用户名: 密码: 验证码:
拟南芥生长素糖基转移酶基因UGT74D1的鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生长素作为植物的一种重要内源激素,参与调控植物生长发育的诸多过程,如根、茎、叶的发育、维管束组织的形成和分化、植物的向地和向光反应、器官的衰老等。植物体内生长素含量的动态平衡与植物的生长发育、环境应答等有密切的关系。长期以来,虽然对生长素在遗传学、生物化学以及生理学等方面进行了大量研究,但对生长素糖基化修饰及其生理学意义的认识仍然有限。生长素的糖基化修饰主要发生在吲哚环侧链的羧基上,并且主要是添加葡萄糖。目前,糖基化修饰被认为是调控植物活性激素在不同组织细胞中动态平衡的重要机制之一,是对生长素进行精细调控的重要手段,这种调控与植物的生理状态、发育阶段、环境条件、生物和非生物胁迫等因素密切相关,对植物维持的正常生长发育起重要作用。
     糖基转移酶是专门负责催化分子的糖基化修饰反应的酶类,它将活性糖基从供体(通常是尿嘧啶核苷二磷酸-葡萄糖UDP-glucose)转移到激素、次级代谢物、病原菌侵染物以及植物内外源毒性物质等一系列植物小分子化合物受体上。被糖基化修饰后的植物小分子往往会改变它们的生物活性、水溶性、稳定性、在细胞内和整体植株中的运输特性、亚细胞定位以及与受体的相互识别与结合特性。另外还能降低或消除内源和外源物质的毒性。因此,糖基化修饰在调节包括植物激素活性在内的细胞代谢平衡、维持植物正常生长发育等方面有重要意义
     本论文选题来自于国家自然基金课题,总的思路是以体外生化实验为基础,对拟南芥糖基转移酶家族1进行了生长素糖基转移酶活性的筛选,鉴定到生长素的特异糖基转移酶基因UGT74D1,研究这个糖基转移酶的相关生化特征。接着转向体内遗传实验,以拟南芥为实验材料,分析生长素糖基转移酶基因UGT74D1在植物体内所起的作用,确定它们在体内的生长素糖基化修饰功能,从而为深入了解生长素糖基化的分子基础及其功能基因表达的生理学意义提供依据。本论文主要的研究内容及结果如下:
     1.原核系统表达多个糖基转移酶候选基因,通过生化方法鉴定了一个新的生长素糖基转移酶UGT74D1.
     将多个候选基因转到pGEX系统的原核表达载体上,在大肠杆菌XL1-Blue中表达并得到了纯化的酶蛋白。用纯化出的候选基因融合蛋白分别与多种生长素及其结构类似物进行酶促反应,反应产物经过HPLC和LC-MS鉴定,鉴定了一个新的生长素糖基转移酶UGT74D1,发现该酶能够高效地糖基化修饰IBA、 IAA等天然的植物生长素。
     2.研究了糖基转移酶UGT74D1的酶学性质。
     相同的实验条件下,对比UGT74D1对6种生长素及其结构类似物的相对转化率,确定了该酶在体外的最适催化底物为IBA。以底物IBA为例,研究了温度对酶活性的影响,发现37℃时活性最高;研究了各种缓冲液及pH对酶活性的影响,发现在HEPES缓冲液,pH=6.0时活性最高。刚时对IBA进行了酶学动力学分析。
     3.确定了生长素糖基转移酶基因UGT74D1的表达模式以及编码产物的亚细胞定位。
     GUS组织化学染色实验表明,在1-7天之内的幼苗期,UGT74D1在子叶下胚轴与根的连接处、根尖中都有较强表达。在随后的生长发育阶段8-14天,UGT74D1在新生的真叶、真叶叶脉中、主根根尖、侧根有很强的农达。随后生长发育期35天时,花序、幼嫩角果皮、茎叶的叶脉、根中都有较强的表达。尤其随着真叶的成熟,UGT74D1的表达逐渐由叶片中心向叶片边缘处集中,推断其时空组织特异性表达变化导致了过农达体莲卒叶发生了卷曲表型。
     通过基因枪转化洋葱表皮细胞,观察了融合基因的瞬间表达情况。在扫描激光共聚焦显微镜下观察,发现生长索糖基转移酶UGT74D1定位在细胞质和细胞核中。说明此生长素糖基转移酶在整个细胞中都发挥糖基化修饰作用。
     4.糖基转移酶UGT74D1在植物体内能够使生长素发生糖基化修饰,参与调控植物对生长素的响应,影响植物的生长发育。
     提取了不同株系的植物蛋白,对生长素进行酶促反应,发现过表达株系的植物蛋白对生长素的糖基化修饰活性明显高于野生型和双突变体。测定了外源IBA处理下不同基因型植株体内IBA-糖酯含量,发现双突变体中IBA-糖酯含量的增幅显著降低,而过表达体中IBA-糖酯含量的增幅明显升高,从而证明UGT74D1基因在植物体内能糖基化修饰生长素。
     利用野生型拟南芥Col-0、UGT74D1T-DNA插入突变体、UGT74Dl UGT74E2双突变纯合体和UGT74D1基因过表达体为材料,通过添加不同浓度的外源生长素IBA或IAA,比较了它们在主根延伸抑制、侧根密度等方面的差异。实验表明,突变体对外源添加的生长素较野生型敏感,而过表达体较野生型不敏感。UGT74D1过表达株系与DR5::GUS转基因株系杂交后,GUS染色结果表明其对生长素的响应明显比对照组减弱。说明了UGT74D1能够通过糖基化修饰使生长素失活,影响植物对生长素的响应。
     在正常生长条件下,UGT74D1过表达植株表现出叶子发生卷曲,并且叶柄夹角变小。表明UGT74D1在植物体内有重要的生理学作用,能够影响植物的生长发育。
     总之,本论文首次在拟南芥中鉴定出UGT74D1是生长素糖基转移酶,并用遗传学方法证明糖基转移酶UGT74D1在植物体内能够使生长素发生糖基化修饰,参与调控植物对生长素的响应,影响植物的生长发育。这些结果为进一步研究生长素的代谢调节及深入理解生长素发挥作用的分子机理奠定了基础,具有重要理论意义。
Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes, such as the development of root, shoot and leaf, vascular initiation and differentiation, geotropism and phototropism, organic senescence etc. The homeostasis of endogenous auxins is the maintenance of a steady state concentration of the auxins in the receptive tissue appropriate to any fixed environmental condition. Since their discovery, although numerous work have been done to study the auxins' physiological function during plant growth and development by genetics, biochemistry and physiology, the significance of their modification by glycosylation is still largely unknown. Glycoslation of auxins takes place on the carboxyl group of the side chain of indole ring, and usually uses UDP-Glc as activated sugar donor. Glycosylation is the most universal modification in plant and it is thought to be one of most important mechanisms to precisely control auxin homeostasis for plant in order to keep normal growth and development under different developmental stage and various environments.
     Glycosyltransferases can typically transfer single or multiple activated sugars from a donor (usually nucleotide sugar UDP-glucose) to a wide range of small molecular acceptors including hormones, secondary metabolites and abiotic chemicals and toxins from the environment. Glycosylation modification will often change the plant molecules in their biological activity, water-solubility, stability, transport characteristics, subcellular localization and binding properties with receptors, and also can reduce or eliminate the toxicity of endogenous and exogenous substances. Therefore, glycosylation plays a key role in maintaining cell homeostasis, thus likely participating in the regulation of plant growth and development.
     This research project was supported by grants from the National Natural Science Foundation of China. In this study, the in vitro biochemical screening of the group L of Arabidopsis thaliana glycosyltransferase superfamily was firstly carried out for the enzymatic activity toward auxins. UGT74D1was identified to be a novel auxin glycosyltransferase. Next, the physiological role of auxin glucosyltransferase UGT74D1in planta was investigated through a molecular genetic approach. Our data obtained from this study provide an important reference for further understanding of the auxin regulation by glycosylation in plants.
     The main contents and results of this study are as follows:
     1. Several candidate glycosyltransferases were expressed using prokaryotic system and UGT74D1was identified to be a novel auxin glycosyltransferase.
     Candidate genes were constructed to pGEX prokaryotic expression vectors, expressed in E.coli XL1-Blue, and then recombinant proteins were purified. The enzyme activities of the recombinant proteins were analyzed by incubating them separately with7auxins and analogs used as substrates. Following HPLC and LC-MS analyses of the reaction products, it was found that the recombinant UGT74D1had a strong activity toward natural auxins IBA and IAA.
