用户名: 密码: 验证码:
海洋酵母新型菊粉酶基因的克隆及表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊粉(inulin)是D-呋喃果糖分子由β-2,1-糖苷键连接组成的链状多糖,其末端有一个葡萄糖残基以α-2,1-糖苷键与之相连。菊粉广泛存在于菊芋(Jerusalemartichoke)、雪莲果(Yacon)、菊苣(Chicory tubes)和牛蒡(Arctium)等多种植物中。菊粉酶(inulinase)是一种呋喃果糖基水解酶,它靶向作用于菊粉中的β-2,1糖苷键并将其水解为果糖和葡萄糖。菊粉酶可以分为外切菊粉酶和内切菊粉酶。外切菊粉酶可以从菊粉分子的非还原末端催化水解下-D-呋喃果糖残基,其底物可为菊粉、蔗糖、果聚糖;内切菊粉酶可以水解菊粉内部的β-2,1糖苷键使其变成菊糖三糖、菊糖四糖、菊糖五糖为主的低聚果糖。在本研究中为了了解海洋酵母菌菊粉酶基因及其功能和应用,分别克隆了海洋隐球酵母Cryptococcus aureus HYA菌株的菊粉酶基因和海洋酵母Candida membranifaciens subsp.flavinogenie W14-3菌株的菊粉酶基因,同时将从C.aureus HYA菌株克隆得到的菊粉酶基因HYAINU1分别在Pichia pastoris和Saccharomyces cerevisiae中表达。
     C. aureus HYA菌株具有菊粉酶活性,从C.aureus HYA菌株中克隆的菊粉酶基因HYAINU1基因登录号为JX073660,该菊粉酶基因的ORF框共1653bp,基因中不含内含子,翻译550个氨基酸,氨基酸序列中的前23个为信号肽部分,蛋白预测分子量大小为59.5kDa。在该菊粉酶氨基酸序列中含有酵母外切菊粉酶的保守序列WMNDPNGL、RDP、ECP、FS和Q,同时含有2个N-糖基化位点。在启动子中含有1个TATA框、2个5′-SYGGRG-3′序列,若干5′-CGG-3′序列。5′-SYGGRG-3′序列是Mig1中C2H2锌指蛋白的锚定位点,说明该基因表达受到葡萄糖阻遏。而5′-CGG-3′序列是转录激活蛋白Zn(II)2Cys6的锚定位点,说明该基因表达受到底物诱导。
     将菊粉酶基因HYAINU1去掉信号肽部分,连接到pPICZaA表达载体中,在巴斯德毕赤酵母Pichia pastoris X-33中表达。表达的融合蛋白通过不连续SDS-PAGE凝胶电泳和Western Blot分析验证,得到蛋白分子量大小为60.0kDa左右的目的条带。含有HYAINU1基因的P. pastoris X-33转化子在培养过程中,培养液中测得的最高菊粉酶酶活力单位为16.3±0.24U/mL。该重组菊粉酶最适反应温度为50℃,最适pH值为5.0。纯化的重组菊粉酶水解菊粉后发现大量单糖,说明C. aureus HYA菌株分泌的菊粉酶为外切菊粉酶
     将菊粉酶基因HYAINU1连接到pMIRSC11表达载体中在高产酒精酵母W0菌株的尿嘧啶缺陷型菌株W12d中表达,筛选后得到转化子MHYAINU1-69。该转化子培养到72h时酶活力为19.2±0.3U/mL。经150mL体系的酒精发酵研究确认最佳接种量和最适菊粉浓度分别为10.0%(v/v)和25.0%(w/v),当发酵到120h时,酒精浓度可达到11.9%(v/v,20°C)。当扩大到3-L发酵体系,发酵时间为120h时发酵液酒精浓度为13.1±0.6%(v/v,20°C)。
     分离自中国东海表层海水样品的海洋酵母C.membranifacienssubsp.flavinogenie W14-3菌株可分泌核黄素,但也具有菊粉酶活性,W14-3菌株菊粉酶基因的基因登录号为KC576811。该菊粉酶基因的ORF框共1536bp,翻译512个氨基酸,通过软件EditSeq预测的蛋白分子量大小为57.8kDa。W14-3菌株的菊粉酶基因5′端上游序列的非编码区中除含启动子外还存在2个5′-SYGGRG-3′序列及若干5′-CGG-3′序列,说明W14-3菌株菊粉酶基因的表达同样受到葡萄糖的阻遏和底物的诱导。
Inulin consists of linear chains of β-2,1-linked D-fructofuranose moleculesterminated by a glucose residue through a sucrose-type linkage at the reducing end.Inulin mainly exsits in jerusalem artichoke, yacon, chicory tubes, and arctium.Inulinases are fructofuranosyl hydrolases that target on the β-2,1linkage of inulin andhydrolyze it into fructose and glucose. They can be divided into exo-inulinase andendo-inulinase. The exo-inulinase catalyzes the removal of the terminal fructoseresidues from the non-reducing end of the inulin molecule while the endo-inulinasehydrolyzes the internal linkages in inulin to yield inulotriose, inulotetraose, andinulopentaose. In this study, the full-length of the inulinase gene was cloned andcharacterized from C. aureus HYA and C. membranifaciens subsp.flavinogenieW14-3, respectively. At the same time, the cloned HYAINU1gene from C. aureusHYA was expressed in P. pastoris and S. cerevisiae, respectively.
