用户名: 密码: 验证码:
家蚕解毒酶基因表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界中,生物体不断地与外界环境进行物质交换,以满足自身的生长、发育和生存需要。在这些物质中,有些是为了满足生物体营养所需,对生物体是有益的;有些却对生物体的生命有危害。为了生存,生物体必须具备一定的生理、生化,甚至是行为适应能力。通过体内的解毒酶系统催化分解代谢产物或异源物,起到解毒作用,是生物体主要且常见的一种适应机制。昆虫的解毒酶是一类异质酶系,能够代谢大量的内源或外源底物,这些解毒酶系包括:细胞色素P450酶系、谷胱甘肽-S-转移酶系和酯酶等。
     应用geNorm和NormFinder软件首先对内参基因进行标准化分析以选择相对较稳定的内参基因,是相对定量过程中比较关键的步骤,然而即使选择了相对稳定的内参基因,由内参不稳定带来的误差仍是不容忽视的。而Dual spike-in qPCR通过向样品中加入外参基因,对目标基因进行全程跟踪标定,使校正结果较为准确。但是,该方法需同时测定DNA和RNA,使得该方法的工作量提高一倍,增加了实验成本和时间。为了解决这一问题,我们设想以Dual spike-in qPCR首先对已标准化的内参基因进行定量,再以此内参基因对目的基因进行校正的新的实验思路,结果表明该方法在能得到较准确定量结果的同时,降低了实验的工作量和成本,为实时荧光定量PCR技术的进一步发展提供了新的参考。
     为了从宏观上解析家蚕体内主要解毒酶基因的分布情况以及外源物质对解毒酶基因转录水平的影响,我们采用Dual spike-in qPCR方法,测定了家蚕正常情况以及分别添食蜕皮激素和芸香苷条件下各组织中主要解毒酶基因的转录水平。结果表明:中肠中参与蜕皮激素代谢的基因相对较少,BmGST基因主要参与了中肠对芸香苷的代谢。脂肪体中参与蜕皮激素代谢的基因主要有CYP9a20, BmGSTo1, BmGSTz2等;参与芸香苷代谢的基因较多,以BmGST基因为主。马氏管中参与蜕皮激素代谢的基因主要有CYP6ab4, BmGSTs2, BmCarE15等;参与芸香苷代谢的基因主要有BmGSTo1。
     为进一步了解家蚕解毒酶基因的生理功能,本研究选择了三个主要解毒酶基因:CYP6ab4、BmGSTd1、BmCarE-10。对上述基因设计了3个不同位点的siRNA,通过转染BmN细胞的方法筛选出干扰效果最显著的siRNA片段。结果表明:CYP6ab4-928,BmGSTd1-405,BmCarE-10-519的干扰效果最为显著,分别使各自干扰基因的转录水平下降到对照的26.5%,39.6%和17.9%,可用于进一步的体内RNAi实验。对家蚕五龄幼虫注射有效干扰siRNA片段,通过实时荧光定量PCR测定并分析经RNAi后家蚕解毒酶基因在中肠、脂肪体和马氏管3种组织中转录水平的变化。结果表明:家蚕五龄幼虫通过注射siRNA,3种被测基因表达都能够被成功抑制,且注射后48h比24h效果更为明显。为了解家蚕解毒酶基因RNAi后虫体对辛硫磷的抗性差异,对家蚕5龄幼虫分别注射siRNA片段后,添食浸有辛硫磷的桑叶,调查统计了不同处理下的累积致死率。结果显示:分别注射三个解毒酶基因siRNA48h后添食辛硫磷导致的虫体死亡率显著增高,分别达到88%、84%和89%。
     为研究家蚕主要解毒酶基因的表达调控机制,对三个主要解毒酶基因:CYP6ab4、BmGSTd1、BmCarE-10的启动子区域进行了功能分析,构建了含荧光素酶报告基因和启动子不同长度顺次缺失片段的重组质粒,与内参载体pRL-TK共转染BmN细胞,用双荧光素酶报告基因检测系统检测启动子活性。结果表明:蜕皮激素能够上调CYP6ab4和BmGSTd1基因启动子的活性,而芸香苷能够上调BmGSTd1和BmCarE-10基因启动子的活性。家蚕CYP6ab4基因启动子5'单侧-827~-722bp是该基因启动子的主要活性区域,该区域内存在的BR-C Z可能在基因表达调控过程中起重要作用;BmGSTd1基因启动子5'单侧-1385~-1299bp区域内存在的Kr可能参与了基因的表达调控;BmCarE-10基因的转录活性区域是启动子5'单侧-705~-625bp,该区域内存在的Sn可能参与了基因的表达调控。
     为了利用rAcMNPV作为基因介导的载体的双荧光定量表达载体系统对家蚕解毒酶基因启动子区域的功能进行分析。我们构建一个FHNLuc-A3RL双荧光质粒,其中萤火虫荧光素酶(FLuc)基因由解毒酶基因启动子带动,另一个由家蚕actin3启动子控制的海肾荧光素酶(RLuc)作内参基因。通过Bac-to-Bac系统制备重组杆状病毒,将这些重组病毒分别注射感染五龄起蚕,测定荧光素酶活性,从而分析启动子活性。结果表明:无论是在正常状态下还是在外源物质诱导下,各基因启动子在马氏管和脂肪体组织中的活性均高于其它组织,再次表明这两个组织在外源物质代谢过程中的重要性。而且其活性区域与BmN细胞中的测定结果基本一致,也再次证明了各活性区域内可能存在与基因表达调控相关的作用元件。
     本研究通过定量PCR从宏观上分析了家蚕解素酶转录水平的基本情况;并通过双荧光素酶报告基因系统分析了三个重要解毒酶基因的启动子序列,得到了其中重要的调控区域,以及相关的蛋白因子。为家蚕解毒酶基因表达调控的研究提供了重要的理论依据。
In nature, in order to meet its own growth, development and survival needs,organisms make material exchanges with the external environment all the time. Some ofthese substances, in order to meet the organism nutrition requirement, is beneficial to theorganism, and some is harmful to them. In order to survive, the organism must have somephysiological, biochemical, and even behavioral adaptability. Catalyzing and decomposingmetabolites or heterologous material through the body's detoxification enzyme systemsplay a major and common adaptation mechanism. Insect detoxification enzymes are a classof heterogeneous enzymes which can metabolize endogenous or exogenous substrates,these detoxification enzyme mainly include: cytochrome P450, glutathione-S-transferaseand carboxylesterase.
