用户名: 密码: 验证码:
抗WSSV口服VP28亚单位疫苗研究及促克氏螯虾生长口服DNA药物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白斑综合症病毒(white spot syndrome virus,WSSV)是危害水产养殖业的高致病病原体。1992年白斑综合症病毒首次在中国台湾爆发,而后分别在日本、东南亚、北美等国家和地区爆发,造成虾大面积死亡,对水产养殖业造成了巨大的经济损失。各国研究学者不断探索防治WSSV感染的方法和措施,但是到目前为止还没有实际可行的防治方法问世。
     Tat蛋白是HIV-1的转录激活因子,研究发现该蛋白结构域中包含一个11个氨基酸序列的短肽,该短肽能够介导外源物质进入多种细胞或组织中,将其称为蛋白转导域TAT。蛋白转导域TAT作为转运载体已在哺乳动物细胞、昆虫细胞、小鼠中进行了广泛研究,但目前还未见其用于甲壳类动物——克氏螯虾。
     在本研究中构建重组质粒pET-28a-VP28; pET-28a-TAT-VP28;pET-28a-VP28-EGFP; pET-28a-TAT-VP28-EGFP,将上述质粒转化到基因工程表达菌株E.coli BL21(DE3)中,诱导表达目的蛋白。将纯化后的VP28-EGFP与TAT-VP28-EGFP融合蛋白喂食克氏螯虾,采用流式细胞术的方法证实,蛋白转导域TAT能够携带与其融合的外源蛋白穿过克氏鳌虾肠壁组织到达血淋巴中;通过荧光免疫组化方法证实TAT-VP28-EGFP融合蛋白存在于克氏螯虾中肠,肌肉和心脏等组织中。
     克氏螯虾分别免疫VP28,TAT-VP28蛋白质亚单位疫苗后,测定了血淋巴中酚氧化酶(PO)和超氧化物歧化酶(SOD)酶活力变化。实验结果表明克氏螯虾免疫TAT-VP28蛋白2小时后,血淋巴中的PO及SOD酶酶活均有显著提高;而克氏螯虾免疫VP28蛋白后的血淋巴中PO酶酶活没有变化,24小时后SOD酶酶活有一定提高。这一结果再次证实了TAT-VP28进入克氏螯虾血淋巴后,可以引发克氏螯虾体内的免疫反应。
     为了研究蛋白质亚单位疫苗的免疫效果,将VP28,TAT-VP28蛋白包被饲料后,以口服的方式、100μg/只的日剂量免疫克氏螯虾。分别连续免疫7天和14天后,进行病毒攻击实验。实验结果表明与阳性对照组在10天内达到90%以上的死亡率相比,TAT-VP28,VP28组其死亡率分别为43.3%、36.7%;60%、50.0%。为了研究蛋白质亚单位疫苗的免疫时效性。克氏螯虾连续免疫VP28,TAT-VP28蛋白14天,在免疫后的第3和7天分别进行病毒攻击进行病毒攻击实验。实验结果表明与阳性对照组在10天内达到90%以上的死亡率相比,TAT-VP28,VP28组其死亡率分别为43.3%、53.3%%;60%、66.7%。
     本研究首次报道和证实以克氏螯虾作为动物模型,VP28蛋白在蛋白转导域TAT介导下能够穿过虾肠壁组织到达血淋巴中。使亚单位疫苗能不通过肌肉注射的方式直接进入血淋巴中,通过血淋巴在虾体内的循环,使其到达到不同的组织中,同时也增强了虾血淋巴中酚氧化酶和超氧化物歧化酶酶活,从而增强克氏螯虾的免疫防御体系。该研究为预防和控制白斑综合症病毒提供了一种实际可行的新思路。
     鱼类生长激素(fish growth hormone, fGH)是由鱼类脑垂体合成并分泌的一种蛋白多肽。鱼类生长激素参与蛋白质合成和脂类代谢等生理功能,能够提高鱼类的生长速率,在水产养殖业中具有着重要的研究意义和应用价值。2008年研究学者将罗非鱼生长激素基因构建在真核表达载体中,通过胚胎电穿孔方法,将上述质粒转入到南方滨对虾胚胎受精卵中,与对照组比较幼虾的平均体重有32%的增加。
     减毒的鼠伤寒沙门氏菌作为DNA疫苗转运载体目前已经在鼠、雏鸡、鱼和克氏螯虾等体内得到广泛研究和应用,本研究首次将对虾抗菌肽Penaeidin-2信号肽与鲤鱼生长激素基因融合,将其构建到真核表达载体pcDNA3.1-中。用脂质体法将该质粒转染COS-7细胞,用RT-PCR和Western blot的方法证实SGH在人巨细胞病毒(CMV)启动子的控制下在COS-7细胞中得到了高效表达。克氏螯虾幼虾分别注射50μg pcDNA3.1-和pcDNA3.1-SGH后的第3,7,14和21天,实时荧光定量PCR方法检测克氏螯虾血淋巴中Astacidin; Chymotryspin和Trypsin三种酶mRNA表达水平的变化。与对照组pcDNA3.1-比较,pcDNA3.1-SGH组血淋巴中Astacidin; Chymotryspin和Trypsin三种酶的转录水平显著上升。分别将50μg pcDNA3.1-, pcDNA3.1-SGH肌肉注射免疫克氏螯虾幼虾后,与对照组比较,在25天内克氏螯虾幼虾平均体重增加了22.2%以上。
     将重组质粒pcDNA3.1-SGH和质粒pcDNA3.1-通过电转的方法转化到减毒鼠伤寒沙门氏菌SV4089中,重组菌分别命名为SV/pcDNA3.1-SGH和SV/pcDNA3.1-。将重组菌SV/pcDNA3.1-SGH和重组菌SV/pcDNA3.1-包被饲料后,以109CFU/只日剂量连续喂食克氏螯虾幼虾十天。为了研究减毒鼠伤寒沙门氏菌SV4089能否有效携带DNA质粒到克氏螯虾幼虾体内,分别在免疫后的第1、3、7、10和14天,分别从克氏螯虾幼虾体内收集血淋巴、游泳足、腮、心脏、肝胰腺和尾肌等不同的组织,提取总RNA,结果在以上组织中检测到了gh的转录。将重组菌SV/pcDNA3.1-SGH和重组菌SV/pcDNA3.1-包被饲料后,以109CFU/只日剂量连续喂食克氏螯虾幼虾十天后,在免疫后的一个月内克氏螯虾幼虾体重增加了21%以上。
     本研究首次报道了生长激素口服DNA疫苗促进克氏螯虾幼虾生长,证实了减毒鼠伤寒沙门氏菌SV4089能够将质粒DNA运送到克氏螯虾幼虾体内。这项研究为促进甲壳类动物——克氏螯虾生长提供了一种新思路。
White spot syndrome virus(WSSV) is a highly pathogenic virus that infectsshrimp and other crustaceans. Since the first report of WSSV in Taiwan in1993, it hasrapidly spread to all the major shrimp farming areas in Japan, Southeast Asia, NorthAmerica and other countries. It resulted in a great loss annually. Researchers try tofind effective strategies to prevent and control WSSV. So far there's been no effectiveproduct or practical measure to deal with WSSV.HIV-1Tat protein is a transcriptional activator. The study found that the proteindomain structure, including11amino acid peptide sequence, the short peptides coulddeliver heterologous proteins across most biomembranes without losing bioactivity.TAT protein transduction domain as a delivery vector in mice, rabbits, mammaliancells, insect cells were studied extensively, but has not been reflected for thecrustaceans-Crayfish.
