用户名: 密码: 验证码:
遗传性小脑型共济失调基因诊断平台的建立及新的致病基因的定位与克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分中国汉族人群遗传性共济失调基因诊断平台的建立
     第一章常染色体显性遗传和散发脊髓小脑型共济失调基因诊断平台的建立
     研究发现不同的种族、国家和地区,常染色体显性遗传脊髓小脑型共济失调(Spinocerebellar ataxia,SCA)不同亚型的发病率及各亚型病理和正常的核苷酸重复次数都有明显的差异,为了建立SCA致病基因的诊断平台,了解中国汉族人群SCA各亚型的分布频率特点及中国汉族人群各亚型病理和正常重复次数范围分布特点,制定一套SCA基因诊断流程,我们应用聚合酶链反应、变性聚丙烯酰胺凝胶电泳、Southern Blot等技术对来自中国汉族人群667例临床诊断为SCA的患者(430例AD遗传家系先证者,237例散发患者)进行了SCA1、SCA2、SCA3/MJD、SCA6、SCA7、SCA8、SCA10、SCA12、SCA17及DRPLA各亚型致病基因多核苷酸重复突变检测;对排除以上SCA亚型的患者应用聚合酶链反应(PCR)、变性高效液相色谱(DHPLC)、多重连接探针扩增(MLPA)结合直接测序等技术进行SCA11、SCA13、SCA14、SCA27、SCA28和SCA31亚型致病基因TTBK2、KCNC3、PRKCG、FGF14、AFG3L2和PLEKHG4点突变和SCA5、SCA11、SCA15致病基因SPTBN2、TTBK2、ITPR1大片段的插入缺失突变检测。应用T载体克隆重组DNA技术结合直接测序,对部分患者进行CAG三核苷酸病理重复次数测序分析;并应用荧光聚合酶链反应、毛细管凝胶电泳对300名中国汉族健康对照人群进行了上述SCA型三核苷酸或多核苷酸重复次数的正常范围检测和分析。
     结果在430例AD-SCA家系先证者中,共检测出SCA1家系25个(5.81%), SCA2家系27个(6.28%), SCA3家系267个(62.09%), SCA6家系8个(1.86%), SCA7家系8个(1.86%),SCA12家系1个(0.23%)和SCA17家系1个(0.23%),未明确基因分型SCA家系93个(21.63%);在237例散发患者中共检测出SCA1患者6例(2.53%), SCA2患者9例(3.80%), SCA3患者23例(9.70%), SCA6患者3例(1.27%),未明确分型SCA患者196例(82.70%);未检测出SCA8、SCA10和DRPLA亚型致病基因多核苷酸异常重复突变,SCA5、SCA11、SCA13、SCA14、SCA15/ SCA16、SCA27、SCA28和SCA31亚型传统形式的点突变及大片段的插入缺失突变。对23例SCA1患者,32例SCA2患者,305例SCA3/MJD患者,9例SCA6患者,27例SCA7患者,3例SCA12患者和2例SCA17患者进行CAG三核苷酸异常重复次数范围检测发现其范围分别是SCA1亚型39-60(平均51.09±4.88)次,SCA2型36-51(平均40.34±4.40)次,SCA3/MJD亚型49-86(,平均73.84±5.07)次,SCA6亚型23-29(平均25.56±1.94)次, SCA7亚型38-71(平均58.22±10.90)次,SCA12亚型51-52(平均51.33±0.58)次,SCA17亚型53-55(平均54.00±1.41)次;SCA1、SCA2、SCA3、SCA6、SCA7、SCA8、SCA10、SCA12、SCA17和DRPLA共10种SCA亚型致病基因正常三核苷酸或多核苷重复次数范围结果,SCA1亚型为17~35次,SCA2亚型为14~28次,SCA3/MJD亚型为13~41次,SCA6亚型为4~16次,SCA7亚型为5~17次,SCA12亚型为5~21次,SCA17亚型为23~41次,DRPLA亚型为12~33次,SCA8亚型中CTA/CTG三核苷酸的重复次数为12-43次,SCA10亚型中ATTCT五核苷酸的重复次数为9~32次。
     根据以上结果我们发现在中国汉族人群中SCA3/MJD为最常见的SCA亚型,其次为SCA2、SCA1、SCA7和SCA6, SCA12和SCA17比较少见,SCA8、SCA10和DRPLA罕见,其中SCA17亚型为国内首次报道。建立中国汉族人群不同SCA亚型CAG三核苷酸病理重复次数范围标准和中国汉族人群不同SCA亚型正常核苷酸重复次数范围,可为SCA的诊断提供参考标准。初步建立了SCA基因诊断平台,制定了SCA基因诊断流程。
     第二章常染色体隐性共济失调基因诊断平台的建立
     常染色体隐性遗传小脑性共济失调(autosomal recessive cerebellar ataxia, ARCA)是一大类比较罕见的、具有明显临床和遗传异质性的神经系统退行性疾病,为了建立中国汉族人群ARCA致病基因的诊断平台,了解中国汉族人群ARCA各亚型的分布频率,制定一套ARCA基因诊断流程,我们采用PCR结合DNA直接测序法对来自中国汉族人群36例临床诊断为常染色体隐性遗传先证者和60例发病年龄<20岁的散发SCA患者进行了发病率相对较高的弗里德赖希共济失调(FRDA),伴选择性维生素E缺乏的共济失调(AVED),伴动眼不能的共济失调1型(AOA1),伴动眼不能的共济失调2(AOA2)型等共四种亚型进行致病基因FXN、ATTP、APTX和SETX的相关检测分析。常规PCR难以对基因比较大外显子比较多的ARCA亚型完成突变检测,如毛细管扩张共济失调(AT),痉挛性共济失调(SACS),我们利用全基因外显子组捕获结合高通量测序技术(Exome测序)对其进行全基因外显子组测序分析。
     结果未发现FXN、ATTP、APTX和SETX基因致病突变,全基因外显子组测序发现一个AT患者ATM基因(c.5293 C-T)和(c.1402-1403delAA)复合杂合突变;一个SACS家系SACS基因(c.5399 G-C)和(C.788delA)复合杂合突变。S anger测序证实了该复合杂合突变的正确性,并且两个复合杂合突变在AT家系和SACS家系内分别和疾病表型共分离。本研究证实中国汉族人群ARCA家系中FRDA、AVED、AOA1和AOA2非常罕见,初步建立了ARCA基因诊断平台,制定了ARCA的基因诊断流程,以及应用Exome测序进行ARCA基因诊断的技术平台。
     第二部分一个常染色体显性遗传SCA家系致病基因的定位与克隆
     第一章一个新的常染色体显性遗传SCA家系致病基因的定位
     遗传性脊髓小脑型共济失调(spinocerebellar ataxia, SCA)是一类包括多种亚型在内的具有明显临床和遗传异质性的进行性神经系统退行性疾病,目前已经定位了近28个基因位点,其中22种SCA亚型致病基因已被克隆。前期工作我们收集到一个来自中国汉族的SCA家系,呈四代遗传,患者表现缓慢进展的晚发型小脑性共济失调,部分患者伴有明显的痉挛性斜颈。前期工作已经排除了已知的SCA1、SCA2、SCA3/MJD、SCA6、SCA7、SCA8、SCA10、SCA12、SCA17和DRPLA亚型致病基因三核苷酸及多核苷酸异常重复突变检测,SCA11、SCA13、SCA14、SCA27、SCA28和SCA31亚型致病基因TTBK2、KCNC3、PRKCG、FGF14、AFG3L2和PLEKHG4点突变,SCA5、SCA11、SCA15致病基因SPTBN2、TTBK2、ITPR1大片段的插入缺失突变检测和目前已定位各SCA亚型位点的连锁分析排除定位检测。
     通过采用HumanLinkage-12 Panels连锁分析芯片技术,对该AD-SCA家系SNP位点进行扫描,结果在第20号染色体的两个SNP rs12624577和rs674630之间,相当于20p13-12.2的区域,取得连续分布正LOD值。其中,在rs976192取得最大两点LOD值3.85,对上面区间应用微卫星遗传标记进行精细定位分析,在20号染色体上微卫星遗传标记D20S437处取得最大两点LOD值5.36,依据这两个重要的重组交换事件的发生,该家系的候选致病基因定位于D20S199和D20S917之间的区域,家系内所有临床诊断明确的患者均携带相同的单体型。该定位区间(20p13-12.2)遗传距离为18.45 cM,相当于物理距离约有8.4 Mb,区间内包含有91个候选致病基因。
     第二章应用Exome测序克隆一新的常染色体显性遗传脊髓小脑型共济失调致病基因-TGM6
     单基因病致病基因的克隆常采用传统的候选基因定位克隆技术,然而传统的定位克隆技术常常会因为家系内成员太少、基因位点的异质性、外显不全及定位区间内候选克隆基因太多等而受到限制。全基因外显子组捕获结合高通量测序一次可获得全部外显子的信息,从根本上解决了传统克隆致病基因的难题。我们联合应用连锁分析结果和Exome测序的方法去克隆一新的SCA致病基因。首先从一个呈四代遗传的SCA家系(CS)中选取4位患者进行了Exome测序,经数据分析在TGM6基因10号外显子上面发现一个错义突变c.1550T-G(L517W),该突变在家系内和疾病表型共分离,并且在500个正常对照测序分析没有发现该突变位点。信息学分析发现该错义突变在进化过程中处于高度保守区域,功能预测该突变对蛋白质的功能有明显的影响。应用连锁分析的结果,TGM6基因c.1550T-G(L517W)改变正好位于之前该家系全基因组连锁分析定位的区间(20p13-12.2)内,Exome测序和全基因组连锁定位分析的结果互相验证了TGM6基因为该家系致病基因的正确性。
     我们又在另外一个SCA家系(LY)发现了TGM6基因7号外显子的另外一个位点c.980A-G transition(D327G)突变,该突变LY家系内同样和疾病表型共分离,在500个正常对照测序分析没有发现该位点突变。该新的突变进一步证实了我们克隆的新的致病基因的正确性。
     新的致病基因TGM6的克隆说明在单基因遗传疾病中在一个家系内对部分患者进行Exome测序从而寻找致病基因是一种有效的策略,如果利用Exome测序技术和传统的定位克隆研究方法相结合,可能成为进行人类单基因遗传疾病克隆的一个更高效的新途径。
     第三部分应用Exome测序克隆两个新的常染色体隐性遗传共济失调致病基因--JXX和TYY
     在遗传性共济失调中,常染色体隐性小脑性共济失调(Autosomal recessive cerebellar ataxias, ARCA)是一大组比较罕见的具有明显临床和遗传异质性的神经系统退行性疾病,病变主要累及小脑、脊髓小脑束或/和脊髓感觉束。ARCA临床表型复杂可累及中枢神经系统、周围神经系统,部分病例可累及除神经系统之外的其它系统和器官。ARCA还包括一大批罕见的类型,根据分子发病机制、病理、自然病史和病变部位,目前ARCA中至少已划分了100多种不同的类型,其中70多个相关的致病基因已被克隆。
     多数的ARCA家系,因为家系成员少使得应用传统的候选基因定位克隆方法去克隆致病基因比较困难。我们应用Exome测序技术对两个ARCA家系(JX家系和TY家系)进行了全基因组外显子的捕获和测序分析,作为常染色体隐性遗传模式,我们在测序结果里主要分析纯和突变和复合杂合突变。
     结果我们在JX家系内发现了一个JXX基因(c.493C-T)的纯和突变,在TY家系内发现TYY基因(c.568C-T)和(c.760A-G)两突变位点的复合杂合突变,信息分析发现JXX基因(c.493C-T)和TYY基因(c.568C-T)与(c.760A-G)三个突变位点均位于高度保守区域,并且分别在JX家系和TY家系内与疾病表型共分离。500个正常对照测序分析没有发现以上三个突变位点的改变,排除了罕见多态的可能。
     我们又在另外一个ARCA家系(JX-NX)发现了JXX基因另外两个位点(c.389A-T和c.441G-T)的复合杂合突变,该复合杂合突变在JX-NX家系内和疾病表型共分离,在500个正常对照测序分析没有发现该两个突变位点。该新的复合杂合突变进一步证实了我们克隆的新的致病基因的正确性。
     新的ARCA致病基因JXX和TYY的克隆证实了在一些少见的孟德尔单基因疾病致病基因的克隆中全基因外显子组测序是一个方面而又高效的策略。
Part I The establishment of genetic diagnosis platform for hereditary cerebellar ataxia of Chinese Han
     Chapter I The establishment of genetic diagnosis platform for autosomal dominant spinocerebellar ataxia
