, the sequencing results for human Arresten cDNA was cloned in the same prostage sequence. Objective gene into the expression vector is correct. The Arresten gene fragment inserted into the vector between the coincidence. Indicated that arresten gene was cloned into the expression vector comprehensively, accurately to the correct expression of target protein. Plasmid pEGFP-Nl-arresten was successfully constructed.
     (2) In nano PEG-PLGA nanoparticles modified precipitation method has uniform spherical particles, an average of219.8±2.28nm with narrow size distribution, a negative Zeta potential in pH7.4-24.52±0.644mv. Using the nano modified precipitation method, the obtained PEG-PLGA nanoparticles exhibited greater loading efficiency (96.64±0.202%).
     (3) To establish the model of autogenous vein graft. RT-PCR results showed that the genome of arresten-transferred tissue contained fragment of arresten gene; about the thickness of the medial and intimal issue, arresten transfection group was less than the control group and blank group, and the difference was statistically significant (P<0.05). Vascular smooth muscle cells consisted in the hyperplasic intima majure; the number and ration of MMP-2、MMP-9and PCNA positive-stained in arresten transfection group was lower than that of the control group and blank group (P<0.05).
     CONCLUSIONS Using the nano modified precipitation method the obtained PEG-PLGA nanoparticles exhibited greater loading efficiency (>95%). Autogenous vein graft model, by end to end anastomosis between the jugular vein and the ipsilateral carotid artery could lead to restenosis of vein graft. The human Arresten gene transfection locally can inhibit intimal hyperplasia of vein graft, improve the degree of patency. They show a good prospect in clinical application in inhibition and cure of rstenosis after vascular transplantation.
引文
[1]Tashiro H, Shimokawa H, Sadamatsu K, et al. Role of cytokines in the pathogenesis of restenosis after percutaneous transluminal coronary angioplasty. Coron Artery Dis,2001;12(2):107-113.
    [2]Boehm M, Nabel EG Cell cycle and cell migration:new pieces to the puzzle. Circulation,2001; 103(24):2879-2881.
    [3]张蕾,张阳德,翟登高,等.聚丙交酯乙交酯纳米粒的制备及生物学效能的研究[J].中国现代医学杂志,2007;17(11):1326-1329.
    [4]Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res,2000,60(9):2520-2526.
    [5]Sudhakar A,Nyberg P,Keshamouni VG, et al. Human alphal type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alphalbetal integrin.J Clin Invest,2005; 115 (10):2801-2810.
    [6]Holmes DR Jr, Savage M, LaBlanche JM, et al. Results of prevention of RE Stenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation, 2002;106(10):1243-1250.
    [7]Kimura T, Abe K, Shizuta S, et al. Long-term clinical and angiographic follow-up after coronary stent placement in native coronary arteries. Circulation, 2002;105(25):2986-2991.
    [8]Sambeek MR, Hagenaars T,Tongeren RB, et al. Peripheral vascular brachytherapy: an introduction. J cardivosc Surg(Torino),2000;41(6):891-895.
    [9]Gulati R, Jevremovie D, Peterson TE, et al.Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulalion, 2003; 108(12):1520-6.
    [10]He T, Smith LA, Harrington S, et al. Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Sroke, 2004;35(10):2378-2884.
    [11]Rose R.Atherosclereosis-an inflammatory disease[J].N Eng J Med, 1999,340(2):115-126.
    [12]Blindt R, Vogt F, Lamby D, et al. Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J Vase Res, 2002;39(4):340-352.
    [13]Sund M,Xie L,Kalluri R.The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. APMIS, 2004;112(7-8):450-462
    [14]Sundaramoorthy M, Meiyappan M, Todd P, et al.Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem,2002;277(34):31142-31153
    [15]Sudhakar A, Nyberg P,Keshamouni VG, et al. Human alphal type IV collagen NCI domain exhibits distinct antiangiogenic activity mediated by alphal betal integrin.J Clin Invest,2005;115(10):2801-2810
    [16]Boosani CS,Nalabothula N,Sheibani N,et al..Inhibitory effects of arresten on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 activation in mouse retinal endothelial cells.Curr Eye Res,2010;35(1):45-55
    [17]Zhang WD, Bai HZ, Sawa Y,et al. Association of smooth muscle cell phenotypic modulation with extracellular matrix alterations during neointima formation in rabbit vein grafts. J Vase Surg,1999; 30(1):169-183.
    [18]Walsh K,Smith RC,Kim HS. Vascular cell apoptosis in remodeling, restenosis, and plaque rupture.Circ Res,2000;87(3):184-188.
    [19]Engelse MA, Lardenoye JH,Neele JM,et al. Adenoviral activin a expression prevents intimal hyperplasia in human and murine blood vessels by maintaining the contractile smooth muscle cell phenotype.Circ Res,2002;90(10):1128-1134.
    [20]Blindt R, Vogt F, Lamby D, et al. Characterization of differential gene expression in quiescent and invasive human arterial smoothmuscle cells. J Vase Res,2002;39(4): 340-352.
    [21]Wang Z, Castresana MR, Newman WH. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun,2001;285(3):669-674.
    [22]郑启昌,宋自芳,郑幼伟,等.血管生成抑制因子arresten基因的分子克隆与序列测定[J].中华实验外科杂志,2002;19(1):46-47.
    [23]尚丹,郑启昌,宋自芳,等.人Arresten基因的真核表达及其对血管平滑肌细胞增殖和迁移的影响[J].中国病理生理杂志,2007;23(10):1887-1890.
    [24]尚丹,宋自芳,夏印,等.人arresten基因转染对自体移植静脉内膜增生的影响[J].中国普通外科杂志,2008;17(2):153-158.