     In this study we constructed recombinant plasmids and transformed them intoE.coli strain BL21(DE3) to express TAT-VP28, VP28, TAT-VP28-EGFP andVP28-EGFP fusion proteins. Crayfish in experimental groups were individually fedthe same amount of purified proteins (TAT-VP28-EGFP, VP28-EGFP) via a feedingtube. Immunohistochemistry and flow cytometry methods confirmed that TAT-fusionproteins are able to transduce across shrimp the intestinal wall tissue and go intohemolymph. Strong green-fluorescent signals of EGFP were detected in the inner layer of the mid gut, muscle and heart sections from crayfish fed withrTAT-VP28-EGFP.The purified proteins VP28and TAT-VP28were used to orally immunize C.clarkii.The supernatants of their hemolymph were collected and processed individually toassay the activities of phenoloxidase (PO) and superoxide dismutase (SOD). It wasfound that the rTAT-VP28resulted in the most pronounced increase of PO and SODactivity after2hours immunization. After immunization rVP28, the PO enzymeactivity did not change, SOD activity increase after24hours. This result once againconfirms that TAT-fusion protein are able to transduce across shrimp the intestinalwall tissue and go into hemolymph, the shrimp can cause the immune response.
     To evaluate the potential of the subunit vaccine, vaccination experiment wasconducted after shrimps were fed for7and14days respectively. The pelletscontained a daily dose of100μg rVP28and100μg rTAT-VP28per shrimp. Thechallenge test was conducted with an injection of100μl WSSV at7and14dayspost-last feeding. The results showed that with the positive control group at10daysmore than90%mortality.TAT-VP28, VP28group the mortality was43.3%,36.7%;60%,50.0%. In the vaccination experiments, TAT-VP28, VP28and control groupsafter the14days of vaccination, which were subsequently challenged at3and7dayspost vaccination. The results showed that with the positive control group at10daysmore than90%mortality.TAT-VP28, VP28group the mortality was43.3%,53.3%;60%,66.7%.
     Our study here demonstrates, for the first time, the C. clarkia is as an animal model,we attempted to utilize the Tat-derived peptide as an oral delivery method for subunitvaccine against WSSV in C. clarkia. TAT-fusion proteins are able to transduce acrossshrimp gut and go into hemolymph and other tissues. After immunization, it wasfound that the rTAT-VP28resulted in the most pronounced increase of PO and SODactivity. So it enhanced the immune defense system of shrimp. The study provides anew way to design more practical strategies for prevent and control WSSV.
     Fish growth hormone(fGH)is a polypeptide produced by the pituitary cells ofteleosts, which involved in protein synthesis and lipid metabolism and otherphysiological functions in fish. fGH has been demonstrated to promote growth in fish,it has high economic value in aquaculture areas. Electroporation of Litopenaeusschmitti embryos was used to transfer the plasmid that contains the tilapia growthhormone gene(tiGH), the plasmid was introduced shrimp embryos fertilized eggs, thefollow-up study confirmed that compared with the control group, juvenile shrimpweight increase of32%.