     The incidence, expanded and normal CAG trinucleotide repeats of different subtypes of autosomal dominant Spinocerebellar ataxia had a significant difference in different races, countries and regions. To set up a genetic diagnosis platform, detect the genetic spectrum and expanded and normal CAG trinucleotide repeat numbers of SCA subtypes in Chinese Han population, thus establish a tiered-diagnostic approach in our genetic testing laboratory for SCA, the nucleotide repeat mutations of SCA 1,2,3, 6,7,8,10,12,17 and dentatorubral-pallidoluysian atrophy (DRPLA) subtypes were detected by the polymerase chain reaction (PCR), denaturing polyacrylamide gel electrophoresis and Southern Blot technique in a cohort of 667 Mainland Chinese SCA patients, including 430 families with autosomal dominant SCA and 237 sporadic forms. Subsequently, we performed the analysis of TTBK2, KCNC3, PRKCG, FGF14, AFG3L2 and PLEKHG4 gene point mutation in subtypes of SCA11,13,14,27,28 and SCA31, as well as SPTBN2, TTBK2 and ITPR1 gene insert and delete (Indel) mutations in subtypes of SCA5,11 and SCA 15 using PCR, Denature High Performance Liquid Chromatography (DHPLC), Multiplex Ligation-dependent Probe Amplification (MLPA) and DNA direct sequencing technology in patients excluded of SCA1,2,3,6,7,8,10,12,17 and DRPLA loci. The expanded CAG repeat numbers of abnormal allele of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, SCA 12 and SCA 17 genes were analyzed in parts of SCA patients using recombinant DNA technology by T-vector clone and direct sequencing. Meanwhile, the normal nucleotide repeat numbers of SCA1,2,3,6,7,8,10,12,17 and DRPLA were detected using fluorescence-PCR and Capillary gel electrophoresis technique in 300 healthy controls from Chinese Han.
     Among the 430 AD-SCA families,25 (5.81%) were positive for SCA1,27(6.28%) were positive for SCA2,267(62.09%) were positive for SCA3/MJD,8(1.86%) were positive for SCA6,8(1.86%) were positive for SCA7,1(0.23%) were positive for SCA12 and 1 (0.23%) were positive for SCA17,93(21.63%) were genetically unidentified. There were 6(2.53%) SCA1,9(3.80%) SCA2,23(9.70%) SCA3/MJD, 3(1.27%) SCA6 and 196(82.70%) were genetically unidentified in the 237 sporadic SCA patients. None expanded nucleotide repeat of SCA8, SCA10 and DRPLA mutation and traditional point and Indel mutation of SCA5. SCA11、SCA13、SCA14、SCA15/SCA16、SCA27、SCA28 and SCA31 was found. Among parts of SCA patients, the range of expanded CAG repeat number was 39 to 60 (mean=51.09±4.88) in 23 SCA1 patients,36 to 51 (mean=40.34±4.40) in 32 SCA2 patients,49 to 86 (mean=73.84±5.07) in 305 SCA3/MJD,23 to 29 (mean=25.56±1.94) in 9 SCA6 patients,38 to 71(mean=58.22±10.90) in 27 SCA7 patients,51 to 52 (mean=51.33±0.58) in 3 SCA12 patients,53 to 55 (mean=54.00±1.41) in 2 SCA17 patients. Among 300 healthy people, the range of CAG trinucleotide repeat number was 17 to 35 in SCA1,14-28 in SCA2,13-41 in SCA3/MJD,4-16 in SCA6,5-17 in SCA7,5-21 in SCA12,23-41 in SCA17, and 12-33 in DRPLA; the CTA/CTG trinucleotide repeat number on SCA8 locus were 12-43 and the ATTCT pentanucleotide repeat number on SCA 10 locus were 9-32.
     From the results, we concluded that the frequency of SCA3/MJD is the substantially highest subtype in patients with autosomal dominant and sporadic forms in Chinese Han SCA patients, subsequent upon SCA2, SCA1, SCA7 and SCA6; SCA12 and SCA17 are rare subtype, while SCA8, SCA10, and DRPLA were seldom found. For the first time we identified SCA 17 subtypes in mainland China. For the first time, we established the expanded and normal reference standard of polynucleotide repeat number of different subtypes of SCA in Chinese Han and can be used as reference criteria. Meanwhile, we established the diagnostic platform and tiered-diagnostic approach in our genetic testing laboratory for SCA of Chinese Han.
     ChapterⅡThe establishment of genetic diagnosis platform for autosomal recessive cerebellar ataxia
     Autosomal recessive cerebellar ataxias (ARCA) constitute a large rare, clinically and genetically heterogeneous group of progressive neurodegenerative diseases. To set up the genetic diagnosis platform, detect the spectrum and establish a tiered-diagnostic approach in our genetic testing laboratory for ARCA of Chinese Han, gene mutation analysis of FXN for Friedreich's ataxia (FRDA), ATTP for ataxia with vitamin E deficiency(AVED), APTX for ataxia plus oculomotor apraxia type 1 (AOA1) and SETX for ataxia plus oculomotor apraxia type 2 (AOA2) were carried out by polymerase chain reaction combined with DNA direct sequencing and polyacrylamide gel electrophoresis in a cohort of 96 Mainland Chinese patients affected with ataxia, including 36 index patients in families with autosomal recessive cerebellar ataxia (ARCA) and 60 sporadic patients in which the onset was less 20 years. All of these four ARCA subtypes were relatively common in worldwide. For some ARCA subtypes, such as ataxia telangiectasia (AT) and (Spastic ataxia of Charlevoix-Saguenay, SACS), it's difficult to complete the mutation analysis by traditional PCR and direct sequencing because of too many exons in ATM gene of AT. Here, we used Whole-exome capture and massively parallel sequencing technology (Exome sequencing) to identify the pathological mutation in AT family.
     No mutation of FXN, ATTP, APTX and SETX were detected. A compound heterozygote mutation (c.5293 C-T) and (c.1402-1403delAA) were found in ATM gene of one AT patient and another compound heterozygote mutation (c.5399 G-C) and (C.788delA) were found in SACS gene of one SACS patient. Traditional Sanger validates the Exome sequencing results, and compound heterozygote mutation (c.5399 G-C) and (C.788delA) are absent in 500 normal unaffected individuals of matched geographical ancestry. Meanwhile, both of these compound heterozygote mutations completely co-segregate with the phenotype in each of AT and SACS family. From the results, we concluded that FRDA, AVED, AOA1 and AOA2 were seldom found subtype of ARCA in Chinese Han. We established the diagnosis platform and tiered-diagnostic approach in our genetic testing laboratory for ARCA of Chinese Han, as well as the technology of diagnosis platform using Exome sequencing for some ARCA causative genes.