    [25]Wen JK, Han M, Zheng B, et al.Comparison of gene expression patterns and migration capability at quiescent and proliferating vascular smooth muscle cells stimulated by cytokines. Life Sci,2002;70(7):799-807.
    [26]楚雍烈,答嵘.肿瘤基因治疗载体在临床应用中的问题和研究进展.西安交通大学学报,2006;27(4):313-318
    [27]Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci, 2003;92(2):203-217.
    [28]Luten J, van Nostrum CF, De Smedt SC, et al. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release,2008;126(2):97-110.
    [29]张蜀,谭载友,陈济民.聚乳酸类缓释、控释注射剂的研究进展[J].中国药学杂志,2002;37(11):810-812.
    [30]Chittasupho C, Xie SX, Baoum A, et al. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci, 2009;37(2):141-150.
    [31]Diez S, Tros de llarduya C.Versatility of biodegradable poly (D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery. Eur J Pharm Biopharm.,2006; 63(2):188-197.
    [32]杜兵,程祥荣.聚乳酸及其共聚物微球的性质及应用[J].国外医学生物医学工程分册,2002;25(5):238-240.
    [33]Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles:implications for drug and gene delivery. FASEB J,2002;16(10):1217-1226.
    [34]Mundargi RC, Babu VR, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release,2008;125(3):193-209.
    [35]潘妍,徐晖,赵会英,等.胰岛素乳酸/羟基乙酸共聚物纳米粒的制备及口服药效学研究[J].药学学报,2002;37(5):374-377.
    [36]Luten J, van Nostrum CF, De Smedt SC, et al. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release,2008;126(2):97-110.
    [37]Chen J, Tian B, Yin X, et al. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. J Biotechnol,2007;130 (2):107-113.
    [38]Riley T, Go vender T, Stolnik S, et al, Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids and Surfaces B: Biointerfaces,1999;16(1-4):147-159.
    [39]Mosqueira VC, Legrand P, Gref R, et al. Interactions between a macrophage cell line (J774A1) and surface-modified poly (D, L-lactide) nanocapsules bearing poly (ethylene glycol). J Drug Target,1999;7(1):65-78.
    [40]周林珠,甘璐,杨祥良.PLA-PAMAM纳米粒作为非病毒基因载体的研究[J].华中科技大学学报,2007;35(6):122-125.
    [41]Marshall E. Gene therapy's growing pains. Science,1995; 269(5227):1050,1052-1055.
    [42]Check E. Cancer fears cast doubts on future of gene therapy. Nature,2003; 421(6924):678.
    [43]Chen D, Murphy B, Sung R, et al. Adaptive and innate immune responses to gene transfer vectors:role of cytokines and chemokines in vector function. Gene Ther, 2003;10(11):991-998.
    [44]答嵘,王伟,楚雍烈.肿瘤基因治疗载体的类型和特点.现代肿瘤医学,2006;14(2):237-240.
    [45]Li SD, Huang L. Non-viral is superior to viral gene delivery. J Control Release, 2007;123 (3):181-183.
    [46]黄容琴,裴元英.基因治疗中非病毒载体的研究进展[J].国外医学药学分册,2005;32(2):77-81
    [47]Gao X, Kim KS, Liu D.Nonviral gene delivery:What we know and what is next. AAPS J,2007;9 (1):E92-E104.
    [48]van der Wouden EA, Sandovici M, Henning RH, et al. Approaches and methods in gene therapy for kidney disease. J Pharmacol Toxicol Methods,2004;50(1):13-24.
    [49]Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection:a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A,1987;84(21):7413-7417.
    [50]黄义昆.脂质体作为药物载体研究进展[J].中国药师,2005;8(7):549-550.
    [51]雷撼,钱桂生.阳离子脂质体的研究进展[J].第三军医大学学报,2005;27(24):2475-2477.
    [52]Khazanov E, Simberg D, Barenholz Y. Lipoplexes prepared from cationic liposomes and mammalian DNA induce CpG-independent, direct cytotoxic effects in cell cultures and in mice. J Gene Med.2006;8(8):998-1007.
    [53]Patil SD, Rhodes DG, Burgess DJ. Anionic liposomal delivery system for DNA transfection. AAPS J,2004;6(4):e29.
    [54]吴传保,郝建原,邓先模,夏雨.阳离子聚合物基因转染载体的研究进展[J].高分子通报,2007;4:34-46.
    [55]Fischer D, Li Y, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials,2003; 24(7):1121-1131.
    [56]Pouton CW, Seymour LW. Key issues in non-viral gene delivery. Adv Drug Deliv Rev,2001;46(1-3):187-203.
    [57]Davis SS. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy.Trends Biotechnol,1997; 15(6):217-224.
    [58]Lambert G,Fattal E,Couvreur P.Nanoparticulate systems for the delivery of antisense oligonucleotides.Adv Drug Deliv Rev,2001;47(1):99-112.
    [59]张广兰,丁丽雪.纳米控释系统在药物和基因载体方面的应用及其研究进展[J].食品与药品,2006;8(9A):17-20.
    [60]赵鹏,王东凯,李海刚.以纳米颗粒为载体转染基因的发展概况[J].沈阳药科大学学报,2005;22(5):395-400.
    [61]邹伟伟,张娜.聚乳酸-聚乙醇酸纳米粒作为非病毒基因载体[J].生命的化学,2009;29(1):120-123.
    [62]Gomes AJ, Lunardi CN, Tedesco AC. Characterization of biodegradable poly(D, L-lactide-co-glycolide) nanoparticles loaded with bacteriochlorophyll-a for photodynamic therapy. Photomed Laser Surg,2007;25(5):428-435.
