用户名: 密码: 验证码:
介质阻挡放电耦合电晕放电低温等离子及其对含染料废水脱色研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压放电低温等离子体技术是一种全新的高级氧化技术,逐渐被应用于水处理领域的研究。本论文重点研究了新型放电反应器对染料脱色过程的影响因素、处理效果、反应机理及其动力学过程。
     本文的主要内容和取得的研究成果及结论如下:
     (1)设计了新型放电低温等离子体反应器,其结构包含介质阻挡放电系统和电晕放电系统。此反应器的优点在电压达到放电电压时,雾化状态水溶液开始放电,由于介质层的存在,电荷在介质表面积累,形成感应电场与外加电场的叠加,雾化放电空间内电场场强得到增强,在雾化区域内形成许多小细丝状流注放电通道,通道内部形成大量的低温等离子体活性物质,低温等离子体活性物质能紧密与染料分子接触,形成低温等离子体向被处理染料分子的最佳传质形式,全部低温等离子区均被包括在处理水雾化区之中,低温等离子活性物种最浓处也是处理水雾最密处,达到最佳的能量利用率。
     (2)实验测试并优化了反应器参数。结果表明,在介质阻挡放电系统电极间距为30mm、电晕放电系统电极间距为25mm、电源电压为25kV时,反应器体系中两个放电系统雾化均很充分,按质量计算,大部分液滴的粒径在100-500μm之间。放电状态较好,甚至有些雾化液滴可达到100μm以下。雾化液滴较小,其比表面积则较大,具有强大的表面能,液滴表面的染料分子能充分和放电过程中生成的活性基团物质接触、氧化、分解。
     (3)分析测定了反应器工艺参数和染料溶液性质对其脱色的影响。随电压的升高和处理时间的延长,实验染料溶液的脱色效率不断增大,且电压越高,溶液短时间脱色效率提高越迅速,但当脱色效率达到较高水平后,脱色效率的提高变得缓慢。随染料浓度的增大而脱色率减小。但绝对去除率随染料浓度的增加而增加。酸性条件下,直接大红染料溶液的脱色率最低;中性条件下,脱色率开始前1个小时高于碱性和酸性条件,而随着实验的延长,超过一小时以后,初始pH较高(≈12)的脱色率升高。
     (4)分析测定了反应器工艺参数对能量效率的影响。较低电压的能量水平较高,随着电压的升高,能量效率水平反而下降。介质阻挡放电系统的电极间距较小时,反应器的能量效率水平较高,而随着电极间距的增大,在低电压阶段能量效率迅速下降,而电压升高时,不同电极间距的能量效率差异缩小。电晕放电系统电极间距对能量效率水平的影响差距不大,随着电压的升高这种差距变得越来越小。在电压为20kV、25kV时,不同电极间距的能量效率水平几乎相等。
     (5)确定了反应器最佳工作状态。结合电极间距、电源电压对染料溶液脱色率和能量效率的影响,确定本实验反应器最佳工作状态是介质阻挡放电系统的电极间距为30mm、电晕放电系统电极间距为25mm、电源电压20kV。
     (6)测定分析了直接大红染料脱色过程。通过测定直接大红染料脱色过程中的溶液pH、TOC、紫外可见光谱图和高效液相色谱图可知,在脱色处理时间(6h)范围内,染料溶液的COD值增大, pH值持续下降,TOC值逐渐降低,结合紫外可见光谱图和高效液相色谱图,说明染料分子虽然已经遭到破坏,染料分子内强生色基团偶氮双键确实遭到攻击,大的共轭体系被破坏,染料分子被脱色,却没有完全被彻底矿化成二氧化碳等无机物,出现了芳环和萘环结构的累积现象,可见完全破坏芳环比破坏偶氮双键发色团更困难。
     (7)分析了等离子体对染料脱色的机理。在反应器放电极加入高电压后,空气中的电子在电场力的作用下,发生气体放电产生大量活性物质,接触到雾化液滴表面时,氧化染料分子、溶解在液滴内部与染料分子反应;同时,由喷嘴喷出的液体在交流高压电场的作用下,液滴发生畸变并产生液滴尖的微放电,产生了大量的活性物质与液滴表面和内部的染料发生反应,使其脱色;当荷电雾化液滴流至尖端,产生尖端电晕放电,又产生大量活性物质,它与在电晕电场内雾化下落的液滴接触,继续发生表面氧化,同时H2O2和O3可溶解在液滴内的活性物质溶解在液滴内部,随液滴一起落入下贮水箱时,氧化反应仍在继续。
     (8)分析建立了动力学方程。结果表明,在不同初始浓度、pH和电源电压的实验条件下,溶液中直接大红染料的质量浓度随反应时间的增加呈现指数性降低。等离子体对染料脱色的动力学过程受实验条件限制。在染料脱色效率较高的实验条件下,脱色过程符合一级反应动力学。此时脱色速率常数随染料初始浓度的增大而减小;随电压升高而增大,随pH的增大而增大。
The high voltage discharge non-thermal plasma technology is one of brand-new advanced oxidized technologies and being applied gradually in the water treatment researches. The study on the influencing factors, treatment effects, reaction mechanisms and kinetics of the process was emphasized for the decolorization process of refractory organic dye with a novel discharge non-thermal plasma reactor in this paper.