     The marine yeast C. aureus HYA had inulinases activity.The HYAINU1genefrom C. aureus HYA was cloned and characterized (Accession number: JX073660).The gene had an open reading frame (ORF) of1653bp long encoding an inulinase.The coding region of the gene was not interrupted by any intron. It encoded551amino acid residues of a protein with a putative signal peptide of23amino acids andthe calculated molecular mass of59.5kDa. The protein sequence deduced from theinulinase structural gene contained the inulinase consensus sequences(WMNDPNGL),(RDP), ECP, FS and Q.It also had two conserved putativeN-glycosylation sites. After analysis of the promoter of the HYAINU1gene, it wasfound that it had one TATA box and several sequences such as5′-SYGGRG-3′and5′-CGG-3′. It has been reported that Mig1, the main effector in glucose repression, isa C2H2zinc finger protein that is able to bind the promoters of a variety of genesrepressed by glucose and the binding site in the promoter should have the sequence5′-SYGGRG-3′. It also has been documented that the transcriptional activator, Zn(II)2Cys6protein is able to bind the promoters of a variety of genes induced by thesubstrates and the binding site in the promoter has the sequence5′-CGG-3′. Thismeans that expression of the HYAINU1gene cloned from C. aureus HYA can berepressed by glucose and fructose and induced by the substrates, such inulin andsucrose.
     The inulinase gene without the signal sequence was subcloned into pPICZaAexpression vector and expressed in P. pastoris X-33. After the expressed fusionprotein was analyzed by SDS-PAGE and Western Blot, a specific band withmolecular mass of about60kDa was found. Enzyme activity assay verified therecombinant protein as an inulinase. A maximum inulinase activity of16.3±0.24U/mL was obtained from the culture supernatant of P. pastoris X-33harboring the inulinase gene. The optimal temperature and pH for action of theenzyme were50°C and5.0, respectively. A large amount of monosaccharides weredetected after the hydrolysis of inulin with the purified recombinant inulinase. Theresults suggested that the recombinant inulinase produced by P. pastoris X-33carrying the HYAINU1gene had exo-inulinase activity.
     The HYAINU1gene with the signal sequence was subcloned into pMIRSC11expression vector and expressed in Saccharomyces sp. W12d (a diploid uracilauxotroph strain of the high ethanol producing yeast Saccharomyces sp. W0). Thetransformant MHYAINU1-69obtained produced19.2±0.3U/mL of extracellularinulinase within72h of cultivation. During the150-mL fermentation,11.9%(v/v,20°C)ethanol was produced within120h and the inoculum size and inulin concentrationwere10.0%(v/v) and25.0%(w/v), respectively. During the3-L fermentation,13.1±0.6%(v/v,20°C) of ethanol was produced from inulin.