     In order to obtain a stable reference gene, standardization of reference gene by usingthe geNorm and NormFinder Software analysis is the key step in the process of relativequantification. However, the error caused by the relative quantification have not beeneliminated even choose a relatively stable reference gene. By adding an external referencegene into the sample, the target gene expression is calibrated and tracked, more accuratecorrection results are obtained by using Dual spike-in qPCR. However, according to theprinciple of the method, the workload is increased, and to some extent the experimentalcost and time is increased too. To solve this problem, we envision a new experimentalstrategy that we can quantify a standardized reference gene firstly by using Dual spike-inqPCR, and then use this gene to correct the target gene expression. The result showed thatthis strategy not only ensured the accurate results, but also reduced the experimental costand time. So, it promoted the further development and innovation of quantitative PCR tosome extent.
     In order to understand the distribution of main detoxification genes in silkworm andthe impact of exogenous material on the expression of detoxification genes, thetranscription levels of detoxification genes in normal silkworm and silkworm fed by ecdysone and rutin were measured by using Dual spike-in PCR. The results show that lessgenes are involved in ecdysone metabolism in the midgut, and BmGST genes are maininvolved in rutin metabolism. The main genes involved in ecdysone metabolism areCYP9a20, BmGSTo1, BmGSTz2in fat body; more genes are involved in rutin metabolismsuch as BmGST genes. The main genes involved in ecdysone me tabolism are CYP6ab4,BmGSTs2, BmCarE-15in malpighian tubules, and BmGSTo1is mainly involved in rutinmetabolism.
     To further understand the physiological functions of the detoxification genes, wedesigned three different siRNA for each gene in the present study, and the siRNAfragments with the most significant effect are filted. The results show that theCYP6ab4-928,BmGSTd1-405,BmCarE-10-519are most effective, the transcription levelof each gene decreased to26.5%,39.6%and17.9%respectively, so they can be used forfurther in vivo RNAi experiments.
     In order to understand the impact of RNAi on silkworm gene expression in vivo, theeffective siRNA were injected into fifth instar silkworm larvae, and then we measured andanalyzed the changes of transcription levels of detoxification genes in mid gut, fat bodyand malpighian tubule by using real-time PCR. Experimental results show that theexpression of three measured genes can successfully be suppressed, and the extents are notsame. The effect at48h after injection is more obvious than24h. We surveyed thecumulative mortality rate of silkworms after feeding phoxim, and the results show that themortality was significantly increased to88%,84%and89%, respectively at48h afterinjection.
     For the study on the mechanism of expression and regulation of main detoxificationgenes, we analyzed the function of promoter region of CYP6ab4, BmGSTd1andBmCarE-10genes, and constructed recombinant plasmids containing the luciferasereporter gene and promoter. The internal control vector pRL-TK was co-transfected intoBmN cell with recombinant plasmids, promoter activity was detected by using dualluciferase reporter gene assay system. The results show that the promoter activity ofCYP6ab4and BmGSTd1genes were raised by ecdysone, and rutin can raise the promoteractivity of BmGSTd1and BmCarE-10genes. The promoter activity area of CYP6ab4,BmGSTd1and BmCarE-10gene exists in the respective promoter5' unilateral-827~-722bp,-1385~-1299bp and-705~-625bp of various regions respectively, and the presence of the BR-C Z, Kr and Sn may play an important role in the process of gene expressionregulation.
     We use rAcMNPV as a carrier of the gene-mediated fluorescence quantitativeexpression vector system to analyze the functions of the detoxification gene promoterregion. Constract a dual fluorescent plasmid of FHNLuc-A3RL, in which Fluc gene isdriven by detoxification gene promoter, and Rluc is driven by A3promoter. We preparedrecombinant baculovious through the Bac-to-Bac system, and injected them into fifth instarsilkworm, and analysis the luciferase activity. The results show that the of activities ofthree gene promoters in malpighian tubule and fat body are higher than in other tissues,and the promoter activity area is consistent with the measured results in BmN cells.
     This study analyzed the whole basic transcription situation of detoxification genes insilkworm by using real-time PCR, and analyzed the promoter sequence of three importantdetoxification genes by using dual luciferase reporter gene assay system. Importantregulatory regions and associated protein factors were obtained. This study providedimportant theoretical basis for the study of the regulation of gene expression in silkwormdetoxification enzymes.
引文
[1] Omura T, Sato R. The Carbon Monoxide-binding Pigment of Liver Microsomes [J]. J.Biol. Chem.,1964,239:2379-2385.
    [2] Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP,Gunsalus IC, Johnson EF, Kemper B, Levin W. The P450gene superfamily:recommended nomenclature [J]. DNA,1987,6(1):1-11.
    [3] Nebert DW, Nelson DR, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ,Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, et al. The P450superfamily:updated listing of all genes and recommended nomenclature for the chromosomal loci[J]. DNA.1989,8(1):1-13.
    [4] Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R,Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, et al. The P450superfamily: updateon new sequences, gene mapping, accession numbers, early trivial names of enzymes,and nomenclature [J]. DNA Cell Biol.1993,12(1):1-51.
    [5]王斌,李德远.细胞色素P450的结构与催化机理[J].有机化学,2009,29(4):658-662.