     The research contents, results and conclusions are as follows:
     (1) A new discharge non-thermal plasma reactor was designed. It consists of the dielectric barrier discharge system and the corona discharge system. The advantages of this reactor are that as soon as the voltages reach the discharge voltage, the atomized water starts to discharge, and many filamentary streamer discharge channels are formed in the atomizing region, in witch the active species are produced and contact closely with the dye molecules to form a better mass transfer pattern. All of the non-thermal plasma is included in the atomizing region of treated water. Therefore the densest regions of both the non-thermal plasma active species and the water atomizing droplets situate in the same one, in order to achieve the better energy efficiency.
     (2) The reactor parameters were tested and optimized. The results shown when electrode spacing of the dielectric barrier discharge system and the corona discharge system is respectively 30 mm and 25 mm and the power voltage is 25 kV, the full atomization occur in both the two discharge systems and the sizes of most droplets are 100-500μm, even the sizes of some atomizing droplets reach below 100μm. The atomization droplets possess formidable surface energy because of the smaller size and the bigger specific surface area. The surface dye molecules can contact completely with the active species, in order to be oxidized and decomposed in the discharge process.
     (3) The reactor craft parameters and the influence of dye solution nature on the decolorization were determined. The decolorizing efficiency of the experiment dye solution was increased as the voltage was rising and the process time was extended, and the higher the voltage was, the more rapidly the decolorizing efficiency increased during a short time. But after the decolorizing efficiency achieved a high level the enhancement became slow. The decolorizing efficiency reduced as the dye concentration was increasing, and the absolutely decolorizing efficiency increased along with the dye concentration. Under the acidic condition, the decolorization rate of Erie Congo Dye solution is the lowest. Under the neutral condition, decolorization rate during the first 1 hour was higher than the alkalinity and the acidic condition, but the decolorization rate increased for the solution of a initial high pH value (≈12) after the first 1 hour.
     (4) The analysis has determined the influence of the reactor craft parameters on the energy efficiency. The energy efficiency of the low voltage was high, and along with the voltages increased the energy efficiency was dropping. When electrode spacing of the dielectric barrier discharge system was small, the reactor energy efficiency was high. However the reactor energy efficiency dropped rapidly along with electrode spacing enlarged and the differences of energy efficiency for different electrode spacing reduced as the voltages were rising. The differences of influences for corona discharge spacing on energy efficiency were smaller and reduced along with rising voltages. When the voltage was 20 kV or 25 kV, the energy efficiencies of different electrode spacing almost were the same.
     (5)The best working status of this reactor was fixed. According to the effect of electrode spacing and the voltage on decolorization rate of dye solution as well energy efficiency, The best working status areas follow: dielectric barrier discharge system of the electrode spacing is 30 mm, corona discharge system for electrode spacing is 25 mm, voltage is 20 kV, and the best working status of this reactor is defined.
     (6) The degrading process of Direct Scarlet Dye was determined and analyzed. Through taken the measurements of pH, TOC, UV-Vis spectra and high-performance liquid chromatograph in the degrading process of solution ,it was found that the COD of dye solution increased, pH continuing declined and TOC reduced gradually. The UV-Vis spectra and high-performance shown that though dye molecules had been destroyed, Strong Chromophore Azo Double Bond of dye was certainly under attack, the big conjugated system was vandalized and dye molecules were decolorized degradation, but they were not completely changed into carbon dioxide and other inorganic matter by mineralization, it appeared accumulation of aromatic ring and double benzene nucleus, so it is thus evident that complete destruction of aromatic ring is more difficult than the double benzene.
     (7)The degradation mechanism of dye was analyzed. After the high voltage applied on the discharge electrode in reactor, the electrons in the air produce gas discharge under the affection of electric force and yield a lot of active species. When the active species touch the surface of atomized droplets, they oxidize the dye molecules, dissolved into the droplets and react with dye molecules. At the same time, by the action of communication high voltage electric field, droplets ejected from the nozzle take distortion and produce the micro-discharges in the pointed ends of droplets, then produce a lot of active species and they react with the dye of inter and the surface of the droplets and dye is degraded. When charged droplets flow down to the points of the dielectric plate, the point corona discharges occur and again produce lots of active species, which are in touch with the droplets and continue to take surface oxidation. At the same time the H2O2 and O3 are dissolved in the droplets and the active species fall into storage water tank so that the oxidation reaction continues.