     The marine yeast strain W14-3was isolated from seawater of China Eastern Seaand identified to be Candida membranifaciens subsp. flavinogenie W14-3. The strainW14-3was found to have inulinases activity and produce riboflavin.The inulinasegene from the strain W14-3was cloned by degenerate PCR and genomic walking.The cloned gene had an open reading frame (ORF) of1536bp long encoding aninulinase (Accession number: KC576811). It encoded512amino acid residues with the calculated molecular mass of57.8kDa. After analysis of the5′-flanking region ofthe inulinase gene, it was found that in its promoter there were two sequences of5′-SYGGRG-3′and several sequences of5′-CGG-3′, which had the same function asconsensus sequences of the promoter of the HYAINU1gene from C. aureus HYA,suggesting that expression of the inulinase gene cloned from C. membranifacienssubsp. flavinogenie W14-3can be repressed by glucose and fructose and induced bythe substrates, such inulin and sucrose.
引文
[1]郭尧君.蛋白质电泳技术.北京:科学出版社,2001
    [2]郭广君,吕素芳,王荣富.外源基因表达系统的研究进展.科学技术与工程,2006.6(5):583~592
    [3]高威.产菊粉酶耐热细菌的筛选及酶学性质研究[D].大连:大连理工大学,2008
    [4]顾天成,吕跃刚,许春兰等.菊粉酶产酶菌株的诱变选育及产酶条件的研究[D].食品与发酵工业,1998.25(1):5~9
    [5]李淑娟.六聚组氨酸融合蛋白纯化方法研究.西北大学生命科学学院国家微检测系统工程技术研究中心,2007.1~61
    [6]罗英,李俊刚.菊芋的酶降解及其综合利用.四川师范大学学报,1999.22(6):747~751
    [7]彭英云,江波,金征宇.曲霉SK004产菊粉酶发酵条件的确定及酶学性质研究[J].食品与发酵工业,2005.31(1)61~65.
    [8]任玮.产菊粉酶微生物水解菊芋粉的应用研究[D].江南大学,2008
    [9]萨姆布鲁克丁,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南.M.第2版.金冬雁等译.北京:科学出版社,2002
    [10]史兆兴.简并PCR及其应用,生物技术通讯,2004.15:172~175
    [11]唐艳斌,许波,唐湘华.产菊粉酶曲霉菌株的筛选和发酵条件的优化[J].饲料研究,2008.7:32~35
    [12]谢元.高果糖浆在饮料中的应用.食品工业,2002.23(2):33~34
    [13]魏文铃,于娴文,戴亚等.克鲁维酵母Y-85菊粉酶的纯化和性质[J].微生物学报,1997.
    [14]魏凌云,王建华,郑晓冬,等.菊粉研究的回顾与展望[J].食品与发酵工业,2005.31(7):81~85.
    [15]魏凡华,曹瑞兵,吴润,陈溥言.巴斯德毕赤酵母表达系统研究进展.农业科学研究,2007.28(1):68~71
    [16]汪家政,范明主编.蛋白质技术手册.北京:科学出版社.2000.
    [17]汪伦记,董英.马克思克鲁维酵母固态发酵菊粉酶培养条件的优化[J].食品科学,2008.29(8):402~406
    [18]王麟,海洋酵母菌种资源库的建立及特殊类型海洋酵母菌的多样性研究.青岛:中国海洋大学,2008.1~150
    [19]王纪明,可直接利用菊粉或者淀粉的高产酒精酵母工程菌株的构建及其应用.青岛:中国海洋大学,2012.1~180
    [20]王洪振,周晓馥,宋朝霞,刘文广,曾宪录.简并PCR技术及其在基因克隆中的应用.2003.25(2):2011~204
    [21]王建华,刘艳艳,姚斌等.一步法制备高果糖浆工程及产酶菌体营养价值研究[J].食品与发酵工业1999.26(2):1~4
    [22]王光远,李凡,陈冠军.产菊粉酶酵母SDU2.90的菌种鉴定及发酵条件研究.中国资源生物技术与糖工程学术研讨会论文集.2005.