     Live attenuated attenuated Salmonella typhimurium have been used as a deliverysystem for DNA vaccines in vertebrate and invertebrate such as mice, poultry, fishand shrimp. The signal peptide of Penaeidin-2and common carp growth hormonegene fusion construct into the pcDNA3.1-. The plasmid was transferred into COS-7,using RT-PCR and Western blot methods confirmed SGH was highly expression.Crayfish were injected intramuscularly with pcDNA3.1-, pcDNA3.1-SGH, usingreal-time fluorescence quantitative method to detect the levels of transcription ofAstacidin; Chymotryspin and Trypsin in hemolymph. The levels of transcription ofAstacidin; Chymotryspin and Trypsin in hemolymph are increased in pcDNA3.1-SGH group comparing to pcDNA3.1-group. So juvenile crayfish were increased more than22.2%body weigh in25days.
     The plasmid pcDNA3.1-and pcDNA3.1-SGH were transformed to SV4089byelectroporation and the produced recombinant bacteria were named SV/pcDNA3.1-and SV/pcDNA3.1-SGH, respectively. Recombinant bacteria and recombinantSV/pcDNA3.1-SV/pcDNA3.1-SGH coated feed, to109CFU/daily dose ofcontinuous feeding crayfish juveniles ten days. To investigate whether S.Typhimurium strain SV4089could orally deliver the plasmid pcDNA3.1-SGH intocrayfish and how long the recombinant bacteria could exist in the crayfish,hepatopancreas, swimming foot, gills, heart, hepatopancreas and tail muscle werecollected for isolation of the recombinant bacteria SV/pcDNA3.1-SGH at1,3,7,10and14days post oral administration. For RNA extraction, results in the above tissuesdetected gh transcription. Juvenile crayfish were increased more than21%bodyweigh in one month.
     This is the first report of the oral growth hormone oral DNA vaccine, confirming theattenuated Salmonella typhimurium DNA vaccine plasmid to transfer to the crayfishbody. It provides a new way to design more practical strategies for the growth ofjuvenile crayfish.
引文
[1] Inouye K, Miwa S, Oseko N, Makaro H, Kimura T, Momoyama K, et al.Mass mortality ofcultured kuruma shrimp Marsupenaeus japanicus in Japan in1993:electron microscopicevidence of the causative virus [J]. Fish Pathol,1994,9:149–58.
    [2] Wongteerasupaya C., Vickers J.E., Sriurairatana S., Nash G.L.,Akarajamorn A., Boonsaeng V.,Panyim S., Tassanakajon A.,Withyachumnarnkul B.&Flegel T.W. A non-occluded, systemicbaculovirus that occurs in cells of ectodermal and mesodermal origin and causes highmortality in the black tiger prawn Penaeus monodon [J]. Diseases of Aquatic Organisms,1995,21:69–77.
    [3] Durand S., Lightner D.V., Nunan L.M., Redman R.M., Mari J., Bonami J.R. Application ofgene probes as diagnostic tools for white spot baculovirus (WSBV) of penaeid shrimp [J].Diseases of Aquatic Organisms,1996,27:59–66.
    [4] Chang PS., Lo CF.,Wang YC., Kou GH. Identification of white spot syndrome virusassociated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situhybridization [J]. Diseases of Aquatic Organisms,1996,27:131–139.
    [5] Flegel TW., Alday-Sanz V. The crisis in Asian shrimp aquaculture: current status and futureneeds [J]. Journal of Applied Ichthyology,1998,14:269–273.
    [6] Durand S., Lightner D.V., Redman R.M., Bonami J.R. Ultrastructure and morphogenesis ofwhite spot syndrome baculovirus (WSSV)[J]. Dis. Aquat.Organ,1997,29:205–211.
    [7] van Hulten MCW., Witteveldt J., Peters S., Kloosterboer N., Tarchini R., Fiers M. The whitespot syndrome virus DNA genome sequence [J]. Virology,2001,286:7–22.
    [8] Tsai MF., Lo CF., van Hulten., Tzeng HF., Chou CM., Wang CH. Transcriptional analysis ofthe ribonucleotide reductase genes of shrimp white spot syndrome virus [J]. Virology,2000,277:92–99.
    [9] Yang F Huang CJ., He J Huang CJ., Lin X Huang CJ., Li Q Huang CJ., Pan D Huang CJ.,Zhang X Huang CJ., Xu X. Complete genome sequence of the shrimp white spot bacilliformvirus [J]. Journal of Virology,2001,75:11811–11820.
    [10] C M Escobedo-Bonilla Huang CJ., V Alday-Sanz Huang CJ., M Wille1Huang CJ., PSorgeloos. A review on the morphology, molecular characterization, morphogenesis andpathogenesis of white spot syndrome virus [J]. Journal of Fish Diseases,2008,31:1–18.
    [11] van Hulten M.C.W., M B Pensaert., H J Witteveldt J., Peters S., Kloosterboer N., TarchiniR., Fiers M. The white spot syndrome virus DNA genome sequence [J]. Virology,2001,286:7–22.
    [12]Tang X., Wu J., Siravaman J., Hew C.L. Crystal structures of major envelope proteins VP26and VP28from white spot syndrome virus shed lighton their evolutionary relationship [J]. J.Virol,2007,81:6709–6717.
    [13] Van Hulten M.C.W., Witteveldt J., Peters S.,Kloosterboer N., Tarchini R., Fiers M., et al.,The white spot syndrome virus DNA genome sequence[J].Virology,2001,286:7–22.
    [14] Jha RK., Xu ZR., Shen J. The efficacy of recombinant vaccines against white spot syndromevirus in Procambarus clarkia [J]. Immunol.Lett,2006,105:68–76.