    [63]Mok H, Park TG (2008) Direct plasmid DNA encapsulation within PLGA nanospheres by single oil-in-water emulsion method. Eur J Pharm Biopharm, 2008;68(1):105-111.
    [64]Remaut K, Sanders NN, Fayazpour F, Demeester J, De Smedt SC (2006) Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. J Control Release,2006;115(3):335-343.
    [65]Sternling CV, Scriven LE. Interfacial turbulence:Hydrodynamic instability and the Marangoni effect. AIChE J,1959;5(4):514-523.
    [66]Yoo HS, Choi HK, Park TG Protein-fatty acid complex for enhanced loading and stability within biodegradable nanoparticles. J Pharm Sci,2001;90(2):194-201.
    [67]Moses JW,Leon MB,Popma JJ,et al.Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.N Engl J Med, 2003;349(14):1315-1323.
    [68]King P, Royle JP. Autogenous vein grafting in atheromatous rabbits. Cardiovasc Res,1972; 6(6):627-633.
    [69]Wyatt AP, Rothnie NG, Taylor GW. The vascularization of vein-grafts. Br J Surg,1964; 51:378-381.
    [70]Veith FJ, Gupta SK, Ascer E, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg,1986; 3(1):104-114.
    [71]Fitzgibbon GM, Kafka HP, Leach AJ, et al. Coronary bypass graft fate and patient outcome:angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol,1996; 28(3): 616-626.
    [72]Raja SG. Composite arterial grafting. Expert Rev Cardiovasc Ther,2006; 4(4):523-533.
    [73]Fogelstrand P, Feral CC, Zargham R, et al.Dependence of proliferative vascular smooth muscle cells on CD98hc(4F2hc,SLC3A2).J Exp Med, 2009;206(11):2397-2406.
    [74]Yucel S, Bahcivan M, Gol MK, et al. Reduced intimal hyperplasia in rabbits via medical therapy after carotid venous bypass.Tex Heart Inst J,2009;36(5):387-392.
    [75]Faries PL, Marin ML, Veith FJ, et al. Immunolocalization and temporal distribution of cytokine expression during the development of vein graft intimal hyperplasia in an experimental model. J Vasc Surg,1996;24(3):463-471.
    [76]Komalavilas P, Shah PK, Jo H, et al. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. J Biol Chem,1999;274(48):34301-34309.
    [77]Jackson MR, Belott TP, Dickason T, et al. The consequences of a failed femoropopliteal bypass grafting:comparison of saphenous vein and PTFE grafts.J Vasc Surg,2000;32(3):498-504;504-505.
    [78]Vijayan V, Shukla N, Johnson JL, et al. Long-term reduction of medial and intimal thickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath.J Vasc Surg,2004;40(5):1011-1019.
    [79]刘继红,何学志,谷天祥,等.局部应用紫杉醇预防兔移植静脉再狭窄[J].中国胸心血管外科临床杂志,2008;15(002):126-129.
    [80]Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease:pathogenesis, predisposition, and prevention. Circulation,1998,97(9):916-931.
    [81]Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen.Cancer Res,2000;60(9):2520-2526.
    [82]McCawley LJ, Matrisian LM. Matrix metalloproteinases:they're not just for matrix anymore!Curr Opin Cell Biol,2001;13(5):534-540.
    [83]Zhang X, Hudson BG. Sarras MP Jr. Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev Biol, 1994;164(1):10-23.
    [84]Tsilibary EC, Reger LA, Vogel AM, et al.Identification of a multifunctional, cell-binding peptide sequence from the al(NC1) of type IV collagen. J Cell Biol, 1990;111(4):1583-1591.
    [85]Boosani CS, Nalabothula N, Sheibani N,et al.Inhibitory effects of arresten on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 activation in mouse retinal endothelial cells. Curr Eye Res,2010;35(1):45-55.
    [86]Sundaramoorthy M, Meiyappan M, Todd P, et al.Crystal structure of NCI domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem,2002;277(34):31142-31153.
    [87]Sudhakar A,Nyberg P,Keshamouni VG, et al. Human alphal type IV collagen NC1 domain exhibits distinct antiangiogenc activity mediated by alphal beta 1 integrin. J Clin Invest,2005;115(10):2801-2810.
    [88]Long MY, Li HH, Xu JY, et al. Inhibitory effects of transfection of arresten gene on liver metastasis from colorectal cancer in nude mice. Ai Zheng, 2008;27(10):1039-1043.
    [89]Zhang WD, Bai HZ, Sawa Y, et al. Association of smooth muscle cell phenotypic modulation with extracellular matrix alterations during neointima formation in rabbit vein grafts. J Vasc Surg,1999;30(1):169-183.
    [90]Walsh K, Smith RC, Kim HS. Vascular cell apoptosis in remodeling, restenosis, and plaque rupture.Circ Res,2000;87(3):184-188.
    [91]Engelse MA, Lardenoye JH, Neele JM, et al. Adenoviral activin a expression prevents intimal hyperplasia in human and murine blood vessels by maintaining the contractile smooth muscle cell phenotype.Circ Res,2002;90(10):1128-1134.
    [92]Muto A, Model L, Ziegler K, et al. Mechanisms of vein graft adaptation to the arterial circulation:insights into the neointimal algorithm and management strategies.Circ J,2010;74(8):1501-1512.
    [93]Blindt R, Vogt F, Lamby D, et al. Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J Vasc Res,2002;39(?) 340-352.
    [94]Wang Z, Castresana MR, Newman WH.Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun,2001;285(3):669-674.