    [23]杨海军.果葡糖浆的特性及应用.食品科学,2002.23(2):154~156
    [24]杨慧敏,孙秋,张炳火等.微生物菊粉酶发酵生产研究[J].贵州农业科学,2004.32(3):83~84
    [25]张瞳,海洋季也蒙毕赤酵母重组菊粉酶及其在产乙醇中的应用.青岛:中国海洋大学,2010.1~139
    [26]祝林,陈晶晶,舒望云等.克鲁维酵母中外切菊粉酶基因在毕赤酵母中的表达研究[J].湖北大学学报(自然科学版),2006.28(4):385~388
    [27]郑仲承.寡核苷酸的优化设计[J].生命的化学,2001.21(3):254~256
    [28] Akimoto H, Kiyota N, Kushima T, Nakamura T, Ohta K. Molecular cloning and sequenceanalysis of an endoinulinase gene from Penicillium sp. strain TN-88. Biosci BiotechnolBiochem,2000.64:2328~2335
    [29] Akimoto H, Kushima T, Nakamura T, Ohta K. Transcriptional analysis of two endoinulinasegenes inuA and inuB in Aspergillus niger and nucleotide sequences of their promoter regions.J Biosci Bioeng1999.88:599~604
    [30] Arnold K, Bordoli L, Kopp J, Schwede,T. The SWISS-MODEL Workspace: a web-basedenvironment for protein structure homology modeling. Bioinformatics47622,2006.195~201
    [31] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem1976.72:248~254
    [32] Bergkamp RJ, Bootsman TC, Toschka HY, Mooren AT, Kox L, Verbakel JM, Geerse RH,Planta RJ. Expression of an α-galactosidase gene under control of the homologous inulinasepromoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol,1993.40:309~317
    [33] Cao TS, GY Wang, Z Chi, ZP Wang, ZM Chi. Cloning, characterization and heterelogousexpression of the INU1gene from Cryptococcus aureus HYA.2012.GENE-38170
    [34] Cabezas M J. C Bravo. R S Shene. C. Inulin and sugar contents in Helianthus tuberosus andCichorium intybus tubers: effect of postharvest storage temperature. J. Food Sci.2002.67:2860~2865
    [35] Chi ZM and Liu Z R. High concentration alcoholic production from hydrolysate of rawground corn by a tetraploid yeast strain. Biotechnol Lett1993.15:877~882
    [36] Chi ZM, Ma C, Wang P, Li H. Optimization of medium and cultivation conditions foralkaline protease production by the marine yeast Aureobasidium pullulans. BioresourTechnol.2007.98:534~538
    [37] Chi ZM, Chi Z, Zhang T, Liu G, Yue L. Inulinase-expressing microorganisms andapplications of inulinases. Appl. Microbiol. Biotechnol.2009.82:211~220
    [38] Chi ZM, Zhang T, Cao T.S, Liu X Y, Cui W, Zhao C H. Biotechnological potential of inulinfor bioprocesses. Bioresour. Technol.2011.102:4295~4303.
    [39] Cruz-Guerrero A, Garcia-Pena, I.G, Barzana E, Garcia-Garibay M, Gomes-Ruiz L.Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyper producing strain. J. Ferment.Bioeng.1995.80:159~163
    [40] Chen G, Sun Z, Wang Y, Qian X. Purification and properties of inulinase from Aspergillusniger. Weishengwu Xuebao1997.37:362~367
    [41] Chen XM, Xu XM, Jin ZY, Chen HQ. Expression of an endoinulinase from Aspergillusficuum JNSP5-06in Escherichia coli and its characterization. Cabon Polym.doi:10.1016/j.carbpol.2012
    [42] Cui W, Wang Q, Zhang F, Zhang S C, Chi Z M, Madzak C. Direct conversion of inulin intosingle cell protein by the engineered Yarrowia lipolytica carrying inulinase gene. ProcBiochem,2011.46:1442~1448
    [43] Cloning and nucleotide sequence of the endoinulinase-encoding gene, inu2, from Aspergillusficuum. Biotechnol Lett,20:809~912
    [44] Catalytic mechanism of inulinase from Arthrobacter sp. S37. Biochem Biophys Res Commun,371:600~605
    [45] Demeulle S, Guiraud J P, Galzy P. Study of inulase from Debaryomyces phaffii Capriotti. Z.Allg. Mikrobiol.1981.21:181~189
    [46] Ettalibi M, Baratti J C. Molecular and kinetic properties of Aspergillus ficuum inulinases.Agric Biol Chem.1990.54(1):61~68
    [47] Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol Rev,1998.62:334~361
    [48] Gao, J., Xu, H., Li, Q.J., Feng, X.H., Li, S. Optimization of medium for one-stepfermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxaZJ-9to produce R,R-2,3-butanediol. Bioresour. Technol.2010.101:7076~7082
    [49] Ge, X.Y., Qian, H., Zhang, W.G. Improvement of L-lactic acid production from Jerusalemartichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour.Technol.2009.100:1872~1874.