     2. The enzymatic properties of glycosyltranferase UGT74D1were studied.
     Under the same condition, relative conversion rates of these7auxin substrates were calculated and it was found that UGT74D1had a highest enzymatic activity toward IBA in vitro. Taking IBA as an example, the influence factors of enzymatic activity including temperature, pH were tested. The results showed that37centigrade degree was the best temperature for maximum enzyme activity. The pH optimum was HEPES buffer with pH6.0. Enzyme kinetic parameters of UGT74D1toward IBA were also investigated.
     3. The expression pattern and subcellular localization of UGT74D1were analyzed.
     UGT74D1promoter::GUS reporter construct was introduced into Arabidosis and GUS histochemical assay was used for UGT74D1expression pattern analysis. UGT74D1was intensively expressed in cotyledons, hypocotyl-root junction and primary root tip for the first7days of seedlings. UGT74D1was also expressed in young leaves, leaf vein, primary root tip and lateral roots for the one to two week old seedlings. For the5-week-old seedlings, UGT74D1was highly expressed in inflorescences, young silique capsule, cauline leaf vein and root. Insterestly, the UGT74D1expression was observed to concentrate at the marginal region of developed leaves.
     Green fluorescent protein fusion vector of UGT74D1was introduced into onion epidermal cells by particle bombardment technology. The observation of green fluorescence showed that the auxins glycosyltransferase UGT74D1was localized in cytoplasm and nucleus, indicating its subcellular action sites.
     4. UGT74D1can glucosylate auxins in planta, thus regulate plant response to auxins and impact on the plant growth and development.
     In order to know the physiological role of UGT74D1, all the T-DNA mutant (ugt74d1), double mutant (ugt74dlugt74e2) and overexpression lines (UGT74D1OEs) were obtained. Crude protein extracts from seedlings of different lines were analyzed for enzyme activity toward auxins. The results showed that lines with higher UGT74D1transcripts also displayed stronger enzyme activity toward tested auxins to form their glucose conjugates. When exogenous IBA was applied to different plant lines, much higher level of IBA-glucose in overexpression lines than in mutants and wild type plants can be observed. These data indicated that over-production of the UGT74D1in the plants indeed led to increased level of the glucose conjugate of IBA, suggesting an in vivo glucosylating role of UGT74D1to plant auxins.
     Plant response to auxins was investigated by measuring root elongation and lateral root density under the application of exogenous auxins IBA and IAA to different lines described above. Mutants showed a more sensitive phenotype both in root elongation and lateral root density than wild type. In contrast, overexpression lines were relatively insensitive than wild type, suggesting that UGT74D1regulated plant responses to auxins possibly by deactivating auxins. Furthermore, we employed the pDR5:GUS reporter construct to explore the possible role of UGT74D1in auxin signaling. It was found that auxin signaling was much reduced in UGT74D1overexpression lines than in wild type plants, indicating that UGT74D1might regulate the auxin signaling through glucosylating and thus deactivating auxin approach.
     More interesting finding in this study is the changes in plant phenotype. Under normal growth conditions, it was found that UGT74D1overexpression lines displayed less erect petioles and curling leaves. These phenotypic changes were well maintained under different light intensity. These findings implicated that UGT74D1had an important physiological role in modulating plant growth and development.
     In summary, a novel auxin glucosyltransferase, UGT74D1, was biochemically identified from Arabidopsis in this study. Further, the auxin glucosylating activiyt of glucosyltransferase UGT74D1in planta was demonstrated through a molecular genetic approach. Moreover, the physiological role of UGT74D1was found in regulating auxin response and modulating plant growth and development. All these results provide theoretical basis for a better understanding of molecular mechanisms of auxin glucosylation and auxin regulation in planta.
引文
[1]Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Science of the USA,91:326-330.
    [2]Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiology, 111:9-17.
    [3]Ahmed A, Peters NR, Fitzgerald MK, Watson JA, Jr, Hoffmann FM, Thorson JS (2006) Colchicine glycorandomization influences cytotoxicity and mechanism of action. J Am Chem Soc,128:14224-14225.
    [4]Arend J, Warzecha H, Hefner T, Stockigt J (2001) Utilizing genetically engineered bacteria to produce plant-specific glucosides. Biotechnology and Bioengineering,76:126-131.
    [5]Cambridge K, Guyomarc'h S, Bayer E, Swarup R, Bennett M, Maudel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes & development,22:810-823.
