用户名: 密码: 验证码:
Aspergillus ficuum SK004产外切菊粉酶及其酶解菊粉制备高果糖浆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:An Exo-inulinase from Aspergillus Ficuum SK004 and HFCS Production by Its Hydrolysis on Inulin
  • 作者:彭英云
  • 论文级别:硕士
  • 学科专业名称:食品科学
  • 学位年度:2005
  • 导师:江波
  • 学科代码:083201
  • 学位授予单位:江南大学
  • 论文提交日期:2005-06-01
摘要
菊粉是由D-呋喃果糖以β-2,1糖苷键连接的多聚果糖,其还原端连接一个葡萄糖基,呈直链结构,富含于菊芋等多种菊科植物中。菊芋块茎主要成分为菊粉,其含量占干重的70~80%。菊芋的生长对土质要求不严,易种植,产量较高,是制备高果糖浆和低聚果糖的极好原料。菊粉酶是水解菊粉的高效酶,微生物来源的菊粉酶通常是底物诱导性的外切酶,主要通过催化水解菊粉链的非还原性末端的糖苷键,逐一水解释放出果糖,主要产物为果糖。因此筛选高产菌株、提高水解菊粉酶的酶活在高果糖浆工业上有着重要的意义。
    本实验室保存的一株Aspergillus ficuum SK004无花果曲霉菌株能产菊粉酶,其混合酶系的I /S为0.43。本研究对SK004菌株进行了发酵条件的优化,确定该菌株主要产胞外酶,且主要为外切菊粉酶。优化条件为(g /L):菊粉25,蛋白胨25,NH_4H_2PO_3 4,NaCl 5,MgSO_4·7H_2O 0.1,ZnSO_4·7H_2O 0.1,pH 6.5,30℃,200 rpm下培养7 d酶活力可稳定在56.7U /ml。
    将Aspergillus ficuum SK004菌株所产酶系进行分离纯化,先后通过活性炭脱色、硫酸铵分级沉淀、透析脱盐、DEAE-Sepharose CL-6B离子层析、Sephadex G-75凝胶色谱后,得到一种菊粉酶。经SDS-PAGE分析此菊粉酶为单一谱带,分子量为53665Da。本课题还对纯化后的外切菊粉酶的酶学性质进行了研究。发现该酶的最适反应温度为60℃,最适反应pH为4.5,在50℃保温1 h能保持80%的酶活,在pH 4.0~6.0的范围内常温放置1 h能保持90%以上的酶活。水解菊粉的Km为115.8 mg /mL,Vmax为7.80 mg/ml·min;水解蔗糖的Km为60.06 mg / mL,Vmax为7.69 mg /ml·min。以菊粉为底物,Urea、K~+、Al~(3+)对酶活的影响不大,Zn2+、Mg~(2+)、EDTA、Ca~(2+)、Cu~(2+)和SDS对菊粉酶具有抑制作用,Mn~(2+)、Li~+和Fe~(2+)对菊粉酶有激活作用;以蔗糖为底物,除Al~(3+)有激活作用外,上述其它离子对菊粉酶都具有一定的抑制作用。
    通过对影响粗酶液水解速率的温度、pH、加酶量和底物浓度等四个因素的研究,确定粗酶液水解菊粉的最佳反应条件为:菊粉浓度20 g /L,反应体系pH 4.0,反应温度55℃,加酶量为25 U /g菊粉。在最适反应条件下,粗酶液水解4 h,酶解率可以达到88%,水解10 h,酶解率可以达到96%。10 h后的水解反应趋于平缓,单位时间的酶解率增加不多,最终可达到97.55%的酶解率。
    提出了菊粉酶酶解菊芋制备高果糖浆的工艺路线,由此路线可以得到果糖含量90%以上的高果糖浆。
Inulin has been defined as a polydisperse carbohydrate material consisting mainly of β-2,1fructosyl-fructose links and end in a glucose unit. Inulin is the main carbohydrate in a variety ofplants. Jerusalem Artichoke contains 70%~80% inulin (dry weight). Because of its ease ofcultivation and harvesting, Jerusalem Artichoke has become the principal source of producinghigh fructose syrup and oligofructose today. Exo-inulinase is 2,1-β-D-fructan fructanohydrolaseswhich convert inulin to fructose by hydrolase the β-2,1 linkage in its unreducing end. Because ofthe hygienical character of high fructose syrup, it is very important to screen outinuinase-producing strain with high enzyme activity in industry.