    [50] Gene cloning, expression, and crystallization of a thermostable exo-inulinase fromGeobacillus stearothermophilus KP1289. Appl Microbiol Biotechnol,62:180~185
    [51] Gong F, Sheng J, Chi Z, Li J. Inulinase production by a marine yeast Pichia guilliermondiiand inulin hydrolysis by the crude inulinase. JInd Microbiol Biotechnol,2007.34:179~185
    [52] Gong F, Chi ZM, Sheng J, Li J, Wang XH. Purification and characterization of extracellularinulinase from a marine yeastn Pichia guilliermondii and Inulin hydrolysis by the purifiedinulinase. Biotechnol Bioproc Eng,2008.13:533~539
    [53] George V, Diwan AM. Simultaneous staining of proteins during polyacrylamide gelelectrophoresis in acidic gels by counter migration of Coomassie brilliant blue R-250. AnalBiochem1983.132:481~483
    [54] Gong F, Sheng J, Chi ZM, Li J. Inulinase production by a marine yeast Pichia guilliermondiiand inulin hydrolysis by the crude inulinase. J Indu Microbiol Biotechnol2007.34:179~185
    [55] Gong F, Chi ZM, Sheng J, Li J, Wang XH. Purification and characterization of extracellularinulinase from a marine yeast Pichia guilliermondii and Inulin hydrolysis by the purifiedinulinase. Biotechnol Bioproc Eng2008.13:533~539
    [56] Gancedo JM. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev,1998.62:334~361
    [57] Guiraud JP, Daurelles J, Galzy P. Inulin hydrolysis by the Debaromyces phaffii inulinaseimmobilized in DEAE-cellulose. Biotechnol. Lett.1981b.3:683~688
    [58] Gill P.K, Manhas RK, Singh P. Purification and properties of a heatstable exoinulinaseisoform from Aspergillus fumigatus. Biores. Technol.2006.97:894~902
    [59] Hendry G. The ecological significance of fructan in a contemporary flora. New Ptologist,1987.106:201~216
    [60] Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J. Technologies for productionof biodiesel focusing on green catalytic techniques: a review. Fuel Process. Technol.2009.90:1502~1514
    [61] Howard D H, Acquisition transport and storage of iron by pathogenic fungi. Clin MicrobioRev,1999,12(3):394~404.
    [62] Hill F,Loakes D,Brown D M. Polymerase recognition of synthetic oligodeoxyribonucleotides incorporating degenerate pyrimidine anpurine bases[J]. Proc Natl AcadSci,1998.95:4258~4263
    [63] Kaur, N., Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J.Biosci.2002.27:703~714
    [64] Kang SI, Kim SI. Molecular cloning and sequence analysis of an endo-inulinase gene fromArthrobacter sp. Biotechnol Lett,1999.21:569~574
    [65] Kango N, Jain SC. Production and properties of microbial inulinases: recent advances, FoodBiotechnol,2011.25:165~212
    [66] Knoth K,Roberds S,Poteet C, et al. Highly degenerate,inosine containing primersspecifically amplify rare cDNA using the poly2merase chain reaction [J]. Nucleic acidsresearch,1988.16:10932
    [67] Kumar G, Kunamneni A, et al. Optimization of process parameters for the production ofinulinase from a newly isolated Aspergillus niger AUP19[J].