    [95]Macleod DC, Strauss BH, de Jong M, et al. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions.J Am Coll Cardio,1994; 23(1):59-65.
    [96]Wang Z, Castresana MR, Newman WH.Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun,2001;285(3):669-674.
    [97]Blindt R,Vogt F,Lamby D,et al.Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells.J Vasc Res,2002;39(4):340-352.
    [98]Conte MS, Bandyk DF, Clowes AW,et al. Results of PREVENT III:a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg,2006;43(4):742-751.
    [99]Alexander JH, Hafley G. Harrington RA, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery:PREVENT IV:a randomized controlled trial. JAMA,2005;294(19):2446-2454.
    [100]Mann MJ, Conte MS. Transcription factor decoys for the prevention of vein bypass graft failure. Am J Cardiovasc Drugs,2003;3(2):79-85.
    [101]Kudo FA, Muto A, Maloney SP,et al. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol, 2007;27(7):1562-1571.
    [102]Yamamoto K, Onoda K, Sawada Y, et al.Locally applied cilostazol suppresses neointimal hyperplasia and medial thickening in a vein graft model. Ann Thorac Cardiovasc Surg,2007;13(5):322-330.
    [103]Schachner T, Oberhuber A, Zou Y, et al.Rapamycin treatment is associated with an increased apoptosis rate in experimental vein grafts. Eur J Cardiothorac Surg,2005; 27(2):302-306.
    [104]Haraguchi T, Okada K, Tabata Y,et al.Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscler Thromb Vasc Biol,2007;27(3):548-555.
    [105]Banno H, Takei Y, Muramatsu T,et al.Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg, 2006;44(3):633-641.
    [106]Amabile PQ Wang DS, Kao EY, et al.Directed migration of smooth muscle cells to engineer plaque-resistant vein grafts. J Endovasc Ther,2005;12(6):667-675.
    [107]Kimura S, Egashira K, Nakano K, et al. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation,2008;118(14 Suppl):S65-70.
    [108]郑启昌,宋自芳,郑幼伟,等.血管生成抑制因子Arresten基因的分子克隆与序列测定[J].中华实验外科杂志,2002;19(1):46-47.
    [109]尚丹,郑启昌,宋自芳,等.人Arresten基因的真核表达及其对血管平滑肌细胞增殖和迁移的影响[J].中国病理生理杂志,2007;23(10):1887-1890.
    [110]尚丹,宋自芳,夏印,等.人arresten基因转染对自体移植静脉内膜增生的影响[J].中国普通外科杂志,2008;17(2):153-158.
    [111]Tennant M,McGeachie JK.Adaptive remodelling of smooth muscle in the neo-intima of vein-to-artery grafts in rats:a detailed morphometric analysis.Anat Embryol(Berl),1993;187(2):161-166.
    [112]Bauters C, Meurice T, Hamon M, et al.Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc Res,1996;31(6):835-846.
    [113]钱济先,钱兆奇,黄耀添,等.含p射线的软性血管外模型对移植血管内膜增生及平滑肌增殖的抑制作用[J].中华医学杂志,1999;79(1):19-21.
    [114]张棉根,钱虎声,邝耀麟.实验性自体静脉移植平滑肌细胞增殖周期动力学研究[J].中华外科杂志,1996;34(7):405-408.
    [115]Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol,2002;39(3):319-327.
    [116]单岩,张谦,朱慧琪.冠状动脉旁路移植术再狭窄中PCNA蛋白表达的研究[J].中国心血管杂志,2004;9(01):1-3.
    [117]Puato M, Piergentili C, Zanardo M, et al. Vascular remodeling after carotid artery stenting. Angiology,2007;58(5):565-571.
    [118]Chen C, Hughes JD, Mattar SG, et al. Time-course study of intimal hyperplasia in the endarterectomized canine artery. J Surg Res,1997;67(1):106-121.
    [119]Schwartz RS, Holmes DR Jr, Topol EJ. The restenosis paradigm revisited:an alternative proposal for cellular mechanisms. J Am Coll Cardiol, 1992;20(5):1284-1293.
    [120]Godin D,Ivan E,Johnson C,et al.Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation,2000;102 (23):2861-2866.
    [121]Feldman LJ,Mazighi M,Scheuble A,et al.Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation,2001; 103 (25):3117-3122.
    [122]Hojo Y,Ikeda U,Katsuki T,et al.Matrix metalloproteinase expression in the coronary circulation induced by coronary angioplasty. Atherosclerosis,2002;161 (1):185-192.
    [123]Fitzgerald M, Hayward IP, Thomas AC, et al.Matrix metalloproteinase can facilitate the heparanase-induced promotion of phenotype change in vascular smooth muscle cells. Atherosclerosise,1999;145(1):97-106
    [124]YangZ,Eton D,Zheng F,et al.Effect of tissue plasminogen activator on vascular smooth muscle cells.J Vasc Surg,2005,42 (3):532-538.
    [125]Coussens LM,Fingleton B,Matrisian LM. Matrix metalloproteinase inhibitors and cancer:trials and tribulations. Science,2002;295 (5564):2387-2392.
    [126]Mason DP, Kenagy RD, Hasenstab D, et al. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res,1999;17,85(12):1179-1185
    [127]Shimazaki N, Yazaki T, Kubota T, et al.DNA polymerase lambda directly binds to proliferating cell nuclear antigen through its confined C-terminal region.Genes Cells,2005;10(7):705-715.
    [128]Payeli SK, Latini R, Gebhard C, et al. Prothrombotic gene expression profile in vascular smooth muscle cells of human saphenous vein, but not internal mammary artery. Arterioscler Thromb Vase Biol,2008;28(4):705-710.