    [6]Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem,45:95-107.
    [7]Bandurski R, Cohen J, Slovin J, and Reinecke D (1995) Auxin biosynthesis and metabolism, in Plant Hormones:Physiology,Biochemistry and Molecular Biology, PDavies, Editor, Kluwer Academic Publishers:Dordrecht, Boston, London. ISBN 0-7923-2984-8.p.39-65.
    [8]Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool:de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. Journal of Plant drouth Regulation,20: 198-216.
    [9]Benfey P (2002) Auxin action:Slogging out of the swamp. Current Biology, 12;R389-R390.
    [10]Berleth T, Mattsson J, Hardtke C (2000) Vascular continuity and auxin signals. Trends in Plant Science,5:387-393.
    [11]Bowles D, Isayenkova J, Lim EK, Poppenberger B (2005) Glycosyltransferases:managers of small molecules. Current Opinion in Plant Biology,8:254-263.
    [12]Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annual Review of Plant Physiology,57:567-597.
    [13]Campbell JA, Davies GJ, Bulone V, Henrissat, B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal,326:929-939.
    [14]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics. Nucleic acids Res,37:233-238.
    [15]Carbonnel M, Davis P, Roelfsema MRG, Inoue SI, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C (2010) The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 Protein Is a Phototropin Signaling Element That Regulates Leaf Flattening and Leaf Positioning. Plant physiology,152:1391-1405.
    [16]Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev,15:902-911.
    [17]Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002) Down regulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell,14:1093-1107.
    [18]Cohen JD, Bialek K (1984) The biosynthesis of indole-3-acetic acid in higher plants. In:A. Crozier and J.R. Hillman, eds., The biosynthesis and metabolism of plant hormones. Society for Experimental Biology Seminar 23. Cambridge Univ. Press,165-181.
    [19]Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology,328:307-317.
    [20]Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology,48: 355-381.
    [21]Darwin C (1880) The power of movement in plants. John Murray, London.
    [22]Davies PJ, Mitchell EK (1972) Transport of indole acetic acid in intact roots of Phaseolus coccineus. Planta,105:139-154.
    [23]Davies PJ (1995) Plant Hormones:Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands; Norwell, MA, USA.
    [24]Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature,435:441-445.
    [25]Doerner P (2000) Root patterning:Does Auxin provide positional clues? Current Biology,10:R201-R203.
    [26]Epstein E, Ludwig-Miiller J (1993) lndole-3-butyric acid in plants:occurrence, synthesis, metabolism, and transport. Physiologia Plantarum,88:382-389.
    [27]Feraru E, Friml J (2008) PIN Polar Targeting. Plant Physiology, 147:1553-1559.
    [28]Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annual Review of Plant Physiology,54:137-164.
    [29]Fukuyama TT, Moyed HS (1964) Inhibition of cell growth by photooxidation products of indole-3-acetic acid Journal of Biological Chemistry,239(7): 2392-2397.
    [30]Gil P, Liu Y, Orbovic V, Verkamp E, Poff KL, Green PJ (1994) Characterization of the auxin-inducible SAUR-ACI gene for use as a molecular genetic tool in Arabidopsis. Plant Physiology,104:777-784.
    [31]Glauser G, Boccard J, Rudaz S, Wolfender JL, (2010) Mass Spectrometry-based Metabolomics Oriented by Correlation Analysis for Wound-induced Molecule Discovery:Identification of a Novel Jasmonate Glucoside. Phytochem Anal,21:95-101.
    [32]Goldsmith M (1977) The polar transport of auxin. Annu Rev Plant Physiol,28: 439-478.
    [33]Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins. Nature,414:271-276.
    [34]Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M (2011) The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Current Biology,21:520-525.
    [35]Grubb CD, Zipp BJ, Ludwig-Miiller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J,40:893-908.
    [36]Guilfoyle T (2007) Plant biology:Sticking with auxin. Nature,446:621-622.
    [37]Hagen G, Kleinschmidt A, Guilfoyle T (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta, 162:147-153.
    [38]Hamann T (2001) The role of auxin in apical-basal pattern formation during Arabidopsis embryogenesis. J Plant Growth Regulation,20:292-299.
    [39]Hartmann HT, Kester DE, Davies FT (1990) Anatomical and physiological basis of propagation by cuttings. In Plant propagation:principles and practices, Englewood Cliffs, NJ:Prentice Hall,199-245.