    [6] Masatomo M, Hiroshi S, Yoshitsugu S, Shumpei A, Hiroyasu O, Shingo N. Crystalstructures and catalytic mechanism of cytochrome P450StaP that produces theindolocarbazole skeleton [J]. Proc. Natl. Acad. Sci. U.S.A.,2007,104(28):11591-11596.
    [7]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社.2001.
    [8] Omura T. Forty years of cytochrome P450[J]. Biochem. Biophys. Res. Commun.,1999,266(3):690-698.
    [9]邱星辉,冷欣夫,昆虫细胞色素P450基因的表达与调控及P450介导抗性的分子机制[J].农药学学报,1999,1(1):5-14.
    [10]邱星辉,冷欣夫,昆虫细胞色素P450研究: P450基因[J].昆虫知识,1998,35(1):48-51.
    [11] Jeffrey G. Scott. Cytochromes P450and insecticide resistance [J]. Insect Biochemistryand Molecular Biology,1999,29:757-777.
    [12] Scott J G. Cytochrome P450monooxygenase-mediated resistance to insecticides [J]. J.Pesticide Sci.,1996,21:241-245.
    [13] Scott J G, Sridhar P, Liu N. Adult specific expression and induction of cytochromeP450in house flies [J]. Insect Biochem. Physiol.,1996,31:313-323.
    [14] Bradfield J Y, Lee Y H, Keeley L L. Cytochrome P450family4in a cockroach:molecular cloning and regulation by regulation by hypertrehalosemic hormone [J].Proc. Natl. Acad. Sci.,1991,88:58-62.
    [15] Feyereisen R. Insect P450enzymes [J]. Annu. Rev. Entom ol.,1999,44:507-533.
    [16] Scott JG, Wen Z. Cytochromes P450of insects: the tip of the iceberg [J]. PestManag.Sci.,2001,57:958-967.
    [17] Liu NN, Zhu F, Xu Q, Pridgeon JW, Gao XW. Behavioral change, physiologicalmodification, and metabolic detoxification: Mechanisms of insecticide resistance [J].Acta Entom. Ologica. Sinica,2006,49(4):671-679.
    [18]于彩虹,高希武,郑炳宗.22-十三烷酮对棉铃虫细胞色素P450的诱导作用[J].昆虫学报,2002,45(1):1-7.
    [19] Manglesdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, BlumbergB, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: thesecond decade [J]. Cell,1995,83:835-839.
    [20] Henrich VC, Rybczynski R, Gilbert LI. Peptide hormones, steroid hormones, andpuffs: mechanisms and models in insect development [J]. Vitamins and Hormones,1998,55:73-125.
    [21] Hagedorn HH. The role of ecdysteroids in the adult insect, in: R.G.H. Downer, H.Laufer (Eds.), Endocrinology of Insects [J], Alan R. Liss, New York,1983,271-304.
    [22] Kasai S, Tomita T. Male specific expression of a cytochrome P450(CYP312A1) inDrosophila melanogaster [J]. Biochem. Biophys. Res. Commun.,2003,300:894-900.
    [23] Rewitz KF, Gilbert LI. Daphnia Halloween genes that encode cytochrome P450smediating the synthesis of the arthropod molting hormone: Evolutionary implications[J]. BMC Evolutionary Biology,2008,8:60.
    [24] Namiki T, Niwa R, Sakudoh T, Shirai K, Takeuchi H, Kataoka H. Cytochrome P450CYP3071I/Spook:a regulator for ecdysone synthesis in insects [J]. Biochemical andbiophysical research communications,2005,337(1):367-374.
    [25] Hansen BH, Altin D, Hessen KM, Dahl U, Breitholtz M, Nordtug T, Olsen AJ.Expression of ecdysteroids and cytochrome P450enzymes during lipid turnover andreproduction in Calanus finmarchicus (Crustacea: Copepoda)[J]. General andComparative Endocrinology,2008,158:115-121.
    [26]王琛柱.植物抗虫性的化学基础[J].植物保护,1993,19(6):39-41.
    [27]钦俊德.昆虫与植物的关系:论昆虫与植物相互作用及其演化[M].北京:科学出版社,1987:38-52.
    [28] Mao YB, Cai WJ, Chen XY, et al. Silencing a cotton bollworm P450monooxygenasegene by plant2mediated RNAi impairs larval tolerance of gossypol [J]. Nat.Biotechnol.,2007,25(11):1307-1313.
    [29]张继红,董钧锋,王琛柱等.棉酚和烟碱对棉铃虫的生长和细胞色素P450单加氧酶活性的影响[J].昆虫知识,2001,38(4):276-278.
    [30]张雨良,曾洪梅,杨秀芬,杨峰山,刘华,尹富仕,毛建军,邱德文.玉米螟P450基因cDNA的克隆及植物次生物质对其诱导表达[J].中国生物化学与分子生物学报,2009,25(2):126-131.
    [31] Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis ofinsecticide resistance in mosquitoes [J]. Insect Biochem. Mol. Biol.,2004,34(7):653-665.
    [32] Feyereisen R. Insect p450enzymes [J]. Ann. Rev. Bntomol.,1999,44:507-533.
    [33] Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ. A comparisonof Drosophila melanogaster detoxification gene induction responses for sixinsecticides, caffeine and phenobarbital [J]. Insect Biochem. Mol. Biol.,2006,36:934-942.
    [34] Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, Vontas J, Gorman K,Denholm I, Morin S. Over-expression of cytochrome P450CYP6CM1is associatedwith high resistance to imidaclop rid in the B and Q biotypes of B emisia tabaci(Hemip tera: Aleyrodidae)[J]. Insect Biochem. Mol. Biol.,2008,38:634-644.
    [35] Bautista MA, Miyata T, Miura K, Tanaka T. RNA interference-mediated knockdownof a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella,reduces larval resistance to permethrin [J]. Insect Biochem. Mol. Biol.,2008,39(1):38-46.