    [129]Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med,2002;346(23):1773-1780.
    [130]Yamashita A, Hanna AK, Hirata S, et al. Antisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling. J Vasc Surg,2003;37(34):866-873.
    [131]Sterpetti AV, Cucina A, Lepidi S, et al. Progression and regression of myointimal hyperplasia in experimental vein graft depends on platelet-derived growth factor and basic fibroblastic growth factor production. J Vasc Surg,1996;23(4): 568-575.
    [132]Passerini AG. Milsted A, Rittgers SE. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J Vasc Surg,2003;37(1):182-190.
    [133]Best PJ, Hasdai D, Sangiorgi G, et al. Apoptosis. Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vase Biol, 1999;19(1):14-22.
    [134]Fox JC, Shanley JR. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem, 1996;271(21):12578-12584.
    [1]King P, Royle JP.Autogenous vein grafting in atheromatous rabbits. Cardiovasc Res,1972;6(6):627-633.
    [2]Wyatt AP, Rothnie NG, Taylor GW. The vascularization of vein-grafts. Br J Surg, 1964;51:378-381.
    [3]Veith FJ, Gupta SK, Ascer E, et al.Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg,1986;3(1):104-114.
    [4]Fitzgibbon GM,Kafka HP,Leach AJ,et al. Coronary bypass graft fate and patient outcome:angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol,1996;28(3):616-626.
    [5]Mitra AK,Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol,2006;84(2):115-124.
    [6]Muto A, Model L, Ziegler K,et al. Mechanisms of vein graft adaptation to the arterial circulation:insights into the neointimal algorithm and management strategies.Circ J,2010;74(8):1501-1512.
    [7]Bose D, Leineweber K, Konorza T,et al. Release of TNF-alpha during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol, 2007;292(5):H2295-H2299.
    [8]Conte MS, Bandyk DF, Clowes AW,et al.Results of PREVENT III:a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery.J Vasc Surg,2006;43(4):742-751.
    [9]Alexander JH,Hafley QHarrington RA,et al.Efficacy and safety of edifoligide,an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery:PREVENT IV:a randomized controlled trial. JAMA,2005; 294(19):2446-2454.
    [10]You LR, Lin FJ, Lee CT,et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 2005;435(7038):98-104.
    [11]Kudo FA,Muto A,Maloney SP,et al.Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol, 2007;27(7):1562-1571.
    [12]Acevedo L, Yu J, Erdjument-Bromage H, et al. A new role for Nogo as a regulator of vascular remodeling.Nat Med,2004;10(4):382-388.
    [13]Kritz AB, Yu J, Wright PL,et al. In vivo modulation of Nogo-B attenuates neointima formation. Mol Ther,2008;16(11):1798-1804.
    [14]McGeachie JK, Meagher S, Prendergast FJ. Vein-to-artery grafts:the long-term development of neo-intimal hyperplasia and its relationship to vasa vasorum and sympathetic innervation.Aust NZ J Surg,1989;59(1):59-65.
    [15]De Graaf R, Tintu A, Stassen F,et al. N-acetylcysteine prevents neointima formation in experimental venous bypass grafts. Br J Surg,2009;96(8):941-950.
    [16]Conte MS.Technical factors in lower-extremity vein bypass surgery:how can we improve outcomes? Semin Vasc Surg,2009; 22(24):227-233.
    [17]Schachner T.Pharmacologic inhibition of vein graft neointimal hyperplasia.J Thorac Cardiovasc Surg,2006; 131(5):1065-1072.
    [18]Liu SQ, Ruan YY, Tang D, et al.A possible role of initial cell death due to mechanical stretch in the regulation of subsequent cell proliferation in experimental vein grafts. Biomech Model Mechanobiol,2002;1(1):17-27.
    [19]Furchgott RF. Endothelium-derived relaxing factor:discovery,early studies,and identification as nitric oxide. Biosci Rep,1999; 19(4):235-251.
    [20]Gratton JP,Bernatchez P,Sessa WC.Caveolae and caveolins in the cardiovascular system.Circ Res,2004;94(11):1408-1417.
    [21]Ohta S,Komori K,Yonemitsu Y,et al. Intraluminal gene transfer of endothelial cell-nitric oxide synthase suppresses intimal hyperplasia of vein grafts in cholesterol-fed rabbit:a limited biological effect as a result of the loss of medial smooth muscle cells. Surgery,2002;131(6):644-653.
    [22]Angelini GD, Lloyd C, Bush R,et al.An external,oversized, porous polyester stent reduces vein graft neointima formation, cholesterol concentration,and vascular cell adhesion molecule 1 expression in cholesterol-fed pigs. J Thorac Cardiovasc Surg, 2002;124(5):950-956.
    [23]Dashwood MR,Angelini GD,Wan S,et al.Does external stenting reduce procine vein-graft occlusion via an action on vascular nerves? J Card Surg, 2002;17(6):556-560.
    [24]Jeremy JY, Bulbulia R, Johnson JL, et al. A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening. J Thorac Cardiovasc Surg,2004;127(6):1766-1772.
    [25]Vijayan V, Smith FC, Angelini GD, et al. External supports and the prevention of neointima formation in vein grafts. Eur J Vasc Endovasc Surg,2002;24(1):13-22.
    [26]Stooker W, Niessen HW, Wildevuur WR, et al. Perivenous application of fibrin glue reduces early injury to the human saphenous vein graft wall in an ex vivo model. Eur J Cardiothorac Surg,2002;21(2):212-217.
    [27]Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol,2006;84(2):115-124.