     (8) The kinetic equation has been set up and analyzed. The result shows that at the experimental conditions of the different initial concentrations, pH and the supplying voltages,the mass concentration of the direct red dye in solution decreases exponentially with the lengthening reaction time. The kinetic process of the plasma degradation of dyes is limited by the experimental conditions. At decolorizing efficient experimental conditions, the degradation process accords with the first order reaction kinetics. At this moment, the degradation rate constant decreases with the increase of initial dye concentration and increases with the rise of voltage and pH.
引文
[1] Glaze, W.H.; Kang, J.W. The chemistry of water treatment Processes involving ozone,hydrogen Peroxide and ultrasonic radiation, Ozone Sci.& Eng., 1987, 9:335-352.
    [2]雷乐成.水处理高级氧化技术[M],化学工业出版社:北京, 2001: 1-410.
    [3]郝小龙.高压脉冲液相放电技术处理水中难降解有机污染物的研究[D]: [博士学位论文],浙江大学, 2007.
    [4] Arslan-Alaton I., Gurses I., Photo-Fenton-like and photo-fenton-like oxidation of Procaine Penicillin G formulation effluent [J]. Photochem. Photobiol. A.,2004, 165:165-175;
    [5] H.S.Joglekar, S.D.Samant, J.B.Joshi. Kineties of wet Air oxidation of Phenol and Substituted Phenols.Water Researeh, 1991, 25(2):135-145.
    [6]张光明,张盼月,张信芳,水处理高级氧化技术,哈尔滨工业大学出版社:哈尔滨,2007:1-154.
    [7] Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W., Enviromonmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95:69-96.
    [8] Fujishima A., Rao T.N., Tryk D.A., Titanium dioxide photocatalysis [J]. J. photochem. Photobiol.C: photochem. Rev., 2000, 1:1-21.
    [9] Carp O., Huisman C.L., Reller A., photoinduced reactivity of titanium dioxide [J]. Prog.Solid Stat.Chen, 2004, 32:33-177.
    [10] Kormann C., Bahncmann D.W., Hoffmann M.R., Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand [J]. Environ. Sci. Technol., 1998, 22:798-806.
    [11]Carraway E.R., Hoffman A.J., Hoffmann M.R., photocatalytic oxidation of organic acids on quanturm sized semiconductor colloids [J]. Environ.Sci. Technol., 1994, 28:786-793.
    [12] Steve K.Johoson, Linda L.Houk, Jianren Feng, Hovk.R.S. etal. Electrochemical Inciceration of 4-Chiorophenol and Identification of Products and Internediates Mass Spectrometry [J]. Environ. Sci. and Technol. 1999, 33:2638-2644.
    [13] K.D.Snell, A.G.Kcenan. Chloride inhibition of Ethanol Electroxidation at a Platinum Electrode in Aqueous acid Solution [J]. Electrochemical Acta, 1981,26:1339-1344.
    [14] T.Tzedakis, A.Savall. Electrichemical regeneration of Ce(Ⅵ)for Oxidation of p-Methoxytoluene [J]. Appl. Eletrochemistry. 1997, 27:589-597.
    [15] H.Huser, J.M.Leger, C.Lamy. Eletrocatalytic Oxidation of 1, 2-prppamediol-ⅡA kinetic Analysis of its Oxidation on Platinum in Acid Medium [J]. Eletrochemics.Acta. 1988, 33:1359-1365.
    [16] Ch.Comninellis, C.Pulgarin. Anodic Oxidation of Phenol for Waste Water Treatment [J]. J.Appl. Electrochemistry, 1991, 21: 703-708.
    [17]Fenton H.J. Oxidation of tartaric acid in the presence of iron [J]. J.Chem.Soc.,1894, 65:899-910.
    [18] Weiss,J. Investigation on the radical HO2 in solution [J]. Trans.Faraday Soc., 1935, 31:668.
    [19] Prengle H.W. Experimental rate constant and reator considerations for the destruction of micropollutants and trihalomethane precursors vy ozone with uv radiations. Environ.Sci.Tech., 1983, 17:743.
    [20] Adewuyi Y.G., Sonochemistry: environmental science and engineering application [J], Ind.Eng. Chen.Res., 2001, 40:4681-4715.
    [21] Hashimoto S., Miyata T., Kawakami W., Radiatio-induced decomposition of phenol in flow sys [J]. Radiat.Phys.Chem., 1980,16:59-62.
    [22]雷乐成,汪大翚.高级氧化技术[M].化学工业出版社:北京,2002.:1-32.
    [23] Zhong Yi Ding, Frisch, Michaela, etal. Catalytic Oxidation in Super Critical Water [J]. Ind Eng Chen Res, 1996, 35:32-57.
    [24] Gogate P.R., Pandit A.B., A review of imperative technologies for wastewater treatemntalⅡ: hybrid methods [J], Advances in Environ.Res., 2004, 8:553-597.
    [25] Comninellis C, Nerini A. Anodic Oxidation of Phenol in the Presence of NaCl for Wastewater Treatment [J]. J Appl Electrochem, 1995, 2:23.