    [36] Strode C, Wondji CS, David JP, HawkesNJ, Lumjuan N, Nelson DR, Drane DR,Karunaratne SH, Hemingway J, BlackWC, Ranson H. Genomic analysis ofdetoxification genes in the mosquito Aedes aegypti [J]. Insect Biochem. Mol. Biol.,2008,38(1):113123.
    [37] Ranson H, et al. Evolution of supergene families associated with insecticide resistance[J]. Science,2002,298:179-181.
    [38] Ranson H, et al. Molecular anslysis of multiple cytochrome P450genes from themalaria vector Amopheles gambiae [J]. Insect Mol. Biol.,2002,11:409-418.
    [39] Berge JB, Feyereisen R, Amichot M. Cytochrome P450monooxygenases andinsecticide resistance in insects [J]. Phil.Trans. R. SCO. Lond. B.,1998,353:1701-1705.
    [40]唐振华,吴士雄.昆虫抗药性的遗传与进化[J].上海:上海科学技术文献出版社,2000,129-156.
    [41] Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution ofglutathione transferases: implications for classification of non-mammalian membersof an ancient enzyme superfamily [J]. J. Biochem.,2001,360(1):1-16.
    [42] Booth J, Boyland E, Sims P. An enzyme from rat liver catalyzing conjugation withglutathione [J]. Biochem. J.,1961,79:516-524.
    [43] Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biologicalconsequences [J]. Phamacology.2000,61(3):154-166.
    [44] Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation ofGST and the contribution of the isoenzymes to cancer chemoprotection and drugresistance [J]. Crit. Rev. Biochem. Mol. Biol.,1995,30:445-600.
    [45] Erika L A, Theo KB, David LE. Biotransformation of Methy1Parathion byGlutathione S-Transferases [J]. Toxicol. Sci.,2004,79(2):224-232.
    [46] Kristensen M Glutathione S-transferase and insecticide resistance in laboratory strainsand field populations of Musca domestica [J]. J. Econ. Entomol.,2005,98(4):1341-1348.
    [47] Kraus P. Resolution, purification and some properties of three glutathione transferasesfrom rat liver mitochondria [J]. Hoppe Seylers Z. Physiol. Chem.,1980,361(1):9-15.
    [48] Fournier, Bride JM., Poirie M, et al. Insect glutathione S-transferases. Biochemicalcharacteristics of the major forms from houseflies susceptible and resistant toinsecticides [J]. J. Biol. Chem.,1992,267(3):1840-1845.
    [49] Beall C, Fyrberg C, Song S, et al. Isolation of a Drosophila gene encoding glutathioneS-transferase [J]. Biochem. Genet.,1992,30(9-10):515-527.
    [50] Snyder MJ, Walding JK, Feyereisen R. Glutathione S-transferase from larvalManduca sexta midgut: sequence of two cDNAs and enzyme induction [J]. InsectBiochem Mol Biol.1995,25(4):455-465.
    [51] Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insectglutathione S-transferase involved in resistance to DDT in the malaria vectorAnopheles gambiae [J]. Biochem. J.,2001,359:295-304.
    [52] Chelvanayagam G, Parker MW, Board PG, et al. Fly fishing for GSTs: aunifiednomenclature for mammalian and insect glutathione transferases [J]. Chem. Biol.Interaet.,2001,133(1-3):256-260.
    [53] Board PG, Baker RT, Chelvanayagam G, et al. Zeta, a novel class of glutathionetransferases in a range of species from Plants to humans [J]. Biochem. J.,1997,328(3):929-935.
    [54] Frova C. Glutathione transferases in the genomics era: new insights and perspectives[J]. Biomol. Eng.,2006,23(4):149-169.
    [55] Jakoby WB. The glutathione S-transferases: a group of multifunctionaldetoxifieation proteins [J]. Adv. Enzymol. Relat. Areas. Mol. Biol.,1978,46:383-414.
    [56] Foumier D, Bride JM, Poirie M, et al. Insect glutathione S-transferases. Biochemicalcharacteristics of the major forms from houseflies susceptible and resistant toinsectieides [J]. Biol. Chem. J.,1992,26(3):1840-1845.
    [57] Meyer DJ, Muimo R, Thomas M, et al. Purifieation and characterization ofprostaglandin-HE-isomerase, a sigrna-class glutathione S-transferase, from Asearidiagalli [J]. Biochem. J.,1996,313(1):223-227.
    [58] Feng QL, Davey KG, Pang ASD, et al. Glutathione S-transferase from the sprucebudworm, Choristoneura fumiferana: identification, charaeterization, loealiZation,cDNA cloning, and expression [J]. Insect Biochem. and Mol. Biol.,1999,29:779-793.
    [59] Thomson RE, Bigley AL, Foster JR, et al. Tissue-specific expression and subcellulardistribution of murine glutathione S-transferase class kappa [J]. J. HistochemCytochem.,2004,52(5):653-662.
    [60]张常忠,高希武,郑炳宗.棉铃虫谷胱甘肽-S-转移酶的活性分布和发育变化及植物次生物质的诱导作用[J].农药学学报,2001,3(l):30-35.
    [61] Nakarnura A, Yoshizaki I, Kobayashi S. Spatial expression of Drosophila glutathioneS-transferase-D1in the alimentary canal is regulated by the overlying visceralmesoderm [J]. Dev. Growth Differ.,1999,41(6):699-702.
    [62] Papadopoulos AI, polemitou I, Laifi P. et al. Glutathione S-transferase in thedevelopmental stages of the insect AP is mellifera macedonica [J]. Comp. Biochem.Physiol. C Toxicol. Pharmacol.,2004,139(1-3):87-92.