    [28]Bretschneider E, Braun M, Fischer A, et al. Factor Xa acts as a PDGF-independent mitogen in human vascular smooth muscle cells. Thromb Haemost,2000;84(3):499-505.
    [29]Huynh TT, Davies MG, Thompson MA, et al. Local treatment with recombinant tissue factor pathway inhibitor reduces the development of intimal hyperplasia in experimental vein grafts. J Vasc Surg,2001;33(2):400-407.
    [30]Torsney E, Mayr U, Zou Y,et al. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection.Circ Res,2004;94(11):1466-1473.
    [31]Goldman S, Copeland J, Moritz T,et al. Long-term graft patency (3 years) after coronary artery surgery:Effects of aspirin:results of a VA Cooperative study. Circulation,1994;89(3):1138-1143.
    [32]Kim AY, Walinsky PL, Kolodgie FD, et al. Early loss of thrombomodulin expression impairs vein graft thromboresistance:implications for vein graft failure. Circ Res,2002;90(2):205-212.
    [33]Amabile PG, Wang DS, Kao EY,et al. Directed migration of smooth muscle cells to engineer plaque-resistant vein grafts. J Endovasc Ther,2005; 12(6):667-675.
    [34]Cao R, Brakenhielm E, Pawliuk R, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med,2003;9(5):604-640.
    [35]Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Intern Med,2002;136(1):54-71.
    [36]Hwang KC, Lee KH, Jang Y. Inhibition of MEK1,2/ERK mitogenic pathway by estrogen with antiproliferative properties in rat aortic smooth muscle cells.J Steroid Biochem Mol Biol,2002;80(1):85-90.
    [37]Li G.Chen SJ, Oparil S, et al. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation,2000;101(12):1362-1365.
    [38]Deiner C, Loddenkemper C, Rauch U, et al. Mechanisms of late lumen loss after antiproliferative percutaneous coronary intervention using beta-irradiation in a porcinemodel of restenosis. Cardiovasc Revasc Med,2007;8(2):94-98.
    [39]Shi Y,O'Brien JE,Fard A,et al. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation,1996;94(7):1655-1664.
    [40]Kallenbach K, Salcher R,Heim A,et al. Inhibition of smoothmuscle cell migration and neointima formation in vein grafts by overexpression of matrix metalloproteinase-3. J Vasc Surg,2009;49(3):750-758.
    [41]曲乐丰,王玉琦.血管内膜增生研究进展[J].中华实验外科杂志,2002;19:191-192.
    [42]Sartore S,Chiavegato A,Faggin E,et al.Contribution of adventitial fibroblasts to neointima formation and vascular remodeling:from innocent bystander to active participant. Circ Res,2001;89(12):1111-1121.
    [43]Stenmark KR,Davie N,Frid M et al. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda),2006;21:134-145.
    [44]Shi Y,O'Brien JE Jr,Fard A,et al. Transforming growth factor-beta 1 expression and myofibroblast formation during arterial repair. Arterioscler Thromb Vasc Biol, 1996;16(10):1298-1305.
    [45]Rey FE, Pagano PJ. The reactive adventitia:fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol,2002;22(12):1962-1971.
    [46]Francis SE,Hunter S,Holt CM,et al.Release of platelet-derived growth factor activity from pig venous arterial grafts. J Thorac Cardiovasc Surg, 1994;108(3):540-548.
    [47]Boehm M,Nabel EGCell cycle and cell migrationrnew pieces to the puzzle. Circulation,2001;103(24):2879-2881.
    [48]Gerthoffer, WT. Mechanisms of vascular smooth muscle cell migration. Circ Res, 2007;100(5):607-621.
    [49]Louis H, Lacolley P, Kakou A, et al. Early activation of internal medial smooth muscle cells in the rabbit aorta after mechanical injury:relationship with intimal thickening and pharmacological applications. Clin Exp Pharmacol Physiol, 2006;33(1-2):131-138.
    [50]Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004;84(3):767-801.
    [51]Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J,2007; 15(3):100-108.
    [52]Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg,2007;45(Suppl A):A25-A32.
    [53]Charles R, Sandirasegarane L, Yun J, et al. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ Res, 2000;87(4):282-288.
    [54]Wang Z, Castresana MR, Newman WH. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun,2001,285(3):669-674.
    [55]Blindt R,Vogt F,Lamby D, et al. Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J Vasc Res, 2002;39(4):340-352.
    [56]Kuzuya M, Kanda S, Sasaki T, et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation,2003;108(11):1375-1381.
    [57]Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res, 2002;91(9):845-851.
    [58]Ni J, Waldman A, Khachigian LM. c-Jun regulates shear-and injury inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem, 2010;285(6):4038-4048.
    [59]Eefting D, de Vries MR, Grimbergen JM, et al. in vivo suppression of vein graft disease by nonviral, electroporation-mediated, gene transfer of tissue inhibitor of metalloproteinase-l linked to the amino terminal fragment of urokinase(TIMP-1.ATF),a cell-surface directed matrix metalloproteinase inhibitor. J Vasc Surg,2010; 51(2):429-437.
    [60]Thomas AC, Newby AC. Effect of matrix metalloproteinase-9 knockout on vein graft remodelling in mice. J Vasc Res,2010;47(4):299-308.
    [61]Hu Y, Baker AH, Zou Y, et al. Local gene transfer of tissue inhibitor of metalloproteinase-2 influences vein graft remodeling in a mouse model. Arterioscler Thromb Vasc Biol,2001;21(8):1275-1280.
    [62]Kallenbach K, Salcher R, Heim A, et al. Inhibition of smooth muscle cell migration and neointima formation in vein grafts by overexpression of matrix metalloproteinase-3. J Vasc Surg,2009;49(3):750-758.