    [26] Rajeshwar K, Ibanex J.G., Swain G.M. Electrochem istry and the Environment [J]. J Appl Electrochem, 1994, 24:1077.
    [27] Duguet J.P. Application of combinedozone-hydrogenperoxide for the removal of aromatic compounds from a groundwater [J]. Ozone Sci.&Eng., 1990, 12:281.
    [28] Pellong G.R. Photochemical Reaction of Ozone in Solution [J]. Adc.Chem.Ser. 1989, 219:639.
    [29] Kondo Marcia M, Jardin Wilson F. Photo Degradation of Chloroform and Using Ag loaded Ti tanium Dioxide as Catalyst [J]. Water Research, 1991, 25:823-827.
    [30] Esplugas S,Gimenez J,Contreras S.etal. ComParison o fdifferent advanced oxidation Processes for Phenoldegradation [J]. Water Researeh. 2002, 36:1034-1042.
    [31] Deuat J,Gallard H.,Ancelin S,Legube B. ComParative study of the atrazine and acetone by H2O2 /UV, Fe(Ⅲ)/UV,Fe(Ⅲ)/UV/H2O2 and Fe(Ⅱ) or Fe(Ⅲ)/H2O2 [J]. Chemosphere. 1999, 39: 2693-2706.
    [32] Aiaton.I.A,Baleioglu.I.A,Bahnemann.D.W. Advaneed oxidation of a reaetive dyebath effiuent: comparisonO3, H2O2 /UVC.and TiO2/UVA process [J]. Water Research.2002, 36:1143-1154.
    [33] Ste Pnowski P,Siedlecka. E M,Behrent P.etal. Enhanced Photo-degradation of contaminants in petroleum refinery waste water [J]. Water Research. 2002, 36:2167-2172.
    [34] Dajka K,Takács E,Solpan D,et al.High-energy irradiationtreatment of aqueous solutions of C.I.Reactive Black 5 azo dye:pulse radiolysis experiments[J]. Radiation Physics and Chemistry. 2003, 67: 535-538.
    [35] Abdelmaleka F,Gharbia S,Benstaali B,et al.Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4GL,Scarlet Red Nylosan F3 GL and industrial waste[J].Water Research,2004,38:2339-2347.
    [36]洪光,王鹏,张国宇等.改性氧化铝微波诱导氧化处理雅格素蓝BF染料废水的研究[J].环境科学学报. 2005, 25:254-258.
    [37] Horikoshi S, Hidaka H,Serpone N. Environmental Remediation by an Integrated Microwave / UV - illumination Method.Ⅰ.Enhanced degradation of rhodamine-B dye in aqueous TiO2 dispersions[J]. Environmental Science and Technology,2002,36:1 357-1 366.
    [38] Horikoshi S,Hidaka H,Serpone N. Environmental Remediation by an Integrated Microwave / UV-illumination Technique.Ⅲ.Photodegradation of rhodamine-B dye in aqueous TiO2 dispersions irradiated simultaneously with UV /visible and microwave radiation in a flow system using a microwave-powered plasma light source[J].Environmental Science and Technology,2002,36:5 229-5 237.
    [39] G E X iang feng(葛湘锋),XU M ing fang(徐明芳),LUO Yu m in(骆育敏),e t a l.光催化降解敌百虫农药废水的影响因素分析[J].Ecologic Science(生态科学),2004,23:124-127.
    [40] Brillas E, Baňos Má, Skoumal M , et al. Degradation of the Herbicide 2 ,42DP by Anodic oxidation , Electro-Fenton and Photoelectro-Fenton Using Platinum and Boron Doped Diamond Anodes [J ]. Chemosphere , 2007,68:199-209.
    [41] JiTai Li , Mei Li ,JiHui Li. Etal. Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation. Ultrasonics Sonochemistry, 2007, 14:241-245.
    [42] Junjie Lin, Xiaosong Zhao, Dan Liu.et al.The decoloration and mineralization of azo dye C.I. Acid Red 14 by sonochemical process: Rate improvement via Fenton’s-reactions [J]. Journal of HazardousMaterials, 2008, 157:541-546.
    [43] Cs.M.F?ldváry, L. WOjinárovits. Role of reactive intermediates in the radiolytic degradation of Acid Red1 in aqueous solution [J]. Radiation Physics and Chemistry, 2009, 78:13-18.
    [44]林和健,林云琴.低温等离子体技术在环境工程中的研究进展[J].环境技术,2005, 1:21-24;
    [45]潘应君.等离子体在材料中的应用[M],湖北科学技术出版社, 2003,6:11-12.
    [46]任兆杏,丁振峰.低温等离子体技术[J].自然杂志. 1995, 18:201-207;
    [47]陈杰瑢.低温等离子体化学及其应用[M].科学出版社. 2001, 7:1-2.
    [48] Wilhelmus Frederik Laurens Maria Hoeben. Pulsed corona-induced degradation of organic materials in water [D]: [Ph.D. Thesis], Eindhoven University of Technology, The Netherlands, 2000.