    [63] Papadopoulos AI, Stamkou EI, Kostaropoulos I, et al. Effect of Organophosphate andPyrethroid Insecticides on the Expression of GSTs from Tenebrio molitor Larvae [J].pest Biochem. physiol.,1999,63:26-33.
    [64] Ottea JA, plapp Jr FW. Induction of glutathione S-transferase by phenobarbital in thehouse fly [J]. pest Biochem. physiol.,1981,15:10-13.
    [65] Kirby ML, Ottea JA. Multiple mechanisms for enhancement of glutathioneS-transferase activities in spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. InsectBiochem. Mol. Biol.,1995,25(3):347-353.
    [66] Le Goff G, Hilliou F, Siegfried BD, et al. Xenobiotie response in Drosophilamelanogaster: sex dependence of P450and GST gene induction [J]. Insect Biochem.Mol. Biol.,2006,36(8):674-682.
    [67] Clark AG,Shamaan NA, Sinclair MD, et al. Insectieide metabolism by multipleglutathione S-transferases in two strains of the house fly, Musca domeslica (L.)[J].Pestic. Biochem. Physiol.,1986,25:169-175.
    [68] Ottea JA, Plapp FW. Glutathione S-transferase in the house fly: Biochemical andgenetic changes associated with induction and insecticide resistance [J]. Pestic.Biochem. Physiol.,1984,22:203.
    [69]黄天芳.植物次生物质对于植物生存的重要作用[J].生物学杂志,2003,20(5):60-61.
    [70]高希武,董向丽,郑炳宗.棉铃虫谷胱甘肽-S-转移酶(GSTs):杀虫药剂和植物次生性物质的诱导与谷胱甘肽S-转移酶对杀虫药剂的代谢[J].昆虫学报.1997,40(2):122-127.
    [71]高希武,董向丽,赵颖.槲皮素对棉铃虫体内一些解毒酶系和靶标酶的诱导作用[J].农药学学报,1999,1(3):56-60.
    [72] Yu SJ. Induction of detoxifying enzymes by al1eloehemieals and host plants in thefall armyworm [J]. Pestic. Biochem. Physiol.,1983,19:330-336.
    [73] Wadleith RW. Yu SJ. Glutathione S-transferase activity of fall armyworm larvaetoward α, β-unsaturated carbonyl alleloehemicals and its induction byalleloehemeials [J]. Insect Biochem.,1987,17:759-764.
    [74] Wadleith R, Yu SJ. Detoxfieation of isothiocyanate allelochemicals by glutathioneS-transferases in three Lepidoterous species [J]. J. Chem. Ecol.,1988,14:1279-1288.
    [75] Hemingway J. The molecular basis of two contrasting metabolic mechanisms ofinsecticide resistance [J]. Insect Biochem. Mol. Biol.,2000,30(11):1009-1015.
    [76] Tang AH, Tu CPD. Pentobarbital-induced changes in Drosophila glutathioneS-transferases D21Mrna stability [J]. J. Biol. Chem.,1995,270(23):13819-13825.
    [77] Tang ZH, Bi Q. Moleeular Behavior of Insecticide Action [M]. Shanghai: ShanghaiYuandong Press.2003,200-240.
    [78] Grant DF, Hammock BD. Genetic and molecular evidence for a transacting regulatorylocus controlling glutathione S-transferase-2expression in Aedes aegypti [J]. Mol.Gen. Genet.,1992,234:169-176.
    [79] Tang AH, Tu CP. Pentobarbital-induced changes in Drosophila glutathioneS-transferase D21mRNA stability [J]. J. Biol. Chem.,1995,270:13819-13825.
    [80] Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules tofunctions [J]. Annu. Rev. Pharmacol Toxicol.,1998,38:257-288.
    [81] Marshall SD, Putterill JJ, Plummer KM, et al. The carboxylesterase gene family fromArabidopsis thaliana [J]. J. Mol. Evol.,2003,57:487-500.
    [82] Ranson H, Claudianos C, Ortelli F, et al. Evolution of multigene families associatedwith insecticide resistance [J]. Science,2002,298:179-181.
    [83] Bornscheuer UT. Microbial carboxylesterases: classification, properties andapplication in biocatalysis [J]. FEMS Microbiol Rev,2002,26:73-81.
    [84] Cygler M, Schrag JD, Sussman J L, et al. Relationship between sequenceconservation and three-dimensional structure in a large family of esterases, lipases,and related proteins [J]. Protein Science,1993,2(3):366-382.
    [85] Mentlein R, Heiland S, Heymann E. Simultaneous purication and comparativecharacterization of six serine hydrolases from rat liver microsomes [J]. Arch. Biochem.Biophys.,1980,200:547-559.
    [86] Mentlein R, Heymann E. Hydrolysis of ester-and amide-type drugs by the puriedisoenzymes of nonspecic carboxylesterase from rat liver [J]. Biochem. Pharmacol.,1984,33:1243-1248.
    [87] Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules tofunctions [J]. Annual Review of Pharmacology and Toxicology,1998,38:257-288.
    [88] Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases [J].Chemico-Biological Interactions,2006,162(3):195-211.
    [89] Hemingway J, Karunaratne SH. Mosquito carboxylesterases: a review of themolecular biology and biochemistry of a major insecticide resistance mechanism [J].Med. Vet. Entomol.,1998,12:1-12.
    [90] Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance tosynthetic and natural xenobiotics [J]. Annu. Rev. Entomol.,2007,52:231-253.
    [91] Heidari R, Devonshire AL, Campbell BE, et al. Hydrolysis of pyrethroids bycarboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sitesmodified by in vitro mutagenesis [J]. Insect Biochem. Mol. Biol.,2005,35(6):597-609.
    [92] Heidari R, Devonshire AL, Campbell BE, et al. Hydrolysis of organophosphorusinsecticides by in vitro modified carboxylesterase E3from Lucilia cuprina [J]. InsectBiochem. Mol. Biol.,2004,34(4):353-363.