    [15] Sritunyalucksana, K., Wannapapho, W., Fang Lo, C., Flegel, T.W. PmRab7is aVP28-binding protein involved in white spot syndrome virus infection in shrimp[J]. J. Virol,2006,80:10734–10742.
    [16] Xu, H., Yan, F., Deng, X., Zou, T., Ma, X., Zhang, X., Qi, Y. The interaction of white spotsyndrome virus envelope protein VP28with shrimp Hsc70is specific and ATPdependent[J].Fish Shellfish Immunol,2009,26:414–421.
    [17] Liu, W.J., Chang, Y.S., Wang, A.H.J., Kou, G.H., Lo, C.F. White spot syndrome virusannexes a shrimp STAT To enhance expression of the immediate-early gene [J]. J. Virol,2007,81:1461–1471.
    [18] Van Hulten M.C.W., Witteveldt J., Snippe M.,Vlak J.M. White spot syndrome virus envelopeprotein VP28is involved in the systemic infection of shrimp[J].Virology,2001,285:228–233.
    [19] Zhang X.B., Huang C.H., Xu X., Hew C.L. Transcription and identification of an envelopeprotein gene (p22) from shrimp white spot syndrome virus [J]. J. Gen. Virol,2002,83:471–477.
    [20] Xixian Xie., Feng Yang. Interaction of white spot syndrome virus VP26protein with actin [J].J. Virol,2005,336:93-99.
    [21] Witteveldt J., Vermeeseh AM., Langenhof M. Nucleocapsid protein VP15is the basic DNAbinding Protein of white spot syndrome virus of shrimp [J]. Arch.Virol,2005,150:1121–1133.
    [22] Zhang XB., Xu X., Hew CL. The Structure and function of a gene encoding a basic peptidefrom Prawn white spot syndrome virus [J]. Virus Res,2001,79:137–144.
    [23] Durand S., Lightner D.V., Redman R.M., Bonami J.R. Ultrastructure and morphogenesis ofwhite spot syndrome baculovirus [J]. Diseases of Aquatic Organisms,1996,29:205–211.
    [24] Lu Y., Tapay L.M., Loh P.C., Gose R.B., Brock J.A. The pathogenicity of a baculo-like virusisolated from diseased penaeid shrimp obtained from China for cultured penaeid species inHawaii [J]. Aquaculture International,1997,5:277–282.
    [25] Chou H.Y., Huang C.Y., Lo C.F., Kou G.H. Studies on transmission of white spot syndromeassociated baculovirus (WSBV) in Penaeus monodon and P. japonicus via waterbornecontact and oral ingestion [J]. Aquaculture,1998,164:263–276.
    [26] Wongteerasupaya C., Wongwisansri S., Boonsaeng V., Panyim S., Pratanpipat P., Nash G.L.,Flegel T.W. DNA fragment of Penaeus monodon baculovirus PmNOBII gives positive in situhybridization with white-spot viral infections in six penaeid shrimp species [J]. Aquaculture,1996,143:23–32.
    [27] Lightner D.V., Hasson K.W., White B.L., Redman R.M. Experimental infection of westernhemisphere penaeid shrimp with Asian white spot syndrome virus and Asian yellow headvirus [J]. Journal of Aquatic Animal Health,1998,10:271–281.
    [28]何建国,周化民,姚伯等.白斑综合症杆状病毒的感染途径和宿主种类.中山大学学报,1999,38(2):65-69.
    [29] Corsin F., Turnbull JF., Hao NV., Mohan CV., Phi TT., Phuoc LH. Risk factors associatedwith white spot syndrome virus infection in a Vietnamese rice-shrimp farming system [J].Dis. Aquat. Org,2001,47:1-12.
    [30]黄捷,于佳,宋晓玲等.1994年浙江省对虾暴发性流行病病原及传播途径的初步调查.海洋水产研究,1995,16(1):91-98.
    [31]宋晓玲,黄健,王崇明,于佳,陈碧鹃,杨丛海.皮下及造血组织坏死杆状病毒对中国对虾亲虾的人工感染.水产学报,1996,20(4):374-378。
    [32]包振民,胡景杰,姜明等.杆状病毒感染越冬亲虾(Penaeus chenesis)的研究一越冬亲虾感染及其垂直传播的可能性.青岛海洋大学学报1997;27(3):347-351.
    [33] Lo CF., Ho CH., Chen CH. Detection of tissue tropism of white spot syndrome baculovirus(WSSV) in peneid brooders of Penaeus monodon with a special emphasis on reproductiveorgans [J]. Diseases of Aquatic Organisms,1997,30:53-72。
    [34]Chou H.Y., et al. Pathogenicity of a baculovirus infection causing white spot syndrome incultured penaeid shrimp in Taiwan [J].Diseases of Aquatic Organisms,1995,23:165–173.
    [35]Durand S., et al. Application of gene probes as diagnostic tools for white spotbaculovirus(WSBV)of penaeid shrimp[J]. Diseases of Aquatic Organisms1996,27:59–66.
    [36] Flegel T.W., et al. Special topic review: major viral diseases of the black tiger prawn(Penaeusmonodon)in Thailand [J].World Journal of Microbiology&Biotechnology,1997,13:433–442.
    [37]Kasornchandra J., et al. Detection of white spot syndrome in cultured penaeid shrimp in Asia:microscopic observation and polymerase chain reaction [J].Aquaculture,1998,164:243–251.