    [49] Clenments J.S. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water [J]. IEEE Transaction on Industry Applications, 1987, IA-23:224-234.
    [50] Dwyer T, Greig J, Murphy D, etal. On the feasibility of using an atmospheric discharge plasma as an RF antenna [J]. IEEE Transactions on Antennas and Propagation, 1984, 32:141-146.
    [51] Sato M, OhgiYama T,Clements J.S. Formation of chemical species and their effects on microoganisms using a pulsed high voltage discharge in water[J]. IEEE Transaction on Industry Applications, 1996, 32:106-112.
    [52] Sun,M. Sato,A. Harano,J.S.Clements. Non-uniform pulse discharge-induced radical production in distilled water [J]. Journal of Electrostatics, 1998, 43:115-126.
    [53] Lang P.S., Willberg D.M. Oxidative degradation of 2,4,6-trintrotoluene by ozone in an electrohydraulic discharge reactor[J]. Environ Sci Technol, 1998,32:3142-3148.
    [54] David R,Grymonpré,Wright C.Finney, Bruce R.Locke. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison [J]. Chemical Engineering Science, 1999, 54: 3095-3105.
    [55] Yue-ZhongWen, Xuan-ZhenJiang. Pulsed Corona Discharge-Induced Reactions of Acetophenone in Water [J]. Plasma Chemistry and Plasma Processing, 2001,21:345-354.
    [56] Yin-ShengChen,Xin-ShengZhang,Yin-ChunDai,Wei-KangYuanPulsed high-voltage discharge plasma for degradation of phenolin aqueous solution. Separation and PurificationTechnology 2004 (34): 5-12.
    [57] A.A.Joshi, B.R.Loche, P.Arce, W.C.Finney. Formation of hydroxyl radicals,hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution [J]. Journal of Hazardous Materials, 1995, 41:3-30.
    [58] T.Miichi, S.Ihara,S.Satoh, C.Yamabe. Spectroscopic measurements of discharges inside bubbles in water [J]. Vacuum, 2000, 59: 236-243.
    [59] Bing Sun, Masayuki Sato, J.Sid Clements. Optical study of active species produced by a pulsed streamer corona discharge in water [J]. Journal of Electrostatics, 1997, 39:189-202.
    [60] Anto Tri Sugiarto, Takayuki Ohshima, Masayuki Sato, Advanced oxidation processes using pulsed streamer corona discharge in water [J]. Thin solid Films, 2002, 107:174-178.
    [61] Anto Tri Sugiarto, Shunsuke Ito, Takayuki Ohshima etal. Oxidative decoloration of dyes by pulsed discharge plasma in water [J]. Journal of Electrostatics, 2003, 58:135-145.
    [62] J.Z. Gao, X.Y. Wang, Z.A. Hu, H.L.Deng, J.G. Hou, X.Q. Lu, J.W. Kang, Plasma degradation of dyes in water with contact glow discharge electrolysis [J]. Water Research, 2003, 37:267-272.
    [63] Radu Burlica, Michael J, Kirkpatrick etal. Organic dye removal from aqueous solution by glidarc discharges [J]. Journal of Electrostatics, 2004, 62:309-321.
    [64] YueZhong Wen, HuiJun Liu, WeiPing Liu, andXuanZhen Jiang. Degradation of Organic Contaminants in Water by Pulsed Corona Discharge [J]. Plasma Chemistry and Plasma Processing, 2005, 15: 137-146.
    [65] BinYang, Minghua Zhou, Lecheng Lei. Synergistic effects of liquid and gas phase discharges Usingpulsed high voltage for dyes degradation in the presence of oxygen [J]. Chemosphere, 2005, 60:405-411.
    [66] Zhengguang He, Junshen Liu, Weimin Cai. The important role of the hydroxyl ion in phenol removal using pulsed corona discharge [J]. Journal of Electrostatics, 2005, 63:371-386.
    [67] I. M. Piskarev, G. G. Solov Oev, V. I. Karelin, etal. Formation of Active Species in Spark Corona Discharge at a Liquid Electrode [J]. High Energy Chemistry, 2005, 39:189-191.
    [68] Jinzhang Gao, Jie Yu, Yan Li,etal. Decoloration of aqueous Brilliant Green by using glow discharge electrolysis [J]. Journal of Hazardous Materials, 2006, B137:431-436.
    [69] Jinzhang Gao, Jie Yu, Quanfang Lu, etal. Decoloration of alizarin red S in aqueous solution by glow discharge electrolysis [J]. Dyes and Pigments 2008, 76:47-52.
    [70] Changquan Wang, Xiangning He. Effect of atmospheric pressure dielectric barrier discharge air plasma on electrode surface [J]. Applied Surface Science, 2006, 253:926-929.
    [71] B. R. Locke, M. Sato, P. Sunka, etal. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment [J]. Ind.Eng.Chem.Res., 2006, 45:882-905.