    [63]余咏潮,赵学维,徐志飞,等.血管内皮生长因子在血管外支架预防移植静脉再狭窄中的作用[J].第二军医大学学报,2009;30(5):509-512.
    [64]Luo Z, Asahara T, Tsurumi Y, et al. Reduction of vein graft intimal hyperplasia and preservation of endothelium-dependent relaxation by topical vascular endothelial growth factor. J Vasc Surg,1998;27(1):167-173.
    [65]Lahtinen M, Blomberg P, Baliulis G, et al. In vivo h-VEGF165 gene transfer improves early endothelialisation and patency in synthetic vascular grafts. Eur J Cardiothorac Surg,2007;31(3):383-390.
    [66]Mayr U, Zou Y, Zhang Z, et al. Accelerated arteriosclerosis of vein grafts in inducible NO synthase (-/-) mice is related to decreased endothelial progenitor cell repair. Circ Res,2006; 98(3):412-420.
    [67]Heydarkhan-Hagvall S, Helenius G, Johansson BR, et al. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J Cell Biochem,2003; 89(6):1250-1259.
    [68]Jia G, Mitra AK, Gangahar DM, et al. Regulation of cell cycle entry by PTEN in smooth muscle cell proliferation of human coronary artery bypass conduits. J Cell Mol Med,2009; 13(3):547-554.
    [69]Mitra AK, Jia G, Gangahar DM, et al. Temporal PTEN inactivation causes proliferation of saphenous vein smooth muscle cells of human CABG conduits. J Cell Mol Med,2009;13(1):177-187.
    [70]Pasche B. Role of transforming growth factor beta in cancer. J Cell Physiol, 2001;186(2):153-168.
    [71]杜静.转化生长因子p的结构,受体及作用方式[J].国外医学免疫学分册,1997;1:22-25.
    [72]Bassiouny HS, Song RH, Hong XF, et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation,1998;98(2):157-f63.
    [73]Li C, Cantor WJ, Nili N, et al. Arterial repair after stenting and the effects of GM6001, a matrix metalloproteinase inhibitor. J Am Coll Cardiol, 2002,39(11):1852-1858.
    [74]Wolff RA, Malinowski RL, Heaton NS, et al. Transforming growth factor-betal antisense treatment of rat vein grafts reduces the accumulation of collagen and increases the accumulation of h-caldesmon.J Vasc Surg,2006;43(5):1028-1036.
    [75]Ranjzad P, Salem HK, Kingston PA. Adenovirus-mediated gene transfer of fibromodulin inhibits neointimal hyperplasia in an organ culture model of human saphenous vein graft disease. Gene Ther,2009; 16(19):1154-1162.
    [76]Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol,2001,2(3):3005.
    [77]Fox JC, Shanley JR. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem,1996, 271(21):12578-12584.
    [78]Celletti FL,Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med,2001,7(4):425-429.
    [79]Yamashita A, Hanna AK, Hirata S, et al. Antisense basic fibroblast growth factor alters the time course of mitogen-activated protein kinase in arterialized vein graft remodeling. J Vase Surg,2003;37(4):866-873.
    [80]Sterpetti AV, Cucina A, Lepidi S, et al. Progression and regression of myointimal hyperplasia in experimental vein grafts depends on platelet-derived growth factor and basic fibroblastic growth factor production. J Vase Surg,1996;23(4):568-575.
    [81]Passerini AG. Milsted A, Rittgers SE. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells.J Vase Surg,2003;37(l):182-190.
    [82]Best PJ, Hasdai D, Sangiorgi G, et al. Apoptosis. Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vase Biol,1999; 19(1):14-22.
    [83]Fox JC, Shanley JR. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem, 1996;271(21):12578-12584.
    [84]唐小龙,江振友,王华东,等.LPS促进HUVECs表达纤溶酶原激活物抑制物1[J].中国病理生理杂志,2006;22(4):687-691.
    [85]Ji J, Si L, Fang W, et al. Interferon-gamma inhibits in situ expression of PDGF-beta mRNA by smooth muscle cells in injured rabbit arteries after transluminal balloon angioplasty. Chin Med J(Engl),2001;114(2):139-142.
    [85]Huang B, Dreyer T, Heidt M, et al. Insulin and local growth factor PDGF induce intimal hyperplasia in bypass graft culture models of saphenous vein and internal mammary artery. Eur J Cardiothorac Surg,2002;21(6):1002-1008.
    [86]Hu Y, Zou Y, Dietrich H,et al. Inhibition of neointima hyperplasia of mouse vein grafts by locally applied suramin. Circulation,1999; 100(8):861-868.
    [87]Kimura S, Egashira K, Nakano K, et al. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation,2008;118(14Suppl):S65-70.
    [88]Shimazaki N, Yazaki T, Kubota T, et al. DNA polymerase lambda directly binds to proliferating cell nuclear antigen through its confined C-terminal region. Genes Cells,2005; 10(7):705-715.
    [89]于维东,胡新华,张志深,等.RNA干扰沉默蛋白激酶B基因表达对移植静脉内膜增生的影响[J].中国普通外科杂志,2008;17,(1):57-60.
    [90]Forte A, Galderisi U, De Feo M, et al. c-Myc antisense oligonucleotides preserve smooth muscle differentiation and reduce negative remodelling following rat carotid arteriotomy. J Vase Res,2005;42(3):214-225.
    [91]Huehns TY, Krausz E, Mrochen S, et al. Neointimal growth can be influenced by local adventitial gene manipulation via a needle injection catheter. Atherosclerosis, 1999;144(1):135-150.