     Part II Mapping and cloning of a novel causative gene for an SCA family
     Chapter I Mapping of a disease gene in a novel SCA family
     Autosomal dominant spinocerebellar ataxias (ADCA) constitute a large clinically and genetically heterogeneous group of progressive neurodegenerative diseases with multiple types. To date, classical genetic studies have revealed 31 distinct genetic forms of spinocerebellar ataxias and identified 19 causative genes. A four-generation Chinese family with SCA, characterized by late onset, slow progressive gait, limb ataxia, and, in some cases, spasmodic torticollis was performed in this study. The known SCA subtypes locus and nucleotide expansion mutation of SCA1、SCA2、SCA3/MJD、SCA6、SCA7、SCA8、SCA10、SCA12、SCA17 and DRPLA, TTBK2, KCNC3, PRKCG, FGF14, AFG3L2 and PLEKHG4 gene point mutation in subtypes of SCA 11, SCA13, SCA14, SCA27, SCA28 and SCA31, as well as SPTBN2, TTBK2 and ITPR1 gene insert and delete (Indel) mutations in subtypes of SCA5, SCA11 and SCA 15 has been excluded.
     To localize the disease-causing gene, we carried out whole-genome genotyping using the Infinium HumanLinkage-12 Genotyping BeadChip (Illumina, San Diego, CA). Parallel inspection of the SNP data of the CS family identified a single shared region on chromosome 20p13-12.2 flanked by SNP markers rs 12624577 and rs674630 with a maximum two-point logarithm of the odds score of 3.85 (θ=0.00) at rs976192. A maximum two-point logarithm of the odds score of 5.36 (θ=0.00) was obtained at D20S437 using thirteen additional markers for fine mapping. The highest probability haplotype in the CS pedigree was reconstructed manually using the Cyrillic program. According to the key recombination, a particular single haplotype, comprising identical alleles spanned by microsatellite markers D20S199 and D20S917, was identified to co-segregate with the disease phenotype in all examined affected family members with SCA. This locus was found to span an 18.45 cM region, approximately 8.4 Mb of genomic DNA, and included 91 reference genes.
     ChapterⅡTGM6 identified as a novel causative gene of autosomal dominant SCA using exome sequencing
     Previously, the primary means for disease gene identification has been through traditional positional cloning strategies. The power of this method, however, is limited, especially in situations where there are small family sizes, locus heterogeneity, substantially reduced reproductive fitness, and an abundance of candidate genes present in the mapped region. Here, we used a combinational strategy of exome sequencing and linkage analysis to identify a novel spinocerebellar ataxia causative gene. We sequenced the whole-exome of four patients in a Chinese four-generation spinocerebellar ataxia family, and identified a missense mutation c.1550T-G transition (L517W) in exon ten of TGM6. The mutation was completely co-segregated with the phenotype and was absent in 500 normal unaffected individuals of matched geographical ancestry. We predicted that the change had a functional impact for it was located in a highly conserved position. Meanwhile, we used linkage analysis to validate the exome results. The mutation identified using exome sequencing was located at the same region (20p13-12.2) identified by linkage analysis, which cross-validated TGM6 as the causative spinocerebellar ataxia gene in this family. We further confirmed our finding by identifying another missense mutation c.980A-G transition (D327G) in exon seven of TGM6, in an additional spinocerebellar ataxia family which also co-segregated with the phenotype and was also absent in 500 normal unaffected individuals of matched geographical ancestry. The finding of TGM6 as a novel causative gene of spinocerebellar ataxia illustrates whole-exome sequencing of affected individuals from one family as an effective and cost efficient method for mapping genes of rare Mendelian disorders and the power of a combinational method of linkage analysis and exome sequencing for further improving efficiency.
     PartⅢJXX and TYY identified as two novel causative genes of two autosomal recessive ataxia using Exome sequencing
     Among the hereditary ataxias, autosomal recessive cerebellar ataxias (ARCA) are a heterogeneous group of rare neurological disorders that affect the cerebellum, the spinocerebellar tract and/or the sensory tracts of the spinal cord. Clinical phenotypes vary from central to peripheral nervous system, and in some case other systems and organs. This group encompasses a large number of rare diseases. According to genetic, pathological, natural history and topographical, this group can be divided into more than one hundred different subtypes. To date, classical genetic studies have identified at least fifty causative genes of ARCA.
     For most ARCA pedigrees, small family size is limited for traditional positional cloning strategies to find the causative gene. Here, we used Whole-exome capture and massively parallel sequencing technology to identify the causative gene of two ARCA families (JX family and TY family). We sequenced the whole-exome of two patients in each of the two Chinese ARCA families. As the autosomal recessive inherited mode, we focused on the novel homozygote and compound heterozygote SNP.
     At last we identified a homozygote missense mutation (c.493 C-T) in JXX gene of JX family, a compound heterozygote mutation, nonsense (c.568C-T) and missense mutation (c.760A-G), in TYY gene of TY family. Both of these homozygote and compound heterozygote mutations are at highly conserved position, completely co-segregate with the phenotype in each of JX and TY family and are absent in 500 normal unaffected individuals of matched geographical ancestry. We further confirmed our finding by identifying another compound heterozygote missense mutation, c.389 A-T and c.441 G-T, in JXX gene in an additional ARCA family (JX-NX family) which also co-segregated with the phenotype were absent in 500 normal unaffected individuals of matched geographical ancestry.
     The finding of JXX and TYY as novel causative genes of ARCA illustrates whole-exome sequencing as an effective and cost efficient method for mapping genes of rare Mendelian disorder.
引文
[1]Schols L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet neurology 2004;3(5):291-304.
    [2]Durr A. Autosomal dominant cerebellar ataxias:polyglutamine expansions and beyond. Lancet Neurol 2010;9(9):885-894.
    [3]Matilla-Duenas A, Sanchez I, Corral-Juan M, et al. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum 2010;9(2):148-166.
    [4]Tsuji S, Onodera O, Goto J, et al. Sporadic ataxias in Japan--a population-based epidemiological study. Cerebellum 2008;7(2):189-197.
    [5]Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006;129(Pt 6):1357-1370.
    [6]Neuromuscular. Washington University, St. Louis, MO USA. Available at: http://neuromuscular.wustl.edu/ataxia/domatax.html#6 (accessed Apr 2011). In.
    [7]Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4(3):221-226.
    [8]Sanpei K, Takano H, Igarashi S, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996;14(3):277-284.
    [9]Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996;14(3):285-291.
    [10]Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994;8(3):221-228.
    [11]Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4):clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996;59(2):392-399.
    [12]Ranum LP, Schut LJ, Lundgren JK, et al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 1994;8(3):280-284.
    [13]Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1 A-voltage-dependent calcium channel. Nat Genet 1997;15(1):62-69.
    [14]David G, Abbas N, Stevanin G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997;17(1):65-70.
    [15]Koob MD, Moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999;21(4):379-384.
    [16]Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000;26(2):191-194.
    [17]Worth PF, Giunti P, Gardner-Thorpe C, et al. Autosomal dominant cerebellar ataxia type Ⅲ:linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 1999;65(2):420-426.
    [18]Holmes SE, O'Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5'region of PPP2R2B is associated with SCA12. Nat Genet 1999;23(4):391-392.
    [19]Waters MF, Minassian NA, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature genetics 2006;38(4):447-451.
    [20]Yamashita I, Sasaki H, Yabe I, et al. A novel locus for dominant cerebellar ataxia (SCAM) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 2000;48(2):156-163.
    [21]Chen DH, Brkanac Z, Verlinde CL, et al. Missense mutations in the regulatory domain of PKC gamma:a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 2003;72(4):839-849.
    [22]Yabe I, Sasaki H, Chen DH, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 2003;60(12):1749-1751.
    [23]Gardner RJ, Knight MA, Hara K, et al. Spinocerebellar ataxia type 15. Cerebellum 2005;4(1):47-50.
    [24]Miyoshi Y, Yamada T, Tanimura M, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 2001;57(1):96-100.
    [25]Dudding TE, Friend K, Schofield PW, et al. Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 2004;63(12):2288-2292.
    [26]Novak MJ, Sweeney MG, Li A, et al. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16:a genetic, clinical and radiological description. Mov Disord 2010;25(13):2176-2182.
    [27]Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001;10(14):1441-1448.
    [28]Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA):Linkage to chromosome 7q22-q32. Am J Med Genet 2002;114(4):450-457.
    [29]Verbeek DS, Schelhaas JH, Ippel EF, et al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 2002;111(4-5):388-393.
    [30]Chung MY, Lu YC, Cheng NC, et al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 2003;126(Pt6):1293-1299.
    [31]Schelhaas HJ, Verbeek DS, Van de Warrenburg BP, et al. SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain 2004;127(Pt 1):E6; author reply E7.
    [32]Knight MA, Gardner RJ, Bahlo M, et al. Dominantly inherited ataxia and dysphonia with dentate calcification:spinocerebellar ataxia type 20. Brain 2004;127(Pt 5):1172-1181.
    [33]Vuillaume I, Devos D, Schraen-Maschke S, et al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 2002;52(5):666-670.
    [34]Verbeek DS, van de Warrenburg BP, Wesseling P, et al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain 2004;127(Pt 11):2551-2557.
    [35]Bakalkin G, Watanabe H, Jezierska J, et al. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 2010;87(5):593-603.