    [40]Hoffmeister D, Wilkinson B, Foster G, Sidebottom PJ, chinose K, Bechthold A (2002) Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chemistry and Biology,9:287-295.
    [41]Horvath DM, Chua NH (1996) Identification of an immediateearly salicylic acid-inducible tobacco gene and characterization of induction by other compounds. Plant Molecular Biology,31:1061-1072.
    [42]Horvath DM, Huang DJ, Chua NH (1998) Four classes of salicylate-induced tobacco genes. Molecular Plant-Microbe Interactions,11:895-905.
    [43]Hou BK, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. Journal of Biological Chemistry,279:47822-47832.
    [44]Hughes J, Hughes MA (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenla Crantz) cotyledons. DNA sequ,5(1):41-49.
    [45]Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA,97:2379-2384.
    [46]Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivnnan F, Elias L, Wiggins GS, Li Y, Schuhmacher R, Krska R, Seto H, Vaistij FE, Bowles D, Poppenberger B (2011) Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC plant biology,11(1):51.
    [47]Iino M (1991) Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant, Cell and Environment, 14:279-286.
    [48]Jackson RG, Kowalczyk M, Li Y, Higgins G, Ross J, Sandberg G, Bowles DJ (2002) Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid:phenotypic characterisation of transgenic lines. Plant Journal,32(4):573-583.
    [49]Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. Journal of Biological Chemistry,276(6):4350-4356.
    [50]Jin SH, Ma XM, Kojima M, Sakakibara H, Wang YW, Hou BK (2013) Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta, 237:991-999.
    [51]Jones P, Messner B, Nakajima JI, Schaffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. Journal of Biological Chemistry,278:43910-43918.
    [52]Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta,213:164-174.
    [53]Karim MR, Hashinaga F (2002) Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process of Biochemistry,38:809-814.
    [54]Karlovsky P (1999) Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat Toxins,7:1-23.
    [55]Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature,435:446-451.
    [56]Kim G, Tsukaya H (2002) Regulation of the biosynthesis of plant hormones by P450s. Journal of Plant Research,115:169-177.
    [57]Kleczkowski K, Schell J (1995) Phytohormone conjugates:nature and function. CRC Crit Rev Plant Sci,14(4):283-298.
    [58]Kleine-Vehn J, Friml J (2008) Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development. Annual Review of Cell and Developmental Biology,24:447-473.
    [59]Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J (2009) PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in Arabidopsis. Plant Cell,21:3839-3849.
    [60]Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci USA,92:714-718.
    [61]Koga J (1995) Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Biochim Biophys Acta,1249:1-13.
    [62]Kogl F, Erxleben H, Haagen-Smit AJ (1934) Uber die Isolierung der Auxine a und b aus pflanzlichen Materialien.9.Mitteilung uber pflanzliche Wachstumsstoffe. Hoppe-Seyler's Zeitschrift fiir physiologische Chemie, 225:215-229.
    [63]Ko JH, Kim BG, Hur HG, Lim Y, Ahn JH (2006) Molecular cloning, expression and characterization of a glycosyltransferase from rice. Plant Cell 25:741-746.
    [64]Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW, Moller BL, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proceedings of the National Academy of Sciences,102:1779-1784.
    [65]Kubo A, Arai Y, Nagashima S, Yoshikawa T (2004) Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Archives Biochemistry and Biophysics,429:198-203.
    [66]Langlois-Meurinne M, Gachon CMM, and Saindrenan P (2005) Pathogenresponsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiology,139:1890-1901.
    [67]Lehmann T, Hoffmann M, Hentrich M, Pollmann S (2010) Indole-3-acetamide-dependent auxin biosynthesis, a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol,89:895-905.
    [68]Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev of Plant Biol, 53:377-398.
    [69]Lim CE, Ahn JH, Lim J (2006) Molecular genetic analysis of tandemly located glycosyltransferase genes, UGT73B1, UGT73B2, and UGT73B3, in Arabidopsis thaliana. Journal of Plant Biology,49(4):309-314.
    [70]Lim CE, Choi NJ, Kim IA, Lee SA, Huang YS, Lee CH, Lim J (2008) Improved resistance to oxidative stress by a loss-of-function mutation in the Arabidopsis UGT71C1 gene. Molecules and Cells,25:368-375.
    [71]Lim EK, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. The EMBO Journal 23:2915-2922.