    [38]Wu J.L., et al. Effects of shrimp density on transmission of penaeid acute viremia in Penaeusjaponicus by cannibalism and the waterborne route [J]. Diseases of Aquatic Organisms,2001,47,129–135.
    [39]Wang Q., Poulos B.T., Lightner D.V. Protein analysis of geographic isolates of shrimp whitespot syndrome virus [J]. Archives of Virology,2000,145:263–274.
    [40]战文斌,王远红,铃木信一,俞开康,福田颖穗.白斑症病毒在日本对虾体内的感染增殖.水产学报,1999,23(3):278-282.
    [41]Sahtout A.H., Hassan M.D., Shariff M. DNA fragmentation, an indicator of apoptosis, inculturedblack tiger shrimp Penaeus monodon infected withwhite spot syndrome virus (WSSV)[J]. Dis. Aquat.Organ,2001,44:155–159.
    [42]Wongprasert K., Sangsuriya P., Phongdara A., Senapin S. Cloning and characterization of acaspasegene from black tiger shrimp (Penaeus monodon)-infected with white spot syndromevirus (WSSV)[J]. J. Biotechnol,2007,131:9–19.
    [43]Wang Z., Hu L., Yi G., Xu H., Qi Y., Yao L. ORF390of white spot syndrome virus genomeisidentified as a novel anti-apoptosis gene[J]. Biochem. Biophys. Res,2004,325:899–907.
    [44]Piera S. Sun., et al. Nucleotide sequences of shrimp beta-actin and actin promoters and theiruse in gentic transformation technology, U.S. Patent,60/336,603,2001
    [45] Takahashi Y., Kondo M., Itami T., Honda T., Inagawa H., Nishizawa T. Enhancementof disease resistance against penaeid acute viraemia and induction of virus-inactivatingactivity in haemolymph of kuruma shrimp,Penaeus japonicus, by oral administration ofPantoea agglomerans lipopolysaccharide (LPS)[J]. Fish Shellfish Immunol,2000,10:555–558.
    [46] Chang C.F., Su M.S., Chen H.Y. Effect of dietary beta-1,3glucan on resistance to white spotsyndrome virus (WSSV) in postlarval and juvenile Penaeus monodon [J]. Dis Aquat Organ,1999,36:163-168.
    [47] Itami T., Asano M., Tokushige K. Enhancement of disease resistance of kuruma shrimp,Penaeus japonicus, after oral administration of peptidoglycan derived from Bifidobacteriumthermophilium [J]. Aquaculture,1998,164:277-288.
    [48] Lei K., Li F., Zhang M., Yang H., Luo T., Xu X. Difference between hemocyanin subunitsfrom shrimpPenaeus japonicus in anti-WSSV defense[J]. Dev.Comp. Immunol,2008,32:808–813.
    [49] van Hulten, M.C.W., Witteveldt, J., Snippe, M., Vlak, J.M.. White spot syndrome virusenvelope protein VP28is involved in the systemic infection of shrimp[J]. Virology,2001,285:228–233.
    [50] Li H.X., Meng X.L., Xu J.P., Lu W., Wang J. Protection of crayfish, Cambarus clarkii, fromwhite spot syndrome virus by polyclonal antibodies against a viral envelope fusion protein[J].Journal of Fish Diseases,2005,28:285–91.
    [51] Westenberg, M., Heinhuis, B., Zuidema, D., Vlak, J.M. siRNA injection inducessequence-independent protection in Penaeus monodon against white spot syndrome virus[J].Virus Res,2009,114:133–139.
    [52] Jianyang Xu., Fang Han., Xiaobo Zhang. Silencing shrimp white spot syndrome virus(WSSV) genes by siRNA [J]. Antiviral Research,2009,73:26–131.
    [53] Namikoshi A.,Wu J.L., Yamashita T., Nishizawa T., Nishioka T., Armoto M. Vaccinationtrials with Penaeus japonicus to induce resistance to white spot syndrome virus [J].Aquaculture,2004,229:25–35.
    [54] Fei Zhu., Huahua Du., Zhi-Guo Miao., Hai-Zhi Quan., Zi-Rong Xu. Protection ofProcambarus clarkii against white spot syndrome virus using inactivated WSSV [J]. FishShellfish Immunology,2009,26:685–690.
    [55] Jeroen Witteveldt., Just M. Vlak., Marielle C.W., van Hulten. Protection of Penaeus monodonagainst white spot syndrome virus using a WSSV subunit vaccine [J]. Fish ShellfishImmunology,2004,16:571-579.
    [56] S. Rajesh Kumar., C. Venkatesan., M. Sarathi., V. Sarathbabu., John Thomas., K. AnverBasha., A.S. Sahul Hameed. Oral delivery of DNA construct using chitosan nanoparticles toprotect the shrimp from white spot syndrome virus (WSSV)[J]. Fish Shellfish Immunology,2009,26:6429–437.
    [57] Huahua Du., Zirong Xu., Xiaofeng Wu., Weifen Li., Wei Dai. Increased resistance to whitespot syndrome virus in Procambarus clarkii by injection of envelope protein VP28expressedusing recombinant baculovirus [J]. Aquaculture,2006,260:39-43.
    [58] Zirong Xu., Huahua Du., Yaxiang Xu., Jianyi Sun., Jian Shen. Crayfish Procambarus clarkiiprotected against white spot syndrome virus by oral administration of viral proteins expressedin silkworms [J]. Aquaculture,2006,253:179–183.