    [36]Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 2004;55(1):97-104.
    [37]Yu GY, Ho well MJ, Roller MJ, et al. Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 2005;57(3):349-354.
    [38]van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 2003;72(1):191-199.
    [39]Cagnoli C, Mariotti C, Taroni F, et al. SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 2006;129(Pt 1):235-242.
    [40]Storey E, Bahlo M, Fahey M, et al. A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 2009;80(4):408-411.
    [41]Edener U, Bernard V, Hellenbroich Y, et al. Two dominantly inherited ataxias linked to chromosome 16q22.1:SCA4 and SCA31 are not allelic. J Neurol 2011.
    [42]Sakai H, Yoshida K, Shimizu Y, et al. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. Neurogenetics 2010;11(4):409-415.
    [43]Sato N, Amino T, Kobayashi K, et al. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009;85(5):544-557.
    [44]Wang JL, Yang X, Xia K, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 2010;133(Pt 12):3510-3518.
    [45]Koide R, Ikeuchi T, Onodera O, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994;6(1):9-13.
    [46]Nagafuchi S, Yanagisawa H, Ohsaki E, et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 1994;8(2):177-182.
    [47]Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet 1983;1(8334):1151-1155.
    [48]Wang JL, Wu YQ, Lei LF, et al. [Polynucleotide repeat expansion of nine spinocerebellar ataxia subtypes and dentatorubral-pallidoluysian atrophy in healthy Chinese Han population]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2010;27(5):501-505.
    [49]Tang B, Liu C, Shen L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 2000;57(4):540-544.
    [50]Jiang H, Tang B, Xia K, et al. Spinocerebellar ataxia type 6 in Mainland China: molecular and clinical features in four families. J Neurol Sci 2005;236(1-2):25-29.
    [51]Bahl S, Virdi K, Mittal U, et al. Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet 2005;69(Pt 5):528-534.
    [52]Silveira I, Miranda C, Guimaraes L, et al. Trinucleotide repeats in 202 families with ataxia:a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 2002;59(4):623-629.
    [53]Hereditary ataxia overview. In:GeneReviews, Available at: http://www.ncbi.nlm.nih.gov/sites/GeneTests/?db=GeneTests (accessed April 2011). In.
    [54]Trott A, Jardim LB, Ludwig HT, et al. Spinocerebellar ataxias in 114 Brazilian families:clinical and molecular findings. Clin Genet 2006;70(2):173-176.
    [55]Schols L, Amoiridis G, Buttner T, et al. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol 1997:42(6):924-932.
    [56]Basri R, Yabe I, Soma H, et al. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan:a study of 113 Japanese families. J Hum Genet 2007;52(10):848-855.
    [57]Wang JL, Xiao B, Cui XX, et al. Analysis of SCA2 and SCA3/MJD repeats in Parkinson's disease in mainland China:genetic, clinical, and positron emission tomography findings. Mov Disord 2009;24(13):2007-2011.
    [58]Alonso E, Martinez-Ruano L, De Biase I, et al. Distinct distribution of autosomal dominant spinocerebellar ataxia in the Mexican population. Mov Disord 2007;22(7):1050-1053.
    [59]Krishna N, Mohan S, Yashavantha BS, et al. SCA 1, SCA 2 & SCA 3/MJD mutations in ataxia syndromes in southern India. Indian J Med Res 2007;126(5):465-470.
    [60]Brusco A, Gellera C, Cagnoli C, et al. Molecular genetics of hereditary spinocerebellar ataxia:mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 2004;61(5):727-733.
    [61]Maruyama H, Izumi Y, Morino H, et al. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia:a study of 1,286 Japanese patients. Am J Med Genet 2002; 114(5):578-583.
    [62]Bryer A, Krause A, Bill P, et al. The hereditary adult-onset ataxias in South Africa. J Neurol Sci 2003;216(1):47-54.
    [63]Dragasevic NT, Culjkovic B, Klein C, et al. Frequency analysis and clinical characterization of different types of spinocerebellar ataxia in Serbian patients. Mov Disord 2006;21(2):187-191.
    [64]van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, et al. Spinocerebellar ataxias in the Netherlands:prevalence and age at onset variance analysis. Neurology 2002;58(5):702-708.
    [65]Juvonen V, Kairisto V, Hietala M, et al. Calculating predictive values for the large repeat alleles at the SCA8 locus in patients with ataxia. J Med Genet 2002;39(12):935-936.
    [66]Matsuura T, Ranum LP, Volpini V, et al. Spinocerebellar ataxia type 10 is rare in populations other than Mexicans. Neurology 2002;58(6):983-984.
    [67]Teive HA, Roa BB, Raskin S, et al. Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 2004;63(8):1509-1512.
    [68]Xu Q, Li XH, Wang JL, et al. Mutation analysis of the TATA box-binding protein (TBP) gene in Chinese Han patients with spinocerebellar ataxia. J Clin Neurosci 2009;16(10):1374-1375.
    [69]Jin DK, Oh MR, Song SM, et al. Frequency of spinocerebellar ataxia types 1,2,3,6,7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 1999;246(3):207-210.
    [70]MD K, ML M, LJ S, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999;21(4):379-384.
    [71]ML M, LJ S, TD B, et al. SCA8 CTG repeat:en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 2000;9(14):2125-2130.
    [72]G S, A H, A D, et al. Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet 2000;24(3):213; author reply 215.
    [73]I A, LB J,O A, et al. Reduced penetrance of intermediate size alleles in spinocerebellar ataxia type 10. Neurology 2006;66(10):1602-1604.
    [74]T M, P F, CE P, et al. Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10:repeat purity as a disease modifier? Am J Hum Genet 2006;78(1):125-129.
    [75]A Z, J S, M P, et al. Spinocerebellar ataxia type 8 in Scotland:genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry 2004;75(3):459-465.
    [76]HA T, BB R, S R, et al.Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 2004;63(8):1509-1512.
    [77]Schols L, Szymanski S, Peters S, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 2000;107(2):132-137.
    [78]Abele M, Minnerop M, Urbach H, et al. Sporadic adult onset ataxia of unknown etiology:a clinical, electrophysiological and imaging study. J Neurol 2007;254(10):1384-1389.
    [79]Zuhlke C, Dalski A, Hellenbroich Y, et al. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet 2002;10(3):204-209.
    [80]Padiath QS, Srivastava AK, Roy S, et al. Identification of a novel 45 repeat unstable allele associated with a disease phenotype at the MJD1/SCA3 locus. Am J Med Genet B Neuropsychiatr Genet 2005;133B(1):124-126.
    [81]Gu W, Ma H, Wang K, et al. The shortest expanded allele of the MJD1 gene in a Chinese MJD kindred with autonomic dysfunction. Eur Neurol 2004;52(2):107-111.
    [82]Gao R, Matsuura T, Coolbaugh M, et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 2008;16(2):215-222.
    [83]Modoni A, Contarino MF, Bentivoglio AR, et al. Prevalence of spinocerebellar ataxia type 2 mutation among Italian Parkinsonian patients. Mov Disord 2007;22(3):324-327.
    [84]Kim JM, Hong S, Kim GP, et al. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch Neurol 2007;64(10):1510-1518.
    [85]Kim JY, Park SS, Joo SI, et al. Molecular analysis of Spinocerebellar ataxias in Koreans:frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6, and SCA7. Mol Cells 2001;12(3):336-341.
    [86]Juvonen V, Hietala M, Kairisto V, et al. The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand 2005;111(3):154-162.
    [87]Alluri RV, Komandur S, Wagheray A, et al. Molecular analysis of CAG repeats at five different spinocerebellar ataxia loci:correlation and alternative explanations for disease pathogenesis. Mol Cells 2007;24(3):338-342.
    [88]Zeman A, Stone J, Porteous M, et al. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry 2004;75(3):459-465.
    [89]Mariotti C, Alpini D, Fancellu R, et al. Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol 2007;254(11):1538-1546.
    [90]Wang JL, Jiang H, Zhang S, et al. Lack of variation of ATTCT pentanucleotide repeats at ATXN10 gene between clinically diagnosed ataxia patients and normal individuals originated from Chinese Han. J Genet 2008;87(3):283-286.
    [91]Jen JC, Graves TD, Hess EJ, et al. Primary episodic ataxias:diagnosis, pathogenesis and treatment. Brain 2007;130(Pt 10):2484-2493.
    [92]Wang JL, Xu Q, Lei LF, et al. [Frequency of spinocerebellar ataxia types 1,2,3, 6,7,8,10,12,17 and dentatorubral-pallidoluysian atrophy in Chinese Han population]. Zhonghua Shen Jing Ke Za Zhi 2009;42(10):672-675.
    [93]Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007;6(3):245-257.
    [94]Palau F, Espinos C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis 2006;1:47.
    [95]Embirucu EK, Martyn ML, Schlesinger D, et al. Autosomal recessive ataxias:20 types, and counting. Arq Neuropsiquiatr 2009;67(4):1143-1156.
    [96]van de Warrenburg BP, Sinke RJ, Kremer B. Recent advances in hereditary spinocerebellar ataxias. J Neuropathol Exp Neurol 2005;64(3):171-180.
    [97]Di Donato S, Gellera C, Mariotti C. The complex clinical and genetic classification of inherited ataxias.Ⅱ. Autosomal recessive ataxias. Neurol Sci 2001;22(3):219-228.
    [98]Harding AE. Early onset cerebellar ataxia with retained tendon reflexes:a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J Neurol Neurosurg Psychiatry 1981;44(6):503-508.