    [72] Wang Huijuan,Li Jie,Quan Xie. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water [J]. Journal Electrostat, 2006, 64: 416–421.
    [73] YiZhang, Minghua Zhou, Lecheng Lei. Degradation of 4-chlorophenol in different gas-liquid electrical discharge reactor [J]. Chemical Engineering Journal, 2007, 132:325-333.
    [74] Jie Li, Masayuki Sato, Takayuki Ohshima. Degradation of phenol in water using a gas-liquid phase pulsed discharge plasma reactor [J]. Thin Solid Films, 2007, 515:4283-4288.
    [75] Lecheng Lei,Yi Zhang,Xingwang Zhang,Yongjun Shen. Using a novel pulsed high-voltage gas–liquid hybrid discharge continuous reactor for removal of organic pollutant in oxygen atmosphere [J]. Journal of Electrostatics, 2008, 66:16-24.
    [76] P.Baroch, V.Anita, N.Saito, O.Takai. Bipolar pulsed electrical discharge for decomposition of organic compounds in water [J]. Journal of Electrostatics, 2008, 66:294-299.
    [77] Xiaolong Hao,MinghuaZhou,QingXin,LechengLei. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water [J]. Chemosphere, 2007, 66:2185-2192.
    [78] XiaoLong Hao,MingHuaZhou,LeChengLei. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water [J]. Journal of Hazardous Materials, 2007, 141:475-482。
    [79] Jie Li, Zhigang Zhou, Huijuan Wang, Guofeng Li, Yan Wu. Research on decoloration of dye wastewater by combination of pulsed discharge plasma and TiO2 nanoparticles [J]. Desalination, 2007, 212: 123-128.
    [80] Young Sun Mok, Jin-O.Jo, J. Christopher Whitehead. Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water [J]. Chemical Engineering Journal, 2008, 142:56-64.
    [81] K.B.Geerse,J.C.M.Marunissen,B.Scarlett.etal. A multiple EHDA nozzle system for the spraying and the selective deposition of pesticides in greenhouses [J]. J.Aetvsol Sci., 2000, 31:660-661.
    [82] D.M.A .Camelot, D. Brunne, R.P.M.Hartman, J.C.M. Marijnissen, B.Scarlett. Mechanisms of jet break-up for EHDA in the cone- jet mode [J]. J.Aerosol.Sci., 1998, 29:841-842.
    [83] Borra J-P, Hartmann R, Marijnissen J .etal. Destabilisation of sprays in the cone-jet mode by elecerical discharges on the jet [J]. J.Aerosol.Sci., 1996, 27:203-204.
    [84] J.P.Borra, Y.Tombette,P.Ehouarn. Influence of electric field profile and polarity on the mode of ehda related to electric discharge regimes [J]. J. Aerosol.Sci., 1999, 30:913-925.
    [85] Toshiyuki Sugimoto,Kazutoshi Asano,Yoshio Higashiyama. Negative corona discharge at a tip of water cone deformed under dc field [J]. Journal of Electrostatics, 2001, 53:25-38.
    [86] BonYiYu, SangSoo Kim. Electrospray characteristics of highly viscous liquids [J]. Aerosol Science,2002, 33:1361-1378.
    [87] J.L.Li. Formation and stabilization of an EHD jet from a nozzle with an inserted non-conductive fibre [J]. Aerosol Science, 2002, 36:373-386.
    [88] J.Abu-Ali, S.A. Barringer. Method for electrostatic atomization of emulsions in an EHD system [J]. Journal of Electrostatics, 2005, 63:361-369.
    [89] A.Jaworek, T.Czech, E.Rajch, M.Lackowski. Spectroscopic studies of electric discharges in electrospraying [J]. Journal of Electrostatics, 2005, 63:635-641.
    [90] Ellyana Kjatawidjaja, AntoTriSugiarto, Takayuki Ohshima.et al. Decoloration of electrostatically atomized organic dye by the pulsed streamer corona discharge [J]. Journal of Electrostatics, 2005, 63:353-359.
    [91] Jingwei Xie, Liang Kuang Lim, Yi yong Phua.etal. Electrohydrodyn amicatomization for biodegradable polymeric particle production [J]. Journal of Colloid and Interface Science, 2006, 302:103-112.
    [92] Milorad M.Kuraica, Bratislav M.Obradovic, Dragan Manojlovic.etal. Ozonized water generator generator based on coaxial dielectric barrier discharge in air [J]. Vacuum, 2004, 73:705-708.
    [93] Ilie Suarasan, Letitia Ghizdavu, Iustin Ghizdavu.etal. Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids [J]. Journal of Electrostatics,2002, 54:207-214.
    [94]孙大伟,许德玄.电晕线雾化半湿式除尘技术的研究.环境科学学报,1996,16(3):378-380。
    [95]马祝阳,许德玄.雾化电晕放电除尘原理及其特性研究.东北师大学报自然科学版,2003,35(2):35-40.