    [59] Rajeev Kumar Jha., Zi Rong Xu., Shi Juan Bai., Jian Yu Sun., Wei Fen Li., Jian Shen.Protection of Procambarus clarkii against white spot syndrome virus using recombinant oralvaccine expressed in Pichia pastoris [J]. Fish Shellfish Immunology,2007,22:295-307.
    [60] S. Rajesh Kumar., V.P. Ishaq Ahamed., M. Sarathi., A. Nazeer Basha., A.S. Sahul Hameed.Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protectshrimp against white spot syndrome virus (WSSV)[J]. Fish Shellfish Immunol,2008,24:467-478.
    [61] Namikoshi A., Wu JL., Yamashita T., Nishizawa T, Nishioka T., Arimoto M. Vaccinationtrials with Penaeus japonicus to induce resistance to white spotsyndrome virus [J].Aquaculture,2004;229:25–35.
    [62] Jian-Fang Ning., Wei Zhu., Jin-Ping Xu., Cong-Yi Zheng., Xiao-Lin Meng.Oral delivery ofDNA vaccine encoding VP28against white spot syndrome virus in crayfish by attenuatedSalmonella typhimurium[J].Vaccine,2009,27:1127–1135.
    [63] Walker, P.J., Cowley, J.A. Viral genetic variation: implications for disease diagnosis anddetection of shrimp pathogens [J]. FAO Fisheries Technical Paper,2000,395:54–59.
    [64]Notemi T., Okayama H., Masubuchi H. Loop—mediated isothermal amplification of DNA [J].Nucleic Acids Pies,2000,28(12):E63.
    [65] Kono T., Savan R., Sakai M., Itami T. Detection of white spot syndrome virus in shrimp byloop-mediated isothermal amplification [J]. J Virol Methods,2004,115:59–65.
    [66] Mekata, T., Sudhakaran, R., Kono, T., Supamattaya, K., Linh, N.T., Sakai, M., Itami, T.Real-time quantitative loop-mediated isothermal amplification as a simple method fordetecting white spot syndrome virus [J]. Lett. Appl. Microbiol,2009,48:25–32.
    [67] Jaroenram, W., Kiatpathomchai, W., Flegel, T.W. Rapid and sensitive detection of white spotsyndrome virus by loop-mediated isothermal amplification combined with a lateral flowdipstick [J]. Mol. Cell. Probes,2009,23:65–70.
    [68] Nadala, E.C.B., Loh, P.C. Dot blot enzyme immunoassays for the detection of white spotvirus and yellow-head virus of penaeid shrimp [J]. J.Virol. Methods,2000,84:175–179.
    [69] You, Z., Nadala Jr., Yang, J., van Hulten, M.C.W., Loh, P.C. Production of polyclonalantiserum specific to the27.5kDa envelope protein of white spot syndrome virus[J]. Dis.Aquat. Org,2002,51:71–80.
    [70] Nunan LM., Lightner DV. Development of a none-radio active gene probe by PCR fordetection of white spot syndrome virus (WSSV)[J]. J. Virol. Methods1997,63:193-201.
    [71] Wang CS., Tsai YJ., Chen SN. Dectection of white spot disease virus (WSDV) infection inshrimp using in situ hybridization [J]. Journal Invertebrate pathology,1998,72(2):170-173.
    [72]Frankel AD., Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus[J]. Cell,1988,55(6):1189-1193
    [73]Elliott G., O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structuralprotein [J]. Cell,1997,88:223-233.
    [74] Sosnowski BA., Gonzalez AM., Chandler LA. Targeting DNA to cells with basic fibroblastgrowth factor(FGF2)[J]. J Biol Chem,1996,271:33647-33653
    [75] Oess S., Hildt E. Novel cell permeable motif derived from the PreS2-domain of hepatitis-Bvirus surface antigens [J]. Gene Ther,2000,7:750-758
    [76] Wallace DC. Mitochondrial diseases in man and mouse[J]. Science,1999,283:1482-1488
    [77]Noguchi H., Matsumoto S. Protein transduction technology:a novel therapeuticperspective[J].Acta Med Okayama,2006,60(1):1-11.
    [78]Hikaru N,et al.Nature Med,1998,4:1449-1552.
    [79]Schwarze SR., Ho A., Vocero-Akbani A.In vivo protein transduction:delivery of a biologicallyactive protein into the mouse[J].Science,1999,285(5433):1569-1572.
    [80]Nagahara H., Vocero-Akbani AM., Snyder EL. Transduction of full-length TAT fusionproteins into mammalian cells TAT-p27Kip1induce cell migration [J]. Nature Med,1998,4:1449-1452.
    [81]李光友.中国对虾疾病与免疫机制.1995,海洋科学(4).
    [82]Sugumaran, M; Nellaiappan, K. Lysolecithin-a potent activator of prophenoloxidase fromthe hemolymph of the lobster, Homarus americanus [J]. Biochem. Biophys. Res. Commun,1991,176:1371-1376
    【1】 Chen E.Y., Liao Y.C., Smith D.H. The human growth honmone locus: nucleotidesequence biology and evolution [J]. Genomics,1989,4:479-497.
    【2】 Marker JR, et al. Influence of bovine growth hormone on growth rate, appetite and foodconversion of yearling coho salmon(Oncrhynchus kisuch)fed two diets of differentcomposition[J]. Canadian Journal of Zoology,1977,55:74-79.