    [99]Pandolfo M. Molecular pathogenesis of Friedreich ataxia. Arch Neurol 1999;56(10):1201-1208.
    [100]Puccio H, Koenig M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 2000;9(6):887-892.
    [101]Taylor AM, Byrd PJ. Molecular pathology of ataxia telangiectasia. J Clin Pathol 2005;58(10):1009-1015.
    [102]Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 1997;15:177-202.
    [103]Silvestri G, Masciullo M, Piane M, et al. Homozygosity for c 6325T>G transition in the ATM gene causes an atypical, late-onset variant form of ataxia-telangiectasia. J Neurol 2010;257(10):1738-1740.
    [104]McKinnon PJ. ATM and ataxia telangiectasia. EMBO Rep 2004;5(8):772-776.
    [105]Engert JC, Berube P, Mercier J, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000;24(2):120-125.
    [106]Baets J, Deconinck T, Smets K, et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 2010;75(13):1181-1188.
    [107]Anesi L, de Gemmis P, Pandolfo M, et al. Two novel homozygous SACS mutations in unrelated patients including the first reported case of paternal UPD as an etiologic cause of ARSACS. J Mol Neurosci 2011;43(3):346-349.
    [108]Albert TJ, Molla MN, Muzny DM, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods 2007;4(11):903-905.
    [109]Yu S, Bittel DC, Kibiryeva N, et al. Validation of the Agilent 244K oligonucleotide array-based comparative genomic hybridization platform for clinical cytogenetic diagnosis. Am J Clin Pathol 2009;132(3):349-360.
    [110]Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008;26(10):1135-1145.
    [111]Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009;25(4):195-203.
    [112]Montermini L, Rodius F, Pianese L, et al. The Friedreich ataxia critical region spans a 150-kb interval on chromosome 9q13. Am J Hum Genet 1995;57(5):1061-1067.
    [113]Campuzano V, Montermini L, Molto MD, et al. Friedreich's ataxia:autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271(5254):1423-1427.
    [114]Koutnikova H, Campuzano V, Foury F, et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 1997;16(4):345-351.
    [115]Arita M, Sato Y, Miyata A, et al. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J 1995;306 (Pt 2):437-443.
    [116]Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268(5218):1749-1753.
    [117]Kastan M. Ataxia-telangiectasia--broad implications for a rare disorder. N Engl J Med 1995;333(10):662-663.
    [118]Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001;28(3):223-231.
    [119]Nikali K, Suomalainen A, Saharinen J, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005;14(20):2981-2990.
    [120]Ramachandran N, Girard JM, Turnbull J, et al. The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 2009;50 Suppl 5:29-36.
    [121]Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 2000;19(23):6440-6452.
    [122]Chung KT, Shen Y, Hendershot LM. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 2002;277(49):47557-47563.
    [123]Nystuen A, Benke PJ, Merren J, et al. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Mol Genet 1996;5(4):525-531.
    [124]Date H, Onodera O, Tanaka H, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001;29(2):184-188.
    [125]Moreira MC, Barbot C, Tachi N, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2001;29(2):189-193.
    [126]Moreira MC, Klur S, Watanabe M, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 2004:36(3):225-227.
    [127]Quinzii CM, Kattah AG, Naini A, et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 2005;64(3):539-541.
    [128]Breedveld GJ, van Wetten B, te Raa GD, et al. A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J Med Genet 2004;41(11):858-866.
    [129]Bomont P, Watanabe M, Gershoni-Barush R, et al. Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur J Hum Genet 2000;8(12):986-990.
    [130]Verheijen FW, Verbeek E, Aula N, et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 1999;23(4):462-465.
    [131]Tang J, Kriz RW, Wolfman N, et al. A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 1997;272(13):8567-8575.
    [132]Larsson PK, Claesson HE, Kennedy BP. Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem 1998;273(1):207-214.
    [133]Apel ED, Lewis RM, Grady RM, et al. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 2000;275(41):31986-31995.
    [134]Petrini JH, Walsh ME, DiMare C, et al. Isolation and characterization of the human MRE11 homologue. Genomics 1995;29(1):80-86.
    [135]Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase Ⅱ TFIIH. Cell 1995;82(4):555-564.
    [136]Troelstra C, Odijk H, de Wit J, et al. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol 1990;10(11):5806-5813.
    [137]Troelstra C, van Gool A, de Wit J, et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992;71(6):939-953.
    [138]Lehmann AR, Bootsma D, Clarkson SG, et al. Nomenclature of human DNA repair genes. Mutat Res 1994;315(1):41-42.
    [139]Pouliot JJ, Yao KC, Robertson CA, et al. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase Ⅰ complexes. Science 1999;286(5439):552-555.
    [140]Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc Natl Acad Sci U S A 2001;98(21):12009-12014.
    [141]Delague V, Bareil C, Bouvagnet P, et al. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34-9qter in a large consanguineous Lebanese family. Ann Neurol 2001;50(2):250-253.
    [142]Mihalik SJ, Morrell JC, Kim D, et al. Identification of PAHX, a Refsum disease gene. Nat Genet 1997;17(2):185-189.
    [143]Jansen GA, Ofman R, Ferdinandusse S, et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet 1997;17(2):190-193.
    [144]Kisseleva MV,Wilson MP, Majerus PW. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem 2000;275(26):20110-20116.
    [145]Narcisi TM, Shoulders CC, Chester SA, et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet 1995:57(6):1298-1310.
    [146]Cali JJ. Russell DW. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem 1991;266(12):7774-7778.
    [147]Myerowitz R, Piekarz R, Neufeld EF, et al. Human beta-hexosaminidase alpha chain:coding sequence and homology with the beta chain. Proc Natl Acad Sci U S A 1985;82(23):7830-7834.
    [148]Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93(3):467-476.
    [149]Carney JP, Maser RS, Olivares H, et al. The hMrell/hRad50 protein complex and Nijmegen breakage syndrome:linkage of double-strand break repair to the cellular DNA damage response. Cell 1998;93(3):477-486.
    [150]Matsuura S, Tauchi H, Nakamura A, et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 1998; 19(2):179-181.
    [151]Li R, Li Y, Kristiansen K, et al. SOAP:short oligonucleotide alignment program. Bioinformatics 2008;24(5):713-714.
    [152]Li R, Li Y, Fang X, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res 2009; 19(6):1124-1132.
    [153]Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26(5):589-595.
    [154]Broeks A, de Klein A, Floore AN, et al. ATM germline mutations in classical ataxia-telangiectasia patients in the Dutch population. Hum Mutat 1998;12(5):330-337.
    [155]Li A, Swift M. Mutations at the ataxia-telangiectasia locus and clinical phenotypes of A-T patients. Am J Med Genet 2000;92(3):170-177.
    [156]Anheim M, Fleury M, Monga B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France:implications for clinical management. Neurogenetics 2010;11(1):1-12.
    [157]Koht J, Tallaksen CM. Cerebellar ataxia in the eastern and southern parts of Norway. Acta Neurol Scand Suppl 2007;187:76-79.
    [158]Cossee M, Schmitt M, Campuzano V, et al. Evolution of the Friedreich's ataxia trinucleotide repeat expansion:founder effect and premutations. Proc Natl Acad Sci U S A 1997;94(14):7452-7457.
    [159]Synofzik M, Godau J, Lindig T, et al. Restless legs and substantia nigra hypoechogenicity are common features in Friedreich's ataxia. Cerebellum 2011;10(1):9-13.
    [160]Koeppen AH. Friedreich's ataxia:Pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011;303(1-2):1-12.
    [161]Ben Hamida C, Doerflinger N, Belal S, et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat Genet 1993:5(2):195-200.
    [162]Marzouki N, Benomar A, Yahyaoui M, et al. Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene:genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet 2005;48(1):21-28.
    [163]Di Donato I, Bianchi S, Federico A. Ataxia with vitamin E deficiency:update of molecular diagnosis. Neurol Sci 2010;31 (4):511-515.
    [164]Criscuolo C, Mancini P, Sacca F, et al. Ataxia with oculomotor apraxia type 1 in Southern Italy:late onset and variable phenotype. Neurology 2004;63(11):2173-2175.
    [165]Castellotti B, Mariotti C, Rimoldi M, et al. Ataxia with oculomotor apraxia typel (AOA1):novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients. Neurogenetics 2011.
    [166]Tada M, Yokoseki A, Sato T, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia 1. Adv Exp Med Biol 2010;685:21-33.
    [167]Le Ber I, Moreira MC, Rivaud-Pechoux S, et al. Cerebellar ataxia with oculomotor apraxia type 1:clinical and genetic studies. Brain 2003;126(Pt 12):2761-2772.
    [168]Criscuolo C, Chessa L, Di Giandomenico S, et al. Ataxia with oculomotor apraxia type 2:a clinical, pathologic, and genetic study. Neurology 2006;66(8):1207-1210.
    [169]Le Ber I, Bouslam N, Rivaud-Pechoux S, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2:a clinical and genetic study in 18 patients. Brain 2004;127(Pt 4):759-767.
    [170]Bohlega SA, Shinwari JM, Al Sharif LJ, et al. Clinical and molecular characterization of ataxia with oculomotor apraxia patients in Saudi Arabia. BMC Med Genet 2011;12:27.
    [171]Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst)2004;3(8-9):1187-1196.
    [172]Ball LG, Xiao W. Molecular basis of ataxia telangiectasia and related diseases. Acta Pharmacol Sin 2005;26(8):897-907.
    [173]Bouchard JP, Richter A, Mathieu J, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul Disord 1998;8(7):474-479.