    [72]Lim EK, Doucet CJ, Hou B, Jackson RG, A brams SR, and Bowles DJ (2005) Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron Asymmetry,16:143-147.
    [73]Lim EK, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, and Bowles DJ (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid,4-hydroxybenzoic acid, and other benzoates. Journal of Biological Chemistry,277:586-592.
    [74]Lim EK, Higgins GS, Li Y, Bowles DJ (2003) Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta. Biochemical Journal,373:987-992.
    [75]Lim EK, Li Y, Parr A, Jackson R, Ashford DA, Bowles DJ (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. Journal of Biological Chemistry,276: 4344.4349.
    [76]Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell,16:731-740.
    [77]Li Y, Baldauf S, Lim EK, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. Journal of Biological Chemistry,276:4338-4343.
    [78]Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal,28: 465-474.
    [79]Loutre C, Dixon DP, Brazier M, Slater M, Cole DJ, Edwards R (2003) Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant Journal,34: 485-493.
    [80]Ludwig-Muller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiologia Plantarum, 115:320-329.
    [81]Ludwig-Miiller J (2000) Indole-3-butyric acid in plant growth and development. Plant Growth Regulation,32:219-230.
    [82]Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P,Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, and Nebert DW (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics,7:255-269.
    [83]Mandai T, Yoneyama M, Sakai S, Muto N, Yamamoto I (1992) The crystal structure and physicochemical properties of L-ascorbic acid 2-glucoside. Carbohydr Res,232:197-205.
    [84]Martin RC, Mok DW, Smets R, Van Onckelen HA, Mok MC (2001) Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phoseolus. In Vitro Cell. Dev. Biol.-Plant,37(3):354-360.
    [85]Martin RC, Mok MC, Mok DWS (1999) Isolation of a cytokinin gene, ZOGI, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci U S A,96(1):284-289.
    [86]Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao YD, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA,108:18512-18517.
    [87]Matros A, Mock HP (2004) Ectopic expression of a UDP-glucose. phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with potato virus Y. Plant and Cell Physiology, 45:1185-1193.
    [88]Mazel A, Levine A (2002) Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. Plant Physiology and Biochemistry,40:133-140.
    [89]Meissner D, Albert A, Bottcher C, Strack D, Milkowski C (2008) The role of UDP-glucose:hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta, 228:663-674.
    [90]Mertens R, Weiler EW (1983) Kinetic studies on the redistribution of endogenous growth regulators in gravireacting plant organs. Planta, 158:339-348.
    [91]Messner B, Thulke O, Schaffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta,217: 138-146.
    [92]Modolo LV, Blount JW, Achnine L, Naoumkina MA, Wang XQ, Dixon RA (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol,64:499-518.
    [93]Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Molecular Biology,52:89-118.
    [94]Mo Y, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA,89:7213-7217.
    [95]Muday G (2001) Auxin and tropisms. JPlant Growth Regulation,20:226-243.
    [96]Mulichak AM, Losey HC, Walsh CT, Garavito RM (2001) Structure of the UDP-glucosyltransferase GtfB That Modifies the Heptapeptide Aglycone in the Biosynthesis of Vancomycin Group Antibiotics. Structure,9:547-557.
    [97]Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology.56:165-185.
    [98]Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol,49:339-348.
    [99]Napier RM (2001) Models of auxin binding. J Plant Growth Regul, 20:244-254.
    [100]Nemoto K, Hara M, Suzuki M, Seki H, Muranaka T, Mano Y (2009) The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Lett,583.487-492.
    [101]Normanly J (1997) Auxin metabolism. Physiologia Plantarum,100:431-442.
    [102]Novak O, Henykova E, Sairanen I, Kowalczyk M, Pospisil T, Ljung K (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal,72(3):523-536.
    [103]O'Donnell PJ, Truesdale MR, Calvert CM, Dorans A, Roberts MR, Bowles DJ (1998) A novel tomato gene that rapidly responds to wound- and pathogen-related signals. The Plant Journal,14:137-142.
    [104]Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Anthocyanin biosynthesis in roses. Nature,435(7043):757-758.
    [105]Paquette S, Moller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochemistry,62:399-413.
    [106]Parker KE, Briggs WR (1990) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiology,94:1763-1769.
    [107]Park WJ, Kriechbaumer V, Moller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2003) The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol,133:794-802.