    [93] Oakeshott JG, Claudianos C, Campbell PM, et al. Biochemical genetics and genomicsof insect esterases [J]. In Comprehensive molecular insect science,2005,5:309-361.
    [94] Claudianos C, Ranson H, Johnson RM, et al. A deficit of detoxification enzymes:pesticide sensitivity and environmental response in the honeybee [J]. Insect Mol. Biol.,2006,15:615-636.
    [95] Yu QY, Lu C, Li WL, et al. Annotation and expression of carboxylesterases in thesilkworm, Bombyx mori [J]. BMC Genomics,2009,10:553-566.
    [96] Tsubota T, Shiotsuki T. Genomic analysis of carboxyl/cholinesterase genes in thesilkworm Bombyx mori [J]. BMC Genomics,2010,11:377–387.
    [97] Ranson H, Claudianos C, Ortelli F, et al. Evolution of multigene families associatedwith insecticide resistance [J]. Science,2002,298:179-181.
    [98] Teese M, Campbell P, Scott C, et al. Gene identification and proteomic analysis of theesterases of the cotton bollworm, Helicoverpa armigera [J]. Insect Biochem. Mol.Biol.,2010,40(1):1-16.
    [99] Aldridge W.N. Serum esterases. I. Two types of esterase (A and B) hydrolysingp-nitrophenyl acetate, propionate and butyrate, and a method for their determination[J]. Biochem. J.,195353(1):110-117.
    [100]滕霞,孙曼霁.羧酸酯酶研究进展[J].生命科学,2003,15(1):31-35.
    [101] Satoh T, Hosokawa M. Structure, function and regulation of carboxylesterases[J].Chem. Biol. Interact.,2006,162(3):195-211.
    [102] Sanghani SP, Sanghani PC, Schiel MA, et al. Human carboxylesterases: an updateon CES1, CES2and CES3[J]. Protein Pept. Lett.,2009,16(10):1207-1214.
    [103] Lindroth RL. Host plant alteration of detoxification activity in Papilio glaucus [J].Entomol. Exp. Appl.,1989,50:29-36.
    [104] Lindroth RL, Weisbrod AV. Genetic variation in response of the gypsy moth toaspen phenolic glycosides [J]. Biochem. Syst. Ecol.,1991,19:97-103.
    [105] Ghumare SS, Mukherjee SN, Sharma RN. Effects of rutin on the neonate sensitivity,dietary utilization and midgut carboxylesterase activity of Spodoptera litura(Fabricius)(Lepidoptera: Noctuidae)[J]. Proc. Indian. Acad. Sci. Anim. Sci.,1989,98:399-404.
    [106] Cai QN, Han Y, Cao YZ. Detoxification of gramine by the cereal aphid Sitobionavenae [J]. J. Chem. Ecol.,2009,35:320-325.
    [107] Gao XW, Zhao Y, Wang X, et al. Induction of carboxylesterase in Helicoverpaarmigera by insecticides and plast allelochemicals [J]. Acta Entamol. Sinica,1998,41:5-11.
    [108] Mu SF, Pei L, Gao XW. Effects of quercetin on specific activity of carboxylesterasand glutathione S-transferase in Bemisia tabaci [J]. Chinese Bulletin Entomol,2006,43:491-495.
    [109] Hemingway J, Hawkes NJ, McCarroll L, et al. The molecular basis of insecticideresistance in mosquitoes [J]. Insect Biochem. Mol. Biol.,2004,34:653-665.
    [110] Yan S, Cui F, Qiao C. Structure, function and applications of carboxylesterases frominsects for insecticide resistance [J]. Protein Pept. Lett.,2009,16(10):1181-1188.
    [111] Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitativePCR: applications to quantify cytokine gene expression [J]. Methods,2001,25(4):386-401.
    [112] Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNAmelting curves during polymerase chain reaction [J]. Analytical Biochemistry,1997,245,154-160.
    [113] Kellogg DE, Sninsky JJ, Kowk S. Quantitation of HIV-1proviral DNA relative tocellular DNA by the polymerase chain reaction [J]. Anal. Biochem.,1990,189:202-208.
    [114] Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescencemonitoring of rapid cycle DNA amplification [J]. Bio. Techniques,1997,22:130-138.
    [115] Claus LA, Jens LJ, Torben F. Normalization of Real-Time Quantitative ReverseTranscription-PCR Data: A Model-Based Variance Estimation Approach to IdentifyGenes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets [J].Cancer Research,2004,64(8):5245-5250.
    [116] Michael WP, Ales T, Christian P, et al. Determination of stable housekeepinggenes,differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations [J]. Biotechnology Letters,2004,26:509-515.
    [117] Raquel P, Isabel TY, Susana D. Evaluation of suitable reference gene for geneexpression studies in bovine muscular tissue [J]. BMC Molecular Biology,2008,9:79.
    [118] Zhang Y, Wei ZG, Li YY, et al. Transcription level of messenger RNA per genecopy determined with dual-spike-in strategy [J]. Analytical Biochemistry,2009,394:202-208.
    [119] Wu W, Li L, et al. Inhibition of nitric oxide synthase reduces motoneuron death dueto spinal root avulsion [J]. Neurosci. Lett.,1993,153:121-124.
    [120] Chu TH, Wu W, Neurotrophic factor treatment after spinal root avulsion injury [J].Cent. Nerv. Syst. Agents. Med. Chem.,2009,9:40-55.
    [121] Sharma HS, Badgaiyan RD, Alm P, et al. Neuroprotective effects of nitric oxidesynthase inhibitors in spinal cord injury-induced pathophysiology a nd motorfunctions: an experimental study in the rat [J]. Ann. NY Acad. Sci.,2005,1053:422-434.