    [174]El Euch-Fayache G, Lalani I, Amouri R, et al. Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol 2003;60(7):982-988.
    [175]Mrissa N, Belal S, Hamida CB, et al. Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 2000;54(7):1408-1414.
    [176]Richter AM, Ozgul RK, Poisson VC, et al. Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics 2004;5(3):165-170.
    [177]Futamura N, Matsumura R, Fujimoto Y, et al. CAG repeat expansions in patients with sporadic cerebellar ataxia. Acta Neurol Scand 1998;98(1):55-59.
    [178]Klockgether T. Sporadic ataxia with adult onset:classification and diagnostic criteria. Lancet Neurol 2010;9(1):94-104.
    [179]Amberger J, Bocchini CA, Scott AF, et al. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 2009;37(Database issue):D793-796.
    [180]Jeitner TM, Pinto JT, Krasnikov BF, et al. Transglutaminases and neurodegeneration. J Neurochem 2009; 109 Suppl 1:160-166.
    [181]Sobel E, Lange K. Descent graphs in pedigree analysis:applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996;58(6):1323-1337.
    [182]Lathrop GM, Lalouel JM. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet 1984;36(2):460-465.
    [183]Morton NE. Sequential tests for the detection of linkage. Am J Hum Genet 1955;7(3):277-318.
    [184]Lathrop GM, Lalouel JM. Efficiency of recombination estimates using two-and three-point linkage data. Prog Clin Biol Res 1985;194:97-102.
    [185]Yamada M, Sato T, Tsuji S, et al. CAG repeat disorder models and human neuropathology:similarities and differences. Acta neuropathologica 2008;115(1):71-86.
    [186]Houlden H, Johnson J, Gardner-Thorpe C, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nature genetics 2007;39(12):1434-1436.
    [187]Mariotti C, Brusco A, Di Bella D, et al. Spinocerebellar ataxia type 28:a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum (London, England) 2008;7(2):184-188.
    [188]Di Bella D, Lazzaro F, Brusco A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 2010;42(4):313-321.
    [189]Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 2010;42(1):30-35.
    [190]Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42(9):790-793.
    [191]Bilguvar K, Ozturk AK, Louvi A, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010;467(7312):207-210.
    [192]Gilissen C, Arts HH, Hoischen A, et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet 2010;87(3):418-423.
    [193]Sobreira NL, Cirulli ET, Avramopoulos D, et al. Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet 2010;6(6):e1000991.
    [194]Hoischen A, van Bon BW, Gilissen C, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 2010;42(6):483-485.
    [195]Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010;68(5):857-864.
    [196]Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007;39(7 Suppl):S16-21.
    [197]Jacquemont ML, Sanlaville D, Redon R, et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet 2006;43(11):843-849.
    [198]Grenard P, Bates MK, Aeschlimann D. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001;276(35):33066-33078.
    [199]Kim SY, Grant P, Lee JH, et al. Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer's disease. J Biol Chem 1999;274(43):30715-30721.
    [200]Hadjivassiliou M, Aeschlimann P, Strigun A, et al. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 2008;64(3):332-343.
    [201]Jeitner TM, Muma NA, Battaile KP, et al. Transglutaminase activation in neurodegenerative diseases. Future Neurol 2009:4(4):449-467.
    [202]Boscolo S, Lorenzon A, Sblattero D, et al. Anti transglutaminase antibodies cause ataxia in mice. PLoS One 2010;5(3):e9698.
    [203]Koenig M. Rare forms of autosomal recessive neurodegenerative ataxia. Semin Pediatr Neurol 2003;10(3):183-192.
    [204]De Michele G, Coppola G, Cocozza S, et al. A pathogenetic classification of hereditary ataxias:is the time ripe? J Neurol 2004;251(8):913-922.
    [205]Krawitz PM, Schweiger MR, Rodelsperger C, et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 2010;42(10):827-829.
    [206]Walsh T, Shahin H, Elkan-Miller T, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet 2010;87(1):90-94.
    [207]Lupski JR, Reid JG, Gonzaga-Jauregui C, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 2010;362(13):1181-1191.
    [208]Qtto EA, Hurd TW, Airik R, et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat Genet 2010;42(10):840-850.
    [209]Yu TW, Mochida GH, Tischfield DJ, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010;42(11):1015-1020.
    [210]Johnson JO, Gibbs JR, Van Maldergem L, et al. Exome sequencing in Brown-Vialetto-van Laere syndrome. Am J Hum Genet 2010;87(4):567-569; author reply 569-570.
    [211]Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 2010;363(23):2220-2227.
    [212]Byun M, Abhyankar A, Lelarge V, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med 2010;207(11):2307-2312.
    [213]Bhidayasiri R, Perlman SL, Pulst SM, et al. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol 2005;62(12):1865-1869.
    [214]Cavalier L, Ouahchi K, Kayden HJ, et al. Ataxia with isolated vitamin E deficiency:heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 1998;62(2):301-310.
    [215]Bouhlal Y, Amouri R, El Euch-Fayeche G, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay:An overview. Parkinsonism Relat Disord 2011.
    [216]Montalvo AL, Filocamo M, Vlahovicek K, et al. Molecular analysis of the HEXA gene in Italian patients with infantile and late onset Tay-Sachs disease: detection of fourteen novel alleles. Hum Mutat 2005;26(3):282.
    [217]Verrips A, Hoefsloot LH, Steenbergen GC, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain 2000; 123 (Pt5):908-919.
    [218]Winterthun S, Ferrari G, He L, et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 2005;64(7):1204-1208.
    [1]Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol 2007;6(3):245-257.
    [2]Palau F, Espinos C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis 2006;1:47.
    [3]Neuromuscular. Washington University, St. Louis, MO USA. Available at:http://neuromuscular.wustl.edu/ataxia/recatax.html#cssa (accessed Apr 2011). In.
    [4]Anheim M, Fleury M, Monga B, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France:implications for clinical management. Neurogenetics 2010;11(1):1-12.
    [5]Koht J, Tallaksen CM. Cerebellar ataxia in the eastern and southern parts of Norway. Acta Neurol Scand Suppl 2007; 187:76-79.
    [6]Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet 1983;1(8334):1151-1155.
    [7]Schols L, Bauer P, Schmidt T, et al. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet neurology 2004;3(5):291-304.
    [8]van de Warrenburg BP, Sinke RJ, Kremer B. Recent advances in hereditary spinocerebellar ataxias. J Neuropathol Exp Neurol 2005;64(3):171-180.
    [9]Di Donato S, Gellera C, Mariotti C. The complex clinical and genetic classification of inherited ataxias. Ⅱ. Autosomal recessive ataxias. Neurol Sci 2001;22(3):219-228.
    [10]Harding AE. Early onset cerebellar ataxia with retained tendon reflexes:a clinical and genetic study of a disorder distinct from Friedreich's ataxia. J Neurol Neurosurg Psychiatry 1981;44(6):503-508.
    [11]Embirucu EK, Martyn ML, Schlesinger D, et al. Autosomal recessive ataxias:20 types, and counting. Arq Neuropsiquiatr 2009;67(4):1143-1156.
    [12]Pandolfo M. Molecular pathogenesis of Friedreich ataxia. Arch Neurol 1999;56(10):1201-1208.
    [13]Puccio H, Koenig M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 2000;9(6):887-892.
    [14]Koenig M. Rare forms of autosomal recessive neurodegenerative ataxia. Semin Pediatr Neurol 2003;10(3):183-192.
    [15]De Michele G, Coppola G, Cocozza S, et al. A pathogenetic classification of hereditary ataxias:is the time ripe? J Neurol 2004;251(8):913-922.
    [16]Montermini L, Rodius F, Pianese L, et al. The Friedreich ataxia critical region spans a 150-kb interval on chromosome 9q13. Am J Hum Genet 1995;57(5):1061-1067.
    [17]Campuzano V, Montermini L, Molto MD, et al. Friedreich's ataxia:autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271(5254):1423-1427.
    [18]Koutnikova H, Campuzano V, Foury F, et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 1997;16(4):345-351.
    [19]Arita M, Sato Y, Miyata A, et al. Human alpha-tocopherol transfer protein:cDNA cloning, expression and chromosomal localization. Biochem J 1995;306 (Pt 2):437-443.
    [20]Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268(5218):1749-1753.
    [21]Kastan M. Ataxia-telangiectasia--broad implications for a rare disorder. N Engl J Med 1995;333(10):662-663.
    [22]Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001;28(3):223-231.
    [23]Nikali K, Suomalainen A, Saharinen J, et al. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 2005;14(20):2981-2990.
    [24]Ramachandran N, Girard JM, Turnbull J, et al. The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 2009;50 Suppl 5:29-36.
    [25]Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 2000;19(23):6440-6452.
    [26]Chung KT, Shen Y, Hendershot LM. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 2002;277(49):47557-47563.
    [27]Engert JC, Berube P, Mercier J, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORE Nat Genet 2000;24(2):120-125.
    [28]Nystuen A, Benke PJ, Merren J, et al. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Mol Genet 1996;5(4):525-531.
    [29]Date H, Onodera O, Tanaka H, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 2001;29(2):184-188.
    [30]Moreira MC, Barbot C, Tachi N, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 2001;29(2):189-193.
    [31]Moreira MC, Klur S, Watanabe M, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 2004;36(3):225-227.
    [32]Quinzii CM, Kattah AG, Naini A, et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 2005;64(3):539-541.
    [33]Breedveld GJ, van Wetten B, te Raa GD, et al. A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J Med Genet 2004;41(11):858-866.