    [108]Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estellea M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA, 106:22540-22545.
    [109]Pedras MSC, Zaharia IL, Gai Y, Zhou Y, Ward DE (2001) In planta sequential hydroxylation and glycosylation of a fungal phytotoxin:Avoiding cell death and overcoming the fungal invader. Proc Natl Acad Sci USA,98: 747-752.
    [110]Peer WA, Murphy AS (2007) Flavonoids and auxin transport:modulators or regulators? Trends Plant Sci,12:556-563.
    [111]Petrounia IP, Goldberg J, Brush EJ (1994) Transient inactivation of almond mandelonitrile lyase by 3-methyleneoxindole:a photooxidation product of the natural plant hormone indole-3-acetic acid. Biochemistry,33(10):2891-2899.
    [112]Pflugmacher S, Sandermann H (1998) Taxonomic distribution of plant glucosyltransferases acting on xenobiotics. Phytochemistry,49:507-511.
    [113]Phinney BO (1983) The history of gibberellins. In A Crozier,ed, The Biochemistry and Physiology of Gibberellins, Vol 1.Praeger, New York, pp 15-52.
    [114]Pollmann S, Duchting P, Weiler EW (2009) Tryptophan-dependent indole-3-acetic acid biosynthesis by 'IAA-synthase' proceeds via indole-3-acetamide. Phytochemistry,70:523-531.
    [115]Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry,278:47905-47914.
    [116]Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles DJ (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proceedings of the National Academy of Sciences of the United States of America,102:15253-15258.
    [117]Priest DM, Jackson RG, Ashford DA, Abrams SR, and Bowles DJ (2005) The use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a UDP-glycosyltransferase of Arabidopsis thaliana. FEBS Letters, 579:4454-4458.
    [118]Qin GJ, Hongya Gu HY, Zhao YD, Ma ZQ, Shi GL, Yang Y, Pichersky E, Chen HD, Liu MH, Chen ZL, Qu LJ (2005) An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell,17:2693-2704.
    [119]Rayle D, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol,46:250-253.
    [120]Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol,5:325-332.
    [121]Ross J, Li Y, Lim EK, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol,2(2):30041-30046.
    [122]Sandrock RW, VanEtten HD (1998) Fungal sensitivity to and enzymatic degradation of the phytoanticipin alpha-tomatine. Phytopathology,88:137-143.
    [123]Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superrootl mutant of Arabidopsis thaliana. Plant Physiol,116:687-693.
    [124]Slovin JP, Bandurski RS, Cohen JD (1999) Auxin, in Biochemistry and Molecular Biology of Plant Hormones. Hooykaas PJJ, Hall MA, Libbenga KR, Editor, Elsevier Science:Oxford,115-140.
    [125]Smehilova M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, Sebela M, Sedlarova M, English JT, Frebort I (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J Exp Bot,60:2701-2712.
    [126]Song JT, Koo YJ, Seo HS, Kim MC, Choi YD, and Kim JH (2008) Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochemistry,69: 1128-1134.
    [127]Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell,17:616-627.
    [128]Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jiirgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell,133:177-191.
    [129]Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol,4:337-339.
    [130]Sugawara S, Hishiyama S, Jikumnru Y,Hanada A, Nishimura T, Koshiba T, Zhao YD, Kamiya Y, Kasahara H (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis.Proc Natl Acad Sci U S A,106:5430-5435.
    [131]Suzuki H, Fujioka S, Takatsuto S, Yokota I, Murofushi N, Sakurai A (1993) Biosynthesis of brassinolide from teasterone via typhasterol and castaserone in cultured cells of Catharanthus roseus.J. Plant Growth Regul,13:21-26.
    [132]Szerszen JB, Szczyglowski K, Bandurski RS (1994) iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science, 265:1699-1701.
    [133]Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001) Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. European Journal of Biochemistry,268:4086-4094.
    [134]Tang YW, Bonner J (1947) The enzymatic inactivation of indoleacetic acid. I. Some characteristics of the enzyme contained in pea seedlings. Arch Biochem, 13:11-25.
    [135]Tao Y, Ferrer JL, Ljung K, Pojer F, Hong FX, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng YF, Lim J, Zhao YD, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan dependent pathway is required for shade avoidance in plants. Cell, 133:164-176.