    [96] Xu Dexuan,Sheng Lianxi,Zhai Jingsheng et al. Positive Short Pulse Corona Discharge Charging of Aerosol Particles. J. Appl. Phys. 2003,42:1766-1769 .
    [97] Xu Dexuan Li Jie,Wu Yan et al. Discharge characteristics and applications for electrostatic precipitation of DC corona with spraying discharge electrodes. Journal of Electrostatics, 2003,57: 217-224.
    [98] Xu Dexuan,Zhao Jianwei,Ding Yunzheng et al. Removal of adhesive dusts from flue gas using corona discharges with spraying water.Journal of Environmental Science 2003,15(4):561-568.
    [99]郭治明,许德玄,孙英浩等.雾化电晕放电静电除尘的实验研究.北京理工大学学报,2005,25(增刊):145-148.
    [100]孙明,赵小明,许德玄.水放电极雾化净水技术.高电压技术,2000,26(4):36-37.
    [101] Wu Yan,Yang Liming,Xu Dexuan etal.Experimental research on decomposing indigo carmine by dielectric barrier discharge.The 4th conf.Appl.Electrostatics,2001:381-384.
    [102] Wu Yan,Xu Dexuan,Li Jie etal.The study on discharge characteristics and decolorization process using the dielectric barrier discharges with grounded spraying water electrodes and wide air gaps. The 4th conf.Appl.Electrostatics, 2001:389-392.
    [103]王占华,许德玄,陈瑜等.放电极雾化介质阻挡放电低温等离子体对染料溶液的脱色研究.环境科学研究,2007,20(6):127-130.
    [104] Zhanhua Wang,Dexuan Xu,Yu Chen et al. Plasma decoloration of dye using dielectric barrier discharges with earthed spraying water electrodes. Journal of Electrostatics, 2008, 66:476-481.
    [105]李家珍.染料染色工业废水处理[M].化学工业出版社,北京,1994:1-2.
    [106]郑光洪.染料化学[M].中国纺织出版社,北京,2001: 3-34.
    [107]李庄.高浓度染料废水(含偶氮染料废水)处理技术的研究[D]: [硕士论文].湖南大学2001.
    [108]康琪.模拟染料废水化学絮凝法脱色的过程分析方法研究[D]: [博士论文].山东大学, 2006.
    [109] G.M. Walker, Adsorption of dyes from aqueous solution-the effect of adsorbent pore size distribution and dye aggregation [J]. Chemical Engineering Journal, 2001, 83: 201-206.
    [110] Y. Al-Degs, M. A. M .Khraisheh, S. J. Allen. Effect of carbon surface chemistry on the removal ofreactive dyes from textile effluent [J]. Water Res., 2000, 34: 927-935.
    [111] Y. Al-Degs, M. A. M .Khraisheh, S. J. Allen, Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons [J]. Sep. Sci. Technol., 2001, 36: 91-102.
    [112] M.K. Purkait, D.S.Gusain, S. DasGupta, S. De,Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics by using different surfactants, Sep. Sci. Techno., 2004,39: 2419-2440.
    [113] M.K. Purkait, S. DasGupta, S. De, Adsorption of eosin dye on activated carbon and its surfactant based desorption[J]. J. Environmental Management, 2005, 76:135-142.
    [114] T.G Chuah, A.Jumasiah, I, Azni, S. Iatayon, S.YT .Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview[J]. Desalination, 2005,175: 305-316.
    [115] L.C. Morais, E.P. Goncalves, L.T. Vasconcelos, C.G,G Beca, Reactive dyes removal from wastewaters by adsorption on eucalyptus bark - Adsorption equilibria [J]. Environme Technology, 2000, 21:577-583.
    [116] C. Namasivayam, R.T. Yamuna, D.J.S.E. Arasi,Removal of procion orange from wastewater by adsorption on waste red mud[J]. Sep. Sci. TechnoG, 2002, 37: 2421-2431.
    [117] N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa} Adsorption and aggregation of a cationic cyanine dye on layered clay minerals [J]. Applied Clay Science, 2000, 16: 161-170.
    [118] Y.H.Lee, R:D.Matthews, S.G Pavlostathis. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions [J]. Water Environment Research, 2006, 78: 156-169.
    [119] I. Nilsson, A. Moller, B. Mattiasson, M.S.T.Rubindamayugi,U. Welander, Decalarization of synthetic and real textile wastewater by the use of white-rot fungi [J]. Enzyme and Microbial Technology, 2006, 38: 94-100.
    [120]余志展,文湘华,酵母Candida krusei对合成染料的脱色[J].环境科学,2005, 26:137-142.
    [121] YLi, D.L. Xi, Decolorization and biodegradation of dye wastewaters by a facultative aerobic process [J]. Environmental Science and Pollution Research, 2004, 11:372-377.
    [122]吴赞敏,魏乃福,翁亮等.印染废水脱色菌的培育及脱色工艺[J].印染,2005,10: 39-42.