    【3】 Fryer, J.N, et al. A radioreceptor assay for purified teleost growth hormone [J]. Generaland Comparative Endocrinology,1979,39:123-130.
    【4】 Sun, L.Z, et al. Purtification and properties of teleost growth hormone [J]. General andComparative Endocrinology,1992,2:237-248.
    【5】 Sheridan M.A. et al. Effects of thyroxin, cortisol, growth hormone, and prolactin on lipidmetabolism of coho salmon, Oncorhynchus kisutch,during smoltification [J]. General andComparative Endocrinology,1986,64:220-238.
    【6】 Watahiki, M.et al. Conserved and unique aminoacid residues in the domains of thegrowth hormones.Flounder growth hormone deduced from the cDNA sequence has theminimal size in the growthhormone Prolactin gene family[J]. Bio.Chem,1989,264(1):312-316
    【7】 Farmer S.W., H. Papoff., T.Hayashida. Isolation and properties of teleostean growthhormone [J]. Gen.Comp.Endocrinol,1976,30:91-100.
    【8】 B Johansen., OC Johnsen., S Valla. The complete nucleotide sequence of thegrowth-hormone gene from Atlantic salmon [J]. Gene,1989,77(2):317-24.
    【9】 Z Zhu., L He., TT Chen. Primary-structural and evolutionary analyses of thegrowth-hormone gene from grass carp [J]. Eur.J.Biochem,1992,207:643-648.
    【10】 Ho W K K., Meng Z Q., Lin H R. Expression of grass carp growth hormone bybaculovirus in silkworm larvae[J]. Biochim Biophys Acta,1998,1381:331-339
    【11】 Marchant T.A., Peter R.E. Seasonal variations in body growth rates and circulatinglevels of growth hormone in the goldfish, Carassius auratus[J]. J. Exp. Zool,1986,273:231-239.
    【12】 HJTsai., KLLinJ., C Kuo. Highly efficient expression of fish growth hormone byEscherichia coli cells [J]. Appl. Envir. Microbiol,1995,61:4116-411.
    【13】 Toullec J.Y. et al. Immunoreactive human growth hormone like peptides in gropicalpenaeids and the effect of dietary GH on Penaeus vannamei larval development[J]. Aquat.Living. Resoure,1991,4(2):125-132.
    【14】 Charmantier G., Charmantier-Daures M., Aiken DE. Human somatotropin stimulates thegrowth of young American lobsters, Homarus americanus (Crustacea,Decapoda)[J]. CRAcad Sci III.1989,308(1):21–26.
    【15】 Xu B., Zhang PJ., Mai YL., Miao HZ. Studies of the effects of recombinant fish growthhormone on survival and growth enhancement of chinese prawn Penaeus chinensis[J].Mar Sci.2000,24(11):54–56.
    【16】 Arenal A., Pimentel R. Growth enhancement of shrimp(Litopenaeus schmitti) aftertransfer of tilapia growth hormone gene[J]. Biotechnol Lett,2008,30(5):845-851
    【17】 Gutiérrez A., Nieto J., Pozo F., Stern S., Schoofs L. Effect of insulin/IGF-I like peptideson glucose metabolism in the white shrimp Penaeus vannamei[J]. Gen Comp Endocrinol.2007,153:170-175.
    【18】孙孝文,刘萍等.显微注射生长激素基因导入中国对虾受精卵的研究.中国水产科学,1996,3(4):35-38.
    【19】潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究[J].水产学报,1997,21(1):26-31.
    【20】 Biesiot P M, Capuzzo J M. Change in digestive enzyme activities during earlydevelopment of the american lobster Homarus americanus[J]. Mar Biol Ecol.1990,136(2):107-122.
    【21】 Kamarudin M S., Jones D A., Le Vay. Ontogenetic change in digestive enzyme activityduring larval developnent of Macrobrachium rosenbergii[J]. Aquaculture.1994,123:323-333.
    【22】汤鸿,李少菁,王桂忠等.锯缘青蟹幼体消化酶活力.厦门大学学报,1995,34(1):88-93.
    【23】刘玉梅,朱谨钊.中国对虾幼体和仔虾消化酶活力及氨基酸组成的研究.海洋与湖沼,1991,22(6):571-575.
    【24】 Lee P G. Digestive enzymes of penaeid shrimp: A descriptive and quantitative examination of the ralationships of enzyme activity with growth, age and diet[D]. Galveston TexasA&M University,1984.154.
    【25】 Reyda S., Jacob E., Zwilling R., Stocker. cDNA cloning, bacterial experssin, in vitrorenaturation and affinity purification of the zinc endopeptidase astacin[J]. Biochem.J,1999,3:851-857,
    【26】 Roberts S., Goetz G., White S., Goetz F. Analysis of Genes Isolated from platedhemocytes of the Pacific Oyster, Crassostreas gigas[J]. Mar. Biotechnol,2009,11:24-44.
    【27】 Bond JS., Beynon RJ. The astacin family of metalloend peptidases[J]. Protein Sci.1995,4:1247-1261.
    【28】 Muhlia-Almazan A., Sanchez-Paz A., Garcia-Carreno FL. Invertebrate trypsins: areview[J]. J. Comp. Physiol,2008,178:655-672.
    【29】 Ashida M., Soderhall K. The prophenoloxidase activating system in crayfish[J].Comp.Biochem.Physiol,1984,77b(1):21-26.
    【30】 Soderhall K. Prophenoloxidase activating system and melanization arecognition mechanism of arthropods[J]. Dev Comp Immuno1,1982,6:601-611.