    [34]Bomont P, Watanabe M, Gershoni-Barush R, et al. Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur J Hum Genet 2000;8(12):986-990.
    [35]Verheijen FW, Verbeek E, Aula N, et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 1999;23(4):462-465.
    [36]Tang J, Kriz RW, Wolfman N, et al. A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 1997;272(13):8567-8575.
    [37]Larsson PK, Claesson HE, Kennedy BP. Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem 1998;273(1):207-214.
    [38]Apel ED, Lewis RM, Grady RM, et al. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 2000;275(41):31986-31995.
    [39]Petrini JH, Walsh ME, DiMare C, et al. Isolation and characterization of the human MRE11 homologue. Genomics 1995;29(1):80-86.
    [40]Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase Ⅱ TFIIH. Cell 1995;82(4):555-564.
    [41]Troelstra C, Odijk H, de Wit J, et al. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol 1990; 10(11):5806-5813.
    [42]Troelstra C, van Gool A, de Wit J, et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992;71(6):939-953.
    [43]Lehmann AR, Bootsma D, Clarkson SG, et al. Nomenclature of human DNA repair genes. Mutat Res 1994;315(1):41-42.
    [44]Pouliot JJ, Yao KC, Robertson CA, et al. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science 1999;286(5439):552-555.
    [45]Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdpl is a member of the phospholipase D superfamily. Proc Natl Acad Sci U S A 2001;98(21):12009-12014.
    [46]Delague V, Bareil C, Bouvagnet P, et al. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34-9qter in a large consanguineous Lebanese family. Ann Neurol 2001;50(2):250-253.
    [47]Mihalik SJ, Morrell JC, Kim D, et al. Identification of PAHX, a Refsum disease gene. Nat Genet 1997;17(2):185-189.
    [48]Jansen GA, Ofman R, Ferdinandusse S, et al. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat Genet 1997;17(2):190-193.
    [49]Kisseleva MV, Wilson MP, Majerus PW. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem 2000;275(26):20110-20116.
    [50]Narcisi TM, Shoulders CC, Chester SA, et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet 1995;57(6):1298-1310.
    [51]Cali JJ, Russell DW. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem 1991;266(12):7774-7778.
    [52]Myerowitz R, Piekarz R, Neufeld EF, et al. Human beta-hexosaminidase alpha chain:coding sequence and homology with the beta chain. Proc Natl Acad Sci U S A 1985;82(23):7830-7834.
    [53]Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998;93(3):467-476.
    [54]Carney JP, Maser RS, Olivares H, et al. The hMrell/hRad50 protein complex and Nijmegen breakage syndrome:linkage of double-strand break repair to the cellular DNA damage response. Cell 1998;93(3):477-486.
    [55]Matsuura S, Tauchi H, Nakamura A, et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 1998; 19(2):179-181.
    [56]Satran D, Pierpont ME, Dobyns WB. Cerebello-oculo-renal syndromes including Arima, Senior-Loken and COACH syndromes:more than just variants of Joubert syndrome. Am J Med Genet 1999;86(5):459-469.
    [57]Saar K, Al-Gazali L, Sztriha L, et al. Homozygosity mapping in families with Joubert syndrome identifies a locus on chromosome 9q34.3 and evidence for genetic heterogeneity. Am J Hum Genet 1999;65(6):1666-1671.
    [58]Gleeson JG, Keeler LC, Parisi MA, et al. Molar tooth sign of the midbrain-hindbrain junction:occurrence in multiple distinct syndromes. Am J Med Genet A 2004;125A(2):125-134; discussion 117.
    [59]Keeler LC, Marsh SE, Leeflang EP, et al. Linkage analysis in families with Joubert syndrome plus oculo-renal involvement identifies the CORS2 locus on chromosome 11p12-q13.3. Am J Hum Genet 2003;73(3):656-662.
    [60]Valente EM, Salpietro DC, Brancati F, et al. Description, nomenclature, and mapping of a novel cerebello-renal syndrome with the molar tooth malformation. Am J Hum Genet 2003;73(3):663-670.
    [61]Lagier-Tourenne C, Boltshauser E, Breivik N, et al. Homozygosity mapping of a third Joubert syndrome locus to 6q23. J Med Genet 2004;41(4):273-277.
    [62]Bomar JM, Benke PJ, Slattery EL, et al. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet 2003;35(3):264-269.
    [63]Buschdorf JP, Li Chew L, Zhang B, et al. Brain-specific BNIP-2-homology protein Caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels. J Cell Sci 2006;119(Pt 16):3337-3350.
    [64]Ben Hamida C, Doerflinger N, Belal S, et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat Genet 1993:5(2):195-200.
    [65]Marzouki N, Benomar A, Yahyaoui M, et al. Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene:genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet 2005;48(1):21-28.
    [66]Ouahchi K, Arita M, Kay den H, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 1995;9(2):141-145.
    [67]Di Donato I, Bianchi S, Federico A. Ataxia with vitamin E deficiency:update of molecular diagnosis. Neurol Sci 2010;31(4):511-515.
    [68]Copp RP, Wisniewski T, Hentati F, et al. Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res 1999;822(1-2):80-87.
    [69]Yokota T, Igarashi K, Uchihara T, et al. Delayed-onset ataxia in mice lacking alpha -tocopherol transfer protein:model for neuronal degeneration caused by chronic oxidative stress. Proc Natl Acad Sci U S A 2001;98(26):15185-15190.
    [70]Cavalier L, Ouahchi K, Kayden HJ, et al. Ataxia with isolated vitamin E deficiency:heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 1998;62(2):301-310.
    [71]Gabsi S, Gouider-Khouja N, Belal S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 2001;8(5):477-481.
    [72]Wang J, Hegele RA. Microsomal triglyceride transfer protein (MTP) gene mutations in Canadian subjects with abetalipoproteinemia. Hum Mutat 2000;15(3):294-295.
    [73]Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, et al. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000;20:663-697.
    [74]Chang BH, Liao W, Li L, et al. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse. J Biol Chem 1999;274(10):6051-6055.
    [75]Verrips A, Hoefsloot LH, Steenbergen GC, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain 2000; 123 (Pt 5):908-919.
    [76]Lorincz MT, Rainier S, Thomas D, et al. Cerebrotendinous xanthomatosis: possible higher prevalence than previously recognized. Arch Neurol 2005;62(9):1459-1463.
    [77]Moghadasian MH, Salen G, Frohlich JJ, et al. Cerebrotendinous xanthomatosis:a rare disease with diverse manifestations. Arch Neurol 2002;59(4):527-529.
    [78]Jansen GA, Waterham HR, Wanders RJ. Molecular basis of Refsum disease: sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum Mutat 2004;23(3):209-218.
    [79]Perera NJ, Lewis B, Tran H, et al. Refsum's Disease-Use of the Intestinal Lipase Inhibitor, Orlistat, as a Novel Therapeutic Approach to a Complex Disorder. J Obes 2011;2011.
    [80]Weinstein R. Phytanic acid storage disease (Refsum's disease):clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apher 1999; 14(4):181-184.
    [81]van den Brink DM, Brites P, Haasjes J, et al. Identification of PEX7 as the second gene involved in Refsum disease. Am J Hum Genet 2003;72(2):471-477.
    [82]Schon EA, Santra S, Pallotti F, et al. Pathogenesis of primary defects in mitochondrial ATP synthesis. Semin Cell Dev Biol 2001;12(6):441-448.
    [83]Eklund EA, Freeze HH. The congenital disorders of glycosylation:a multifaceted group of syndromes. NeuroRx 2006;3(2):254-263.
    [84]Chin E, Bean L, Coffee B, et al. Novel human pathological mutations. Gene symbol:HEXA. Disease:Tay-Sachs disease. Hum Genet 2009;126(2):329.
    [85]Neudorfer O, Pastores GM, Zeng BJ, et al. Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlations in 21 affected patients. Genet Med 2005;7(2):119-123.
    [86]Jeyakumar M, Butters TD. Dwek RA, et al. Glycosphingolipid lysosomal storage diseases:therapy and pathogenesis. Neuropathol Appl Neurobiol 2002;28(5):343-357.
    [87]Miklyaeva EI, Dong W, Bureau A, et al. Late onset Tay-Sachs disease in mice with targeted disruption of the Hexa gene:behavioral changes and pathology of the central nervous system. Brain Res 2004;1001(1-2):37-50.
    [88]Jeyakumar M, Smith D, Eliott-Smith E, et al. An inducible mouse model of late onset Tay-Sachs disease. Neurobiol Dis 2002;10(3):201-210.
    [89]Aerts JM, Hollak CE, Boot RG, et al. Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis 2006;29(2-3):449-456.
    [90]Cachon-Gonzalez MB, Wang SZ, Lynch A, et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci U S A 2006;103(27):10373-10378.
    [91]Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 1997;15:177-202.
    [92]Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 2004;3(8-9):1187-1196.
    [93]Ball LG, Xiao W. Molecular basis of ataxia telangiectasia and related diseases. Acta Pharmacol Sin 2005;26(8):897-907.
    [94]Silvestri G, Masciullo M, Piane M, et al. Homozygosity for c 6325T>G transition in the ATM gene causes an atypical, late-onset variant form of ataxia-telangiectasia. J Neurol 2010;257(10):1738-1740.
    [95]McKinnon PJ. ATM and ataxia telangiectasia. EMBO Rep 2004;5(8):772-776.
    [96]Shiloh Y. The ATM-mediated DNA-damage response:taking shape. Trends Biochem Sci 2006;31(7):402-410.