    A strain of Aspergillus ficuum SK004, with a ratio of inuluinase activity to invertase activity(I /S ratio) of 0.43, was stored in our laboratory. The effects of nutrients and other culturalconditions on the exo-inulinase was studied. The optimal medium compositions and culturalconditions were (g /L): inulin 25 , peptone 25, NaCl 5, NH4H2PO4 4, MgSO4·7H2O 0.1,ZnSO4·7H2O 0.1, pH 6.5, temperature 30℃, shaken at 200 rpm with 30 ml medium per flask(250 mL) for 7 d. The maximum enzyme activity was 56.7 U /mL.
    The crude inulinase preparation was purified in a sequence of operations includingdecoloration by active carbon, ammonium sulfate fractionation, dialysis, ion exchangechromatography on DEAE-Sepharose CL-6B and column chromatography with Sephadex G-75.One exo-inulinase was obtained. The single band on SDS-PAGE showed that the emzyme washighly purified and its molecular weight was 53665Da.
    Properties of the purified exo-inulinase were also studied. The optimal reaction temperatureand pH of exo-inulinase were 60℃ and 4.5 respectively. The enzyme was stable within pH4.0~6.0 and below the temperature 50℃. With inulin as substrate, Km =115.8 mg /mL,Vmax=7.80 mg /ml·min;with sucrose as substrate, Km=60.06 mg / mL,Vmax=7.69 mg /ml·min. Themetal ions (2 mM), with inulin as substrate, the effects on exo-inulinase activity of Urea(10 mM),K+, Al~(3+) were negligible, whereas Mn~(2+), Li~+ and Fe~(2+) exhibited positive effects on exo-inulinaseactivity;Zn~(2+), Mg~(2+), EDTA, Ca~(2+), Cu~(2+) and SDS(40 mM) inhibited activity to different degree.With sucrose as substrate, Al3+ had slight positive effects on inulinase activity;other metals allhad negative effects.
    Effects of temperature, pH, enzyme and substrate concentration on the inulin-hydrolyzingdegree were determined. When hydrolyzed in system of 2% inulin solution added crude inulinaseof 25 U/g inulin at pH 4.0, 55℃ for 4 h, the inulin-hydrolyzing degree was 88% ,if hydrolyzedfor 10h, the degree up to 96%. After 10 h, the hydrolyzing degree increased slowly and the totalreducing sugar yield can get to 97.55% at 30h.
    A technological line was proposed according to the hydrolysis research. Over 90% fructosesyrup could be obtained by this line.
引文
1. 郑建仙. 功能性食品. 北京:中国轻工业出版社,1995. 8.
    2. 郑建仙. 功能性食品甜味剂. 北京:中国轻工业出版社,1997.11.
    3. 胡莉,何越,谢元. 高果糖浆在饮料中的应用. 中国食品工业网.
    4. 张乐兴. 高果糖浆的性质与应用. 广州食品工业科技, 2003,19 (1):44~45.
    5. 谢元. 高果糖浆在饮料中的应用. 食品工业,2002,23(2):33~34.
    6. 蔡复礼. 果糖的应用特性及其分离. 精细化工,1996,13(2):22~24.
    7. 蒋世琼. 果糖的应用特性及其生产工艺. 四川食品与发酵,1997(2):11~12.
    8. 周帽萍,沙淘,程立忠等. 菊粉酶的研究应用. 食品与发酵工业,2001,27(7):54~58.
    9. 谢秋宏,相宏宇. 分解菊粉微生物的筛选和初步鉴定. 吉林大学自然科学学报,1996,3:96~98.
    10. FLOOD, A. E.,RUTHERRFORD, P. P.,WESTON, E. W. Effects of 2,4-dichlorophenoxyacetic acid on enzyme systems in Jerusalem Artichoke tubers and Chicory roots. Nature, 1967, 214: 1049~1053.
    11. 叶淑红,张福琪,张苓花等. 菊粉酶酶源菌株的筛选及其发酵条件. 大连轻工业学院学报. 2001,20(1):33~36.