    【31】胡倡华.维生素c在水产饲料中的应用.饲料研究,2000,6:22-23.
    【32】 Lee, M.H., Shiau, S.Y. Dietary vitamin C and its derivatives affect immune responsesin grass shrimp, Penaeus monodon[J]. Fish Shellfish Immunology,2002,12:119-129.
    【33】 Verlhac, V., Obach, A., Gabaudan, J., Schuep, W., Hole, R. Immunomodulation by dietaryvitamin C and glucan in rainbow trout (Oncorhynchs mykiss)[J]. Fish Shellfish Immunology,1998,8:409-424.
    【34】韩阿寿,梁亚全,高淳仁.斑节对虾对磷酸酷化维生素C的需求量研究.水产学报,1996,20(1):88-91
    【35】刘栋辉,阳会军,刘永坚.葡聚糖和维生素C对斑节对虾生长和抗病力的效果.中山大学学报(自然科学版),2002,41(4):59-62.
    【36】王安利,母学全,凌利英.中国对虾配合而力饵料中Vc添加量的研究.海洋与湖沼,1996,27(4):368-371.
    【37】 Bai, S.C., Lee, K.J. Different levels of dietary DIra-tocopheryl acetate affect thevitamin-E status of juvenile Korean rockfish, Sebastes schlegeli[J]. Aquaculture,1998,161:405-414.
    【38】 Dandapat, J., Chainy, G.B.N., Rao, K.J. Dietary vitamin-E modulates antibxidantdefencesystem ingiant freshwater prawn, Macrobrachium rosenbergii[J]. ComparativeBiochemistry and Physiology,2000C,127:101-115.
    【39】 De Groote MA., Testerman T., Xu Yet. Homocysteine antagonism ofnitric oxide-relatedcytostasis in Salmonella typhimurium[J]. Science,1996,272(5260):414-417.
    【40】 Perdue DG., Nelson DB. Virtual virtual colonoscopy? Gastroenterology[J].2001,11:221-22.
    【41】 Sznol M., Lin SL., Bermudes D. Use of preferentially replicating bacteria for thetreatment of cancer[J]. J Clin invest,2000,105(8),1027-1030.
    【42】 Walker RI. New strategies for using mucosal vaccination to achieve more effectiveimmunization[J]. Vaccine,1994,12(5),387-400.
    【43】 Villarreal B. Proliferative and T-cell specific interleukin(IL-22/IL-4) production responsesin spleen cells from mice vaccinated with aroA live attenuated Salmonella vaccines[J].Microbiol Pathol,1992,13(4),305-315.
    【44】 Curtiss R., Hassan J. Non-recombinant and recombinant avirulent Salmonella vaccinesfor poultry[J]. Vet Immunol Immuno-pathol,1996,54(124),365-372.
    【45】 Gunn JS., Ryan SS., VanVelkinburgh JC. Genetic and functional analysis of aPmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobialpeptide resistance, and oral virulence of Salmonella enterica serovar tphimurium[J].Infect Immun,2000,68(11),6139-6146.
    【46】 Douglas M., Robert L.,David A. Dietary formulation with rendered spent henmeals on atotal amino acid versus a digestible amino acid basis[J]. Poult Sci,1999,284:967-970.
    【47】 Heit hoff DM., Sinsheimer RL., Low DA. Anessential role for DNA adenine methylationin bacterial virulence[J]. Scince,2000,355(1397):633-642.
    【48】 Destoumieux D, Bulet P, Loew D. Penaeidins, a new family of antimicrobial peptidesisolated from the shrimp Penaeus vannamei (Decapoda)[J]. J. Biol. Chem.1997,272(28),398-406.
    【49】 Destoumieux D, Munoz M, Cosseau C, Penaeidins, antimicrobial peptides withchitin-binding activity, are produced and stored in shrimp granulocytes and released aftermicrobial challenge[J]. J. Cell. Sci,2000,113,461-469.
    【50】 Destoumieux D, Bulet P, Strub JM. Recombinant expression and range of activity ofpenaeidins, antimicrobial peptides from penaeid shrimp[J]. Eur. J. Biochem,1999,266,335-346.
    【51】 Delphine Destoumieux., Philippe Bulet., Damarys Loew. Penaeidins, a New Family ofAntimicrobial Peptides Isolated from the Shrimp Penaeus vannamei (Decapoda)[J]. TheJournal of Biological Chemistry,1997,272,398-406.
    【52】 Gueguen Y., J. Garnier, L. Robert, PenBase, the shrimp antimicrobial peptide penaeidindatabase: Sequence-based classification and recommended nomenclature[J]. Dev CompImmunol,2006,30,283-288.
    【53】 Tzu-Ting Chioua, Jenn-Kan Lua, Jen-Leih Wub, Thomas T. Chen, Expression andcharacterisation of tiger shrimp Penaeus monodon penaeidin (mo-penaeidin) in varioustissues, during early embryonic development and moulting stages[J]. Developmental andComparative Immunology,2007,31,132-142.
    【54】 Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic andeukaryotic signalpeptides and prediction of their cleavage sites[J]. Protein Eng,1997,10,1–6.
    【55】 Munoz M., Vandenbulcke F., Saulnier D., Bachere E. Expression and distribution ofpenaeidin antimicrobial peptides are regulated by haemocyte reactions inmicrobial challenged shrimps[J]. Eur J Biochem,2002,269,2678-2689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700