    [122] Zhou L, Wu W, Antisense oligos to neuronal nitric oxide synthase aggravatemotoneuron death induced by spinal root avulsion in adult rat [J]. Exp. Neurol.,2006,197:84-92.
    [123] Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNAinterference in Drosophila cell lines to dissect signal transduction pathways [J].2000,97(12):6499-6503.
    [124] Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of shortinterfering RNAs targeting the human coagulation trigger Tissue Factor [J]. Nucleic.Acids. Res.,2002,30:1757-1766.
    [125] Gitlinand L, Karelsky S, Andino R. Short interfering RNA confers intracellularantiviral immunity in human cells [J]. Nature,2002,418:430-434.
    [126] Gitlinand L, Andino R. Nucleic Acid-Based Immune System: the Antiviral Potentialof Mammalian RNA Silencing [J]. J. Virol.,2003,77(13):7159-7165.
    [127] Abdelrahim M, Safe S, Baker C, Abudayyeh A. RNAi and cancer: Implications andapplications [J]. J. RNAi Gene Silencing,2006,2(1):136-145.
    [128] Quan GX, Kanada T, Tamura T. Induction of the white egg3mutant phenotype byinjection of the double-stranded RNA of the silkworm white gene [J]. Insec. Mol.Biol.,2002,11(3):217-222.
    [129] Catalanotto C, Azzalin G, Macino G, et al. Gene silencing in worms and fungi [J].Nature,2000,404:245.
    [130] Goda SK, Minton NP. A simple procedure for gel electrophoresis andNorthernblotting of RNA [J]. Nucl. Acids. Res.,1995,23:3357-3358.
    [131] Yu X. Waltzer L, Bienz M. A new Drosophila APC homologue associated withadhesive zones of epithelial celis [J]. Nat. Cell Biol.,1999,1:144-151.
    [132] Misquitta L, Paterson BM. Targeted disruption of gene function in Drosophila byRNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation[J]. Proc. Natl.Acad. Sci. USA.,1999,96:1451-1456.
    [133] Smale ST, Kadonaga JT. The RNA polymerase II core promoter [J]. Annu. Rev.Biochem.,2003,72:449-479.
    [134] Wasylyk B, Chambon P. AT to A base substitution and small deletions in theconalbumin TATA box drastically decrease specific in vitro transcription [J]. NucleicAcids Res.,1981,24(8):1813-1824.
    [135] Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeastTATA box-containing genes [J]. Cell,2004,116(5):699-709.
    [136]李姗姗,迟彦,李凌飞,马玺,平文祥,于冲,周东坡.启动子克隆方法研究进展[J].中国生物工程杂志,2005,25(7):9-16.
    [137] Christoph D, Viviane P, Mauro D, Rouaida P, Philipp B. The Eukaryotic promoterdatabase EPD: the impact of insilico primer extension [J]. Nucleic Acids Res.,2004,32:82-85.
    [138] Matys V, Fricke E, Gefers R, et al. TRANSFAC: transcriptional regulation, frompattrns to profiles [J]. Nucleic Acids Res.,2003,31(1):374-378.
    [139] Kolchanov NA, Ignatieva EV, Ananko EA, et al. Transcription regulatory reg ionsdatabase (TRRD)[J]. Nucleic Acids Res.,2002,30(1):312-317.
    [140]夏江东,程在全,吴渝生,季鹏章.高等植物启动子功能和结构研究进展[J].云南农业大学学报:自然科学版,2006,21(1):7-14.
    [141]郜金荣,叶林柏.分子生物学[M].武汉:武汉大学出版社,2007.
    [142]王云,叶向群,吴亦亮,桂慕燕,左正宏.四种启动子调控RFP报告基因在家蚕细胞(Bm-e-HNU5)内的瞬时表达[J].昆虫学报,2006,49(2):167-171.
    [143]赵巧玲,唐顺明,易咏竹,赵秀振,沈兴家,朱良均,张国政,郭锡杰.家蚕CIb1基因启动子活性分析[J].蚕业科学,2006,32(4):477-481.
    [144]严宇澄,武淑文,杨亦桦.棉铃虫细胞色素P450基因CYP9A17v2核心启动子区缺失分析[J].昆虫学报,2009,52(8):825-831.
    [145]徐家萍,魏国清,周武松.家蚕新基因Bmsop2结构及近端启动子的生物信息学分析[J].安徽农业大学学报,2008,35(1):65-69.
    [146] Wang HB, Moriyama M, Iwanaga M, Kawasaki H. Ecdysone directly and indirectlyregulates a cuticle protein gene, BMWCP10, in the wing disc of Bombyx mori [J].Insect Biochem. Molec. Biol.,2010,1-7.
    [147] Luckow VA, Summers MD. Signals important for high-level expression of foreigngenes in Autographa californica nuclear polyhedrosis virus expression vectors [J].Virology,1988,167(1):56-71.
    [148] Miller LK. Baculoviruses for foreign gene expression in insect cells [J].Biotechnology,1988,10:457-465.
    [149]袁哲明,游兰韶.重组昆虫杆状病毒杀虫剂研究进展[J].湖南农业大学学报(自然科学版),2001,27(6):494-497.
    [150]梁昌铺,胡志红,陈新文.杆状病毒作为基因治疗载体的研究进展[J].生物化学与生物物理进展,2002,29(6):860-862.
    [151] Davies AH. Baculophage: a new tool for protein display [J]. Biotechnology (NY),1995,13(10):1046.
    [152] Rabman MM, Gopinathan KP. Bombyx mori nucleopolyhedrovirus-based surfacedisplay system for recombinant proteins [J]. J. Gen. Virol.,2003,84(8):2023-2031.
    [153] Emst W, Grabherr R, Wegner D, et al. Baculovirus surface display: construction andscreening of a eukaryotic epitope library [J]. Nucleie Aeids Res.,1998,26(7):1715-1723.