    [136]Tarbouriech N, Charnock SJ, Davies GJ (2001) Three-dimensional structures of the Mn and Mg dTDP complexes of the Family GT-2 glycosyltransferase SpsA:a comparison with related NDP-sugar glycosyltransferases. J Mol Biol, 314:655-661.
    [137]Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Hoj PB, Moller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science,293:1826-1828.
    [138]Thimann KV (1977) Hormone action in the whole life of plants. Amherst: University of Massachusetts Press.
    [139]Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell,15:533-543.
    [140]Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inze D, and Van Breusegem F (2010) Perturbation of Indole-3-Butyric Acid Homeostasis by the UDP-Glucosyltransferase UGT74E2 Modulates Arabidopsis Architecture and Water Stress Tolerance. Plant Cell,22: 2660-2679.
    [141]Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant Journal,42:218-235.
    [142]Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell,9:1963-1971.
    [143]Unligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Bio,10:510-517.
    [144]Venis MA, Napier RM (1995) Auxin receptors and auxin binding proteins. Crit Rev Plant Sci,14:27-47.
    [145]Vlot AC, Dempsey DA, and Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology,47:177-206.
    [146]Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis:characterization of a supergene family. Trends in Plant Science,5: 380-386.
    [147]Von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene,221:35-43.
    [148]Von Rad U, Huttl R, Lottspeich F, Gierl A, Frey M (2001) Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant Journal,28:633-642.
    [149]Wang B, Jin SH, Hu HQ, Sun YG, Wang YW, Han P, Hou BK (2012) UGT87A2, an Arabidopsis Glucosyltransferase, Regulates Flowering Time via FLOWERING LOCUS C. The New Physiologist,194:666-675.
    [150]Wang J, Hou BK (2009) Glycosyltransferases:key players involved in the modification of plant secondary metabolites frontiers in Biology,4:39-46.
    [151]Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK (2013) Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana Plant Physiol Biochem,65: 9-16.
    [152]Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK (2011) N-Glucosyltransferase UGT76C2 is Involved in Cytokinin Homeostasis and Cytokinin Response in Arabidopsis thaliana. Plant and Cell Physiology, 52:2200-2213.
    [153]Wasternack C (2007) Jasmonates:An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot,100:681-697.
    [154]Weis M, Lim EK, Bruce NC, Bowles DJ (2008) Engineering and kinetic characterisation of two glucosyltransferases from Arabidopsis thaliana. Biochimie,90:830-834.
    [155]Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York.
    [156]Weymouth-Wilson AC (1997) The role of carbohydrates in biologically active natural products. Nat Prod Rep,14:99-110.
    [157]Wightman F (1977) Plant growth regulation. Berlin:Springer-Verlag.
    [158]Wildman SG (1997) The auxin-A,B enigma:Scientific fraud or scientific ineptitude? Plant Growth Regul,22:37-68.
    [159]Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Natural Products Reports,21:539-573.
    [160]Woodward AW, Bartel B (2005a) A receptor for auxin. The Plant Cell,17(9):2425-2429.
    [161]Woodward AW, Bartel B (2005b) Auxin:regulation, action, and interaction. Ann Bot,95:707-735.
    [162]Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol,129:1285-1295.
    [163]Yamada M, Green ha in K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 (TIR2) gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol, 151:168-179.
    [164]Zhao YD (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol,61:49-64.
    [165]Zhang C, Xu Y, Guo S, Zhu J, Huan Q, et al. (2012) Dynamics of Brassinosteroid Response Modulated by Negative Regulator LIC in Rice. PLoS Genet 8(4):e1002686. doi:10.1371/journal.pgen.l002686
    [166]Zhang CS, Griffith BR, Fu Q, Albermann C, Fu X, Lee IK, Li LJ, Thorson JS (2006) Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science,313:1291-1294.
    [167]Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X, Yang H, Xu Y, Kim SH, Fujioka S, Lin WH, Chong K, Lu T, Wang ZY (2009) Antagonistic HLH/bHLH Transcription Factors Mediate Brassinosteroid Regulation of Cell Elongation and Plant Development in Rice and Arabidopsis. Plant Cell,21(12):3767-3780
    [168]Zhao YD, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker J R, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev, 16:3100-3112.
    [169]Zolman BK, Yoder A, Bartel B (2000) Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics, 156:1323-1337.
    [170]王家利,刘冬成,郭小丽,张爱民(2012)生长素合成途径的研究进展.植物学报,47(3):292-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700