    [123]徐锡彪,褚宏伟,孙建中.催化氧化处理染料废水[J].中国给排水, 2000, 16:45- 46.
    [124]朱丽勤,何瑾馨,陈小立.染色废水臭氧氧化催化剂研制及其应用性能[J].东华大学学报(自然科学版), 2005 , 31: 72-75.
    [125] U. Bali. Application of Box-Wilson experimental design method for the photodegradation of textile dyestuff with UV/H202 process [J]. Dyes & Pigments, 2004, 60: 187-195.
    [126] S.F.Kang, C.H.Liao, S.T.Po, Decolorization of textile wastewater by photo-fenton oxidation technology [J].Chemosphere, 2000, 41: 1287-1294.
    [127] T.C. An, H.F. Gu, Y Xiong, W.G Chen, X.H. Zhu, GY. Sheng, J..M Fu, Decolourization and COD removal from reactive dye-containing using sonophotocatalytic technology [J].Journal of Chemical Technology and Biotenology, 2003, 78:1142-1148.
    [128] S.H.Lin, C.F.Peng, P K.Karlis. Treatment of textile wastewater by electrochemical method [J]. Water Res., 1994, 28: 277-282.
    [129] A.QVlyssides, S.H. Lin, M. Loizidou ,P K, Karlis, Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode [J]. Hazardous aterials, 1999, B70:4152-4159.
    [130] X.J.Chen,Z.M.Shen,X.L.Zhu,YB.Fan, W.H.Wang, Advanced treatment of textile wastewater for reuse using electrochemical oxidation and membrane filtration [J]. Water research, 2005, 31:127-132.
    [131]葛自良,毛骏健,陆汝杰.液体静电雾化现象及其应用[J].自然杂志,2000, 22:37-40.
    [132]叶齐政,齐军,顾温国等.EHD喷雾电晕放电现象研究[J].高压电器, 2000, 5:13-16.
    [133] Cloupeau M.,B.Prunet Foch. Electrostatic spraying of Liquid: Main Functioning Models, J.Electrostat., 1990,25:165~184.
    [134] Hartman R.P.A., Borra J.P.et al.The Evolution of Electrohydrodynamic Sprays Produced in the Cone-jet Mode,a Physical Model.J.Electrostat.,1999,47:143~170.
    [135]金晗辉,王军锋,王泽等.静电喷雾研究与应用综述.江苏理工大学学报,1999,20(3):16~18.
    [136]金晗辉,王军锋,王泽等.荷电气-液两相同轴射流的LDV研究.江苏理工大学学报,1999,20(5):47~49.
    [137]冼福生,朱和平,高良润等.带电雾滴速度场理论研究.农业机械学报,1992,23(2):36~42.
    [138]徐学基,诸定昌.气体放电物理[M].复旦大学出版社,上海, 1996.8:22-36.
    [139]王辉,孙岩洲,方志等.不同电极结构下介质阻挡放电的特性研究[J].高压电器, 2006, 42:25-27.
    [140]许金豹,李成榕,詹花茂等.大气中电极结构对介质阻挡放电的影响[J].高压电器, 2008, 44:132-134.
    [141]李雪辰,贾鹏英,刘志辉等.介质阻挡放电丝模式和均匀模式转化的特性[J].物理学报,2008,57(2):1001-1007.
    [142]唐文忠,荚荣,张良璞等.裂褶菌F17对偶氮染料刚果红的脱色降解及其产物分析[J].环境科学学报,2007,27:1451-1457.
    [143] Radu Burlica, Michael J Kirkpatrick, Wright C Finney, et al. Organic dye removal from aqueous solution by glidarc discharges [J]. Journal of Electrostatics, 2004, 62: 309-321.
    [144]杨长河.气水混合两相体放电现象及机制的理论与实验研究[D]. [博士学位论文],华中科技大学,2005.
    [145]吴峰,华河林,邓圣南.三种偶氮染料降解历程在Uv-vis光谱上的表现[J].环境化学,2000,19(4),348-351.
    [146]S.N.Croft, D.M.Lewis. Analysis of reactive dyes and related derivatives using HPCE [J]. Dye and Pigments, 1992, 18:309-317.
    [147] 1.L.weatherall.The analysis of some sulphonatedazo dyes by mixed mode HPLC [J]. J.Liquid Chromatography, 1991, 14:1903-1912.
    [148] A.P.BBruins, L.O.G.Weidolf, J.D.Henion. Determination of sulfonated azo dyes by liquid chromatography/atmosphere pressure ionization mass spectrometry [J]. Anal Chem., 1987, 59:2647-2652.
    [149] M.Koeh, A.Yediler, D.Lienert, etal. Ozonation of hydrolyzed azo dye reactive yellow 84(CI) [J].ChemosPhere.2002, 46:109-113.
    [150] S. Takeda, Y.Tanaka,Y.Nishimura,etal. Analysis of dyestuff degradation products by capillary electrophoresis [J]. J.Chromatogr A.1999, 853:503-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700