    [154] Burks JK, Summers MD, Braunagel, SC. BV/ODV-E26: a palmitoylated,multifunctional structural protein of Autographa californica nucleopolyhedrovirus [J].Virology,2007,361(1):194-203.
    [155] MiaoY, ZhangY, Nakagaki K, et al. Expression of spider flagelliform silk protein inBomyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system[J]. Appl. Microbiol. Biot.,2006,71(2):192-199.
    [156] Chalfi M, TuY, EuKivchen G, et al. Green fluorescent protein as a marker for geneexpression [J]. Science,1994,263(5148):802-805.
    [157] Misteli T, Spector DL. Applications of the green fluorescent protein in cell biologyand biotechnology [J]. Nat. Biotechnol.,1997,15:961-964.
    [158] Ward WW. Phaotochemical and Photobiological Reviews [J].Vol.4, Smith KC. ed.Pleum Press,1979: l-57.
    [159] Iatrou K, Meidinger RG. Tissue-specific expression of silkmoth chorion genes invivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector [J]. Proc.Natl. Acad. Sci. USA,1990,87:3650-3654.
    [160] Gomi S, Majima K, Maeda S. Sequence analysis of the genome of Bombyx morinucleopolyhedrovirus [J]. J. Gen. Virol.,1999,80:1323-1337.
    [161] Leusch MS, Lee SC, Olins PO. A novel host-vector system for direct selection ofrecombinant baculoviruses (bacmids) in Escherichia coli [J]. Gene,1995,160(2):191-194.
    [162] Luckow VA, Lee SC, Barry GF, et al. Efficient generation of infectious recombinantbaculoviruses by site-specific transposition-mediated insertion of foreign genes into abaculovirus genome propagated in Escherichia coli [J]. J. Virol.,1993,67(8):4566-4579.
    [163] Peng R, Zhai YF, Ding H, Di TY, Zhang T, Li B, Shen WD, Wei ZG. Analysis ofreference gene expression for real-time PCR based on relative quantitation and dualspike-in strategy in the silkworm Bombyx mori [J]. Acta Biochim. Biophys. Sin.,2012,44(7):614-622.
    [164]路爱成.野桑蚕不同组织细胞色素P450CYP305B1V1基因的诱导表达特征研究[J].安徽农业科学,2009,37(12):5400-5402.
    [165]张婷,卫正国,高瑞娜,王瑞娴,赵国栋,李兵,沈卫德.芸香苷诱导家蚕谷胱甘肽-S-转移酶omega家族基因的表达变化.蚕业科学,2011,37(2):224-229.
    [166] Schefe JH, Lehmann KE, Buschmann IR, et al. Quantitative real-time RT-PCR dataanalysis: current concepts and the novel “gene expression’s CT difference” formula[J]. J. Mol. Med.,2006,84:901-910.
    [167]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [168] Baum JA, Bogaert T, Clinton W, et al. Control of coleopteran insect pests throughRNA interference [J]. Nat. Biotechnol.2007,25:1322–1326.
    [169] Mao YB, Cai WJ, Wang JW, et al. Silencing a cotton bollworm P450monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nat. Biotechnol.2007,25:1307-1313.
    [170] Kattera PK. Tolerance of silkworm (Bombyx mori L.) larvae to organphosphorusinsecticides [J]. J. Sericul. Sci. Japan,1972,41(4):301-304.
    [171] Fire A, Xu S, Montogomery MK, Kostas SA, Driver SE, Mello CC. Potent andspecific gentic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature,1998,391:806-811.
    [172] Struhl G, Struhl K, Macdonald PM. The gradient morphogen bicoid is aconcentration-dependent transcriptional activator [J]. Cell,1989,57:1259-1273.
    [173] Dubrovsky EB, Dubrovskaya VA, Berger EM. Selective binding of DrosophilaBR-C isoforms to a distal regulatory element in the hsp23promoter [J]. InsectBiochem. Mol. Biol.,2001,31:1231-1239.
    [174] Stanojevic D, Hoey T, Levine M. Sequence-specific DNA-binding activities of thegap proteins encoded by hunchback and Krueppel in Drosophila [J]. Nature,1989,341:331-335.
    [175] Gogos JA, Hsu T, Bolton J, Kafatos FC. Sequence discrimination by alternativelyspliced isoforms of a DNA binding Zinc finger domain [J]. Science,1992,257:1951-1954.
    [176] Fernandes M, Xiao H, Lis J T. Fine structure analyses of the Drosophila andSaccharomyces heat shock factor-heat shock element interactions [J]. Nucleic. AcidsRes.,1994,22:167-173.
    [177] Stanojevic D, Hoey T, Levine M. Sequence-specific DNA-binding activities of thegap proteins encoded by hunchback and Krueppel in Drosophila [J]. Nature,1989,341:331-335.
    [178] Ekker SC, von Kessler DP, Beachy PA. Differential DNA sequence recognition is adeterminant of specificity in homeotic gene action [J]. EMBO J.,1992,11:4059-4072.
    [179] Haecker U, Kaufmann E, Hartmann C, Juergens G, Knoechel W, Jaeckle H.TheDrosophila fork head domain protein crocodile is required for the establishment ofhead structures [J]. EMBO J.,1995,14:5306-5317.
    [180] Kasai Y, Nambu JR, Lieberman PM, Crews ST. Dorsal-ventral patterning inDrosophila: DNA binding of snail protein to the single-minded gene [J]. Proc. Natl.Acad. Sci.,1992,89:3414-3418.
    [181] Naylor LH. Reporter gene technology: the future looks bright [J]. Biochem.Pharmacol.,1999,58(5):749-757.
    [182]王娜,杜希宽,蒋明星,张传溪,程家安.家蚕BmN细胞中8种启动子的活性比较及利用hr5IE1启动子实现EGFP的稳定表达[J].昆虫学报,2010,53(3):279-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700