    12. 王建华,刘艳艳. 高产菊粉酶酵母筛选、发酵和酶学性质研究. 生物工程学报,2000,16(1):60~64
    13. 王建华. 微生物菊粉酶基因结构、酶学性质与应用研究进展. 天然产物研究与开发,2000,13(1):83~89
    14. ONODERA, S. and SHIOMI, N. Purification and substrate specificity of endo-type inulinase from Penicillium purpurogenum. Agric. Biol. Chem., 1988, 52(10): 2569~2576
    15. NAKAMURA, T., SHITARA, A., MATSUDA, S. and MASAHITO, M. Production, purification and properties of an endo-inulinase of Penicillium sp. TN-88 that liberates inulinase. J. Ferment. Bioeng. , 1997, 84(4): 313~318
    16. YOKOTA, A. and YAMAUCHI, O. Production of inulotriose from inulin by inulin-degrading enzyme from Streptomyces rochei E87. Lett. Appl. Microbiol. , 1995, 21: 330~333
    17. CHO, Y. J., SINHA, J., PARK, J. P. and YUN, J. W. Production of inulooligosaccharides from chiory extract by endoinulinase from Xanthomonas oryzae No.5. Enzym. Microbiol. Technol., 2001, 28(4-5): 439~455.
    18. OHTA, K. and AKIMOTO, H. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccaromyces cerevisiae. Appl. Enviroment. Microbiol. , 1993, 59: 729~733.
    19. MARGARITIS, A. and BAJPAI, P. Ethanol prodution from Jerusalem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei. Biotechnol. Bioeng., 1982, 24: 941~953.
    20. 巴.普科,刘书玲. 栽培和利用菊芋生产乙醇、单细胞蛋白和高果糖浆. 四川省卫生管理干部学院学 报,1992,1:14~18.
    21. 周永国,胡永利. 以蔗糖为原料制取高果糖浆的研究. 河北农业技术师范学院学报,1990,4(3):21~23.
    22. 林影,卢荣德,郭勇. 洋姜水解生产果糖的研究. 食品工业,1997,5:38~39.
    23. 朱宏吉,郭强. 菊粉应用研究新进展. 中国糖科,2000,4:55~57
    24. 屠用利. 菊糖的功能与应用. 食品工业,1997,4:45~46.
    25. 陈小明,朱太海. 菊糖的功能及其在食品工业中的应用. 食品科技,2000(5):34~35.
    26. 张乐兴,林象联. 我国高果糖浆的发展现状. 广州食品工业科技,2002,18(3):48~49.
    27. 郑建仙. 高果糖浆的现状与未来. 广州食品工业科技,1994,4:1~4.
    28. 无锡轻工业学院,天津轻工业学院合编. 食品分析. 北京:轻工业出版社,1999.
    29. PESSONI, R. A. B., Figueiredo-Ribeiro, R. C. L. and Braga, M. R. Extracellular inulinases from Penicillum janczewskii, a fugus isolated from the rhizosphere of Vernonia herbacea (Asteraceae). J. Appl. Microbiol., 1999, 87: 141~147.
    30. 诸葛健,王正祥. 工业微生物实验技术手册. 北京:中国轻工业出版社,1994,225~226
    31. 陈雄. 内切型菊粉酶高活力菌株的筛选. 湖北农业科学,2003,3:93~94.
    32. KUSHI, R. T., MONTI, R. and CONTIERO, J. Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechnol.. 2000, 25: 63~69.
    33. 王静. Aspergillus ficuum 菊粉酶及其酶解菊芋制备低聚果糖的研究. 江南大学博士学位论文. 2003.
    34. 董强,董云玲,钱凯先等. 黑曲霉菊糖酶的分离纯化极其活性测定. 微生物学通报, 1998, 25(4):195~198.
    35. 钱铭镛. 发酵工程最优化控制. 南京:江苏科学技术出版社,1998.
    36. 吴有炜. 试验设计与数据处理. 苏州:苏州大学出版社,2002.
    37. 谢秋宏,相宏宇. 黑曲霉 AJ1958 菊粉酶的产生和性质. 吉林大学自然科学学报,1996,2:75~78.