    [92]刘喜才,宋清斌,张灿刚,等.ET-1, cmy-c在自体静脉移植血管内膜增殖表达意义[J].中国普通外科杂志,2005;14(7):542-543.
    [93]季军,计乐群,令文萍,等.转染PDGF-B mRNA的反义寡肽核酸抑制狗冠状动脉搭桥术吻合口再狭窄[J].中国医学工程,2007;15(10):796-798.
    [94]Conti VR, Hunter GC. Gene therapy and vein graft patency in coronary artery bypass graft surgery. JAMA,2005;294(19):2495-2497.
    [95]陈华,景在平,包俊敏,等.bcl-2基因短发夹RNA对自体移植静脉内膜增生的影响[J].中华实验外科杂志,2006;23(7):810-811.
    [96]Bior AD, Pixley RA, Colman RW. Domain 5 of kininogen inhibits proliferation of human colon cancer cell line (HCT-116) by interfering with G1/S in the cell cycle. J Thromb Haemost,2007;5(2):403-411.
    [97]Alexander JH, Hafley G, Harrington RA, et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery:PREVENT IV:a randomized controlled trial. JAMA,2005;294(19):2446-2454.
    [98]Mann MJ, Conte MS. Transcription factor decoys for the prevention of vein bypass graft failure. Am J Cardiovasc Drugs,2003;3(2):79-85.
    [99]Kudo FA, Muto A, Maloney SP, Pimiento JM, Bergaya S, Fitzgerald TN, et al. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol,2007;27:1562-1571.
    [100]Yamamoto K, Onoda K, Sawada Y, et al. Locally applied cilostazol suppresses neointimal hyperplasia and medial thickening in a vein graft model. Ann Thorac Cardiovasc Surg, 2007;13(5):322-330.
    [101]Schachner T, Oberhuber A, Zou Y, et al. Rapamycin treatment is associated with an increased apoptosis rate in experimental vein grafts. Eur J Cardiothorac Surg,2005; 27(2):302-306.
    [102]Haraguchi T, Okada K, Tabata Y,et al. Controlled release of basic fibroblast growth factor from gelatin hydrogel sheet improves structural and physiological properties of vein graft in rat. Arterioscler Thromb Vasc Biol,2007;27(3):548-555.
    [103]Banno H, Takei Y, Muramatsu T, et al. Controlled release of small interfering RNA targeting midkine attenuates intimal hyperplasia in vein grafts. J Vasc Surg, 2006;44(3):633-641.
    [104]张鲁锋,肖锋,李简,等.局部缓释雷帕霉素抑制静脉移植血管内膜增生[J].中华医学杂志,2006;86(24):1706-1709.
    [105]刘继红,何学志,谷天祥,等.局部应用紫杉醇预防兔移植静脉再狭窄[J].中国胸心血管外科临床杂志,2008;15(2):126-129.
    [106]Amabile PG, Wang DS, Kao EY, et al. Directed migration of smooth muscle cells to engineer plaque-resistant vein grafts. J Endovasc Ther,2005;12(6):667-675.
    [107]Kimura S, Egashira K, Nakano K, et al. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle exvivo suppresses vein graft neointima formation. Circulation,2008;118(Suppl):565-570.
    [108]Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res,2000;60(9):2520-2526.
    [109]McCawley LJ, Matrisian LM. Matrix metalloproteinases:they're not just for matrix anymore. CurrOpin Cell Biol,2001;13(5):534-540.
    [110]Zhang X, Hudson BQ Sarras MP Jr. Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev Biol, 1994;164(1):10-23.
    [111]Tsilibary EC, Reger LA, Vogel AM, et al. Identification of a multifunctional, cell-binding peptide sequence from the al(NC1) of type IV collagen. J Cell Biol, 1990,111(4):1583-1591.
    [112]Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci,2002;115(pt22):4201-4214.
    [113]Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer,2002;2(3):161-174.
    [114]Itoh Y, Ito N, Nagase H, et al. The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. J Biol Chem,2008;283(19):13053-13062.
    [115]Boosani CS, Nalabothula N, Sheibani N, et al. Inhibitory effects of arresten on bFGF-induced proliferation, migration, and matrix metalloproteinase-2 activation in mouse retinal endothelial cells. Curr Eye Res,2010;35(1):45-55.
    [116]Sundaramoorthy M, Meiyappan M, Todd P, et al.Crystal structure of NCI domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem,2002;277(34):31142-31153.
    [117]Sudhakar A, Nyberg P, Keshamouni VG, et al. Human alphal type IV collagen NCI domain exhibits distinct antiangiogenic activity mediated by alphal betal integrin. J Clin Invest,2005;115(10):2801-2810.
    [118]Long MY, Li HH, Xu JY, et al. Inhibitory effects of transfection of arresten gene on liver metastasis from colorectal cancer in nude mice. Ai Zheng, 2008;27(10):1039-1043.
    [119]Nyberg P, Xie L, Sugimoto H, et al. Characterization of the anti-angiogenic properties of arresten, an alphal betal integrin-dependent collagen-derived tumor suppressor. Exp Cell Res,2008;314(18):3292-3305.
    [120]郑启昌,宋自芳,郑幼伟,等.血管生成抑制因子Arresten基因的分子克隆与序列测定[J].中华实验外科杂志,2002;19(1):46-47.
    [121]尚丹,郑启昌,宋自芳,等.人Arresten基因的真核表达及其对血管平滑肌细胞增殖和迁移的影响[J].中国病理生理杂志,2007;23(10):1887-1890.
    [122]尚丹,宋自芳,夏印,等.人arresten基因转染对自体移植静脉内膜增生的影响[J].中国普通外科杂志,2008;17(2):153-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700