    [97]Lee JH, Lim DS. Dual role of Nbs1 in the ataxia telangiectasia mutated-dependent DNA damage response. FEBS J 2006;273(8):1630-1636.
    [98]Taylor AM, Byrd PJ. Molecular pathology of ataxia telangiectasia. J Clin Pathol 2005;58(10):1009-1015.
    [99]Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst) 2004;3(8-9):1219-1225.
    [100]Matsumoto Y, Miyamoto T, Sakamoto H, et al. Two unrelated patients with MRE11A mutations and Nijmegen breakage syndrome-like severe microcephaly. DNA Repair (Amst) 2011;10(3):314-321.
    [101]Frappart PO, Tong WM, Demuth I, et al. An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nat Med 2005:11(5):538-544.
    [102]Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice:a paradigm of ataxia telangiectasia. Cell 1996;86(1):159-171.
    [103]Xu Y, Ashley T, Brainerd EE, et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996; 10(19):2411-2422.
    [104]Criscuolo C, Mancini P, Sacca F, et al. Ataxia with oculomotor apraxia type 1 in Southern Italy:late onset and variable phenotype. Neurology 2004;63(11):2173-2175.
    [105]Castellotti B, Mariotti C, Rimoldi M, et al. Ataxia with oculomotor apraxia type1 (AOA1):novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients. Neurogenetics 2011.
    [106]Tada M, Yokoseki A, Sato T, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia/ataxia with oculomotor apraxia 1. Adv Exp Med Biol 2010;685:21-33.
    [107]Le Ber I, Moreira MC, Rivaud-Pechoux S, et al. Cerebellar ataxia with oculomotor apraxia type 1:clinical and genetic studies. Brain 2003;126(Pt 12):2761-2772.
    [108]Moreira MC, Barbot C, Tachi N, et al. Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13, and evidence for genetic heterogeneity. Am J Hum Genet 2001;68(2):501-508.
    [109]Kijas AW, Harris JL, Harris JM, et al. Aprataxin forms a discrete branch in the HIT (histidine triad) superfamily of proteins with both DNA/RNA binding and nucleotide hydrolase activities. J Biol Chem 2006;281(20):13939-13948.
    [110]Mosesso P, Piane M, Palitti F, et al. The novel human gene aprataxin is directly involved in DNA single-strand-break repair. Cell Mol Life Sci 2005;62(4):485-491.
    [111]Le Ber I, Bouslam N, Rivaud-Pechoux S, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2:a clinical and genetic study in 18 patients. Brain 2004;127(Pt 4):759-767.
    [112]Duquette A, Roddier K, McNabb-Baltar J, et al. Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 2005;57(3):408-414.
    [113]Criscuolo C, Chessa L, Di Giandomenico S, et al. Ataxia with oculomotor apraxia type 2:a clinical, pathologic, and genetic study. Neurology 2006;66(8):1207-1210.
    [114]Chen YZ, Hashemi SH, Anderson SK, et al. Senataxin, the yeast Senlp orthologue:characterization of a unique protein in which recessive mutations cause ataxia and dominant mutations cause motor neuron disease. Neurobiol Dis 2006;23(1):97-108.
    [115]Ursic D, Chinchilla K, Finkel JS, et al. Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Senlp in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res 2004;32(8):2441-2452.
    [116]Chen YZ, Bennett CL, Huynh HM, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 2004;74(6):1128-1135.
    [117]Takashima H, Boerkoel CF, John J, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 2002;32(2):267-272.
    [118]El-Khamisy SF, Saifi GM, Weinfeld M, et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 2005;434(7029):108-113.
    [119]El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 2006;21(4):219-224.
    [120]Cossee M, Schmitt M, Campuzano V, et al. Evolution of the Friedreich's ataxia trinucleotide repeat expansion:founder effect and premutations. Proc Natl Acad Sci U S A 1997;94(14):7452-7457.
    [121]Synofzik M, Godau J, Lindig T, et al. Restless legs and substantia nigra hypoechogenicity are common features in Friedreich's ataxia. Cerebellum 2011;10(1):9-13.
    [122]Koeppen AH. Friedreich's ataxia:Pathology, pathogenesis, and molecular genetics. J Neurol Sci 2011;303(1-2):1-12.
    [123]Schols L, Amoiridis G, Przuntek H, et al. Friedreich's ataxia. Revision of the phenotype according to molecular genetics. Brain 1997; 120 (Pt 12):2131-2140.
    [124]Bhidayasiri R, Perlman SL, Pulst SM, et al. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol 2005;62(12):1865-1869.
    [125]Patel PI, Isaya G. Friedreich ataxia:from GAA triplet-repeat expansion to frataxin deficiency. Am J Hum Genet 2001;69(1):15-24.
    [126]Pandolfo M. Molecular basis of Friedreich ataxia. Mov Disord 2001;16(5):815-821.
    [127]Hellenbroich Y, Schwinger E, Zuhlke C. Limited somatic mosaicism for Friedreich's ataxia GAA triplet repeat expansions identified by small pool PCR in blood leukocytes. Acta Neurol Scand 2001;103(3):188-192.
    [128]Lodi R, Cooper JM, Bradley JL, et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 1999;96(20):11492-11495.
    [129]Gakh O, Park S, Liu G, et al. Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 2006;15(3):467-479.
    [130]Cavadini P, Gellera C, Patel PI, et al. Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet 2000;9(17):2523-2530.
    [131]Cossee M, Puccio H, Gansmuller A, et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 2000;9(8):1219-1226.
    [132]Pook MA, Al-Mahdawi S, Carroll CJ, et al. Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis. Neurogenetics 2001;3(4):185-193.
    [133]Durr A. Friedreich's ataxia:treatment within reach. Lancet Neurol 2002;1(6):370-374.
    [134]Hart PE, Lodi R, Rajagopalan B, et al. Antioxidant treatment of patients with Friedreich ataxia:four-year follow-up. Arch Neurol 2005;62(4):621-626.
    [135]Mariotti C, Solari A, Torta D, et al. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 2003;60(10):1676-1679.
    [136]Seznec H, Simon D, Monassier L, et al. Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet 2004;13(10):1017-1024.
    [137]Hakonen AH, Heiskanen S, Juvonen V, et al. Mitochondrial DNA polymerase W748S mutation:a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 2005;77(3):430-441.
    [138]Rantamaki M, Krahe R, Paetau A, et al. Adult-onset autosomal recessive ataxia with thalamic lesions in a Finnish family. Neurology 2001:57(6):1043-1049.
    [139]Van Goethem G, Luoma P, Rantamaki M, et al. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 2004;63(7):1251-1257.
    [140]Horvath R, Hudson G, Ferrari G, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 2006;129(Pt 7):1674-1684.
    [141]Winterthun S, Ferrari G, He L, et al. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 2005;64(7):1204-1208.
    [142]Tzoulis C, Engelsen BA, Telstad W, et al. The spectrum of clinical disease caused by the A467T and W748S POLG mutations:a study of 26 cases. Brain 2006;129(Pt 7):1685-1692.
    [143]Longley MJ, Graziewicz MA, Bienstock RJ, et al. Consequences of mutations in human DNA polymerase gamma. Gene 2005;354:125-131.
    [144]Montero R, Pineda M, Aracil A, et al. Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum 2007;6(2):118-122.
    [145]Rotig A, Mollet J, Rio M, et al. Infantile and pediatric quinone deficiency diseases. Mitochondrion 2007;7 Suppl:S 112-121.
    [146]Quinzii CM, Lopez LC, Naini A, et al. Human CoQ10 deficiencies. Biofactors 2008:32(1-4):113-118.
    [147]Musumeci O, Naini A, Slonim AE, et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 2001;56(7):849-855.
    [148]Lonnqvist T, Paetau A, Nikali K, et al. Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA):neuropathological features. J Neurol Sci 1998;161(1):57-65.
    [149]Bouchard JP, Richter A, Mathieu J, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul Disord 1998;8(7):474-479.
    [150]El Euch-Fayache G, Lalani I, Amouri R, et al. Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol 2003;60(7):982-988.
    [151]Mrissa N, Belal S, Hamida CB, et al. Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 2000;54(7):1408-1414.
    [152]Richter AM, Ozgul RK, Poisson VC, et al. Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics 2004;5(3):165-170.
    [153]Baets J, Deconinck T, Smets K, et al. Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 2010;75(13):1181-1188.
    [154]Anesi L, de Gemmis P, Pandolfo M, et al. Two novel homozygous SACS mutations in unrelated patients including the first reported case of paternal UPD as an etiologic cause of ARSACS. J Mol Neurosci 2011;43(3):346-349.
    [155]Slavotinek A, Goldman J, Weisiger K, et al. Marinesco-Sjogren syndrome in a male with mild dysmorphism. Am J Med Genet A 2005; 133 A(2):197-201.
    [156]Anttonen AK, Mahjneh I, Hamalainen RH, et al. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 2005;37(12):1309-1311.
    [157]Senderek J, Krieger M, Stendel C, et al. Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 2005;37(12):1312-1314.
    [158]Van Raamsdonk JM. Loss of function mutations in SIL1 cause Marinesco-Sjogren syndrome. Clin Genet 2006;69(5):399-400.
    [159]Albert TJ, Molla MN, Muzny DM, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods 2007;4(11):903-905.
    [160]Yu S, Bittel DC, Kibiryeva N, et al. Validation of the Agilent 244K oligonucleotide array-based comparative genomic hybridization platform for clinical cytogenetic diagnosis. Am J Clin Pathol 2009; 132(3):349-360.
    [161]Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008:26(10):1135-1145.
    [162]Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol 2009;25(4):195-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700