    38. LOWRY, O. H., ROSENBROUGH, N. J., FARR, A. L. et al. Protein measurement with the Folin-phenol-reagent. J. Biol. Chem., 1951, 193: 265~271.
    39. 陶慰孙等. 蛋白质分子基础. 北京:人民教育出版社,1980
    40. 郭尧君. 蛋白质电泳实验技术. 北京:科学出版社,1999
    41. 王璋. 食品酶学. 北京:中国轻工业出版社,1990.
    42. 赵永芳. 生物化学技术原理及应用. 北京:科学出版社,2002.
    43. UHM, BOONG, T., JEON, D. Y., BYUN, S. M. and HONG, J. S. Purification and properties of β-fructofuranosidase from Aspergillum niger. Biocemica et Biophysica Acta. , 1987, 926: 119~126
    44. UHM, BOONG, T., CHUNG, M. S. and LEE, S. H. Purification and characterization of Aspergillus ficuum endoinulinase. Biosci. Biotechnol. Biochem. , 1999, 63(1): 146~151.
    45. KATO, K., ARAKI, T. and KITAMURA, T. Purification and properties of a thermostable inulinase (β-D-fructan fructohydrolase) from Bacillus stearothermophilus KP1289. Starch, 1999,51: 253~258.
    46. KANG, SU-II., CHANG, Y. J., OH, S. J. and KIM, SU-II. Purification and properties of an endo-inulinase from an Arthrobacter sp. Biotechnl. Lett. 1998, 20(10): 983~986.
    47. CYNTHIA, A. H., DAVID, P. L. Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages. Plant Physiol. Biochem. , 1998, 36(10): 715~720.
    48. 贾英民,赵学慧. 黑曲霉 M89 菊粉酶的提纯与性质. 微生物学报,1998,38(2):120~125.
    49. NAKAMURA, T., KUROKAWA, T., NAKATSU, S., and UEDA, S. Crystallization and general properties of an extracelluar inulinase from Aspergillus sp. Nippon Nogeikagaku Kaishi. , 1978, 52: 159~166.
    50. PESSONI, R. A. B., FIGUEIREDO-RIBEIRO, R. C. L. and BRAGA, M. R. Extracellular inulinases from Penicillium janczewskii, a fungus isolated from the rhizosphere of Vernonia herbacea (Asterceae). J. Appl. Microbiol. , 1999,87: 141~147.
    51. KUSHI, R. T., MONTI, R. and CONTIERO, J. Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J. Ind. Microbiol. Biotechnol. , 2000,25:63~69.
    52. 颜思旭,蔡红玉. 酶催化动力学原理与方法. 厦门大学出版社,1988.
    53. GAYE, O. B., SUHA, S. S., NIKOLAY, V. Production and properties of inulinase from Aspergillus niger. Biotechnol. Lett. , 1994, 16(3): 275~280.
    54. KORNEEVA, O.S., ZHEREBTSOV, N. A., SHUVAEVA, G. P. et al. Inulinase of microycete Aspergillus Awamori 808 preparative production and some physico-characteristics. Biotechnol., 1993, (7): 31~35.
    55. GUERREIRO, A.C., PENA, I.G., BARZANA, E., GARIBAY, M.G. and RUIZ, L.G. Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J. Ferment Bioeng 80: 159~163.
    56. MICHAUD, A. S., DRIOUICH, A., YELLE, S. and FAYE, L. Purification and partial characterization of an acid β-fructosidase from sweet pepper (Capsicum annum L.) fruit. Planta, 191: 308~315.
    57. ZHANG, L. H., ZHAO, C. Z., ZHU, D. C., UOSHIYUKI, O. and WANG, Y. J. Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression and Purification. 2004, 35: 272~275.
    58. ANIL, K.G. ARVIND, G. and NARINDER, K. A HgCl insensitive and thermally stable inulinase from Aspergillus oryzae. Phytochemistry. 1998, 49(8): 55~58.
    59. 谢秋宏,相宏宇. 一步酶法水解菊粉生产高果糖浆. 吉林大学自然科学学报,1997,2:103~105.
    60. 何强. 菊糖的分离纯化及作为脂肪替代品的研究. 江南大学硕士学位论文. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700