    [68] Kushi RT, Monti R, Contiero J. Production, purification and characterization of anextracellular inulinase came from Kluyveromyces marxianus var. bulgaricus. JInd MicrobiolBiotechol,2000.25:63~69
    [69] Kim BW, Kim HW, Nam SW. Continuous production if fructose-syrup from inulin byimmobilized inulinase from recombinant Saccharomyces cerevisiae. Biotechnol Bioproc Eng,1997.2:90~93
    [70] Kwon YM, Kim HY, Choi YJ. Cloning and characterization of Pseudomonas mucidolensexo-inulinase. J Microbiol Biotechnol,2000.10:238~243
    [71] Kwon HJ, Jeon SJ, You DJ, Kim KH, Jeong YK, Kim YH, Kim YM, Kim BW. Cloning andcharacterization of an exoinulinase from Bacillus polymyxa. Biotechnol Lett,2003.25:155~159
    [72] Kuzuwa S, Yokoi KJ, Kondo M, Kimoto H, Yamakawa A, Taketo A,Kodaira K. Propertiesof the inulinase gene levH1of Lactobacillus casei IAM1045; cloning, mutational andbiochemical characterization. Gene,2012.495:154~162
    [73] Laloux O, Cassart JP, Delcour J, Van Beeumen J, Vandenhaute J. Cloning and sequencing ofthe inulinase gene of Kluyveromyces marxianus var. marxianus ATCC12424. FEBS Lett,1991.289:64~68
    [74] Lane MM, Morrissey JP. Kluyveromyces marxianus: A yeast emerging from its sister’sshadow. Fung Biol Rev,2010.2:1~10
    [75] Lin Wang, Zhenmin Chi, Xianghong Wang, Liang Ju, Zhe Chi, Ning Guo. Isolation andcharacterization of Candida membranifaciens subsp. flavinogenie W14-3,a novelriboflavin-producing marine yeast. Microbiological Research,2008.163:255~266
    [76] Li, M., Liu, G.L., Chi, Z., Chi, Z.M., Single cell oil production from hydrolysate of cassavastarch by marine-derived yeast Rhodotorula mucilaginosa TJY15a.Biomass Bioenergy2010a.4:101~107
    [77] Li SZ, Chan-Halbrendt SZ. Ethanol production in (the) People′sRepublic of China: potentialand technologies. Appl Energ,2009.86:162~169
    [78] Li Y, Liu GL, Wang K, Chi ZM, Madzak C. Overexpression of the endo-inulinase gene fromArthrobacter sp. S37in Yarrowia lipolytica and characterization of the recombinantendo-inulinase.J Mole Cata B Enz,2012.74:109~115
    [79] Liu XY, Chi Z, Liu GL, Wang F, Madzak C, Chi ZM. Inulin hydrolysis and citric acidproduction from inulin using the surfaceengineered Yarrowia lipolytica displaying inulinase.Metab Eng,2010.12,469~476
    [80] Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM.(2011). Mig1is involved in mycelialformation and expression of the genes encoding extracellular enzymes in Saccharomycopsisfibuligera A11. Fung Genet Biol, doi:10.1016/j.fgb.2011.04.008.
    [81] Laemmli U K. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4.1970.Nature227:680~685
    [82] Liu GL, Chi Z, Chi Z.M. Molecular characterization and expression of microbial inulinasegenes. Crit. Rev.Microbiol.2012.(Early Online:1~14)
    [83] Lin PKT,Brown D M. Synthesis of oligodeoxyribonucleotides containing degenerate basesand their use as primers in the poly2merase chain reaction [J]. Nucleic acids research,1992.20:5149~5152
    [84] Microbiology&Biotechnology,2005.21:1359~1361
    [85] M L Cazetta, P.M.M. Martins, R. Monti b, J. Contiero, Yacon (Polymnia sanchifolia) extractas a substrate to produce inulinase by Kluyveromyces marxiaus var. bulgaricus, Journal ofFood Engineering,2005.301~305
    [86] MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: thezinc cluster proteins. Microbiol Mol Biol Rev,2006.70:583~604
    [87] Madzak C, Gaillardin C, Beckerich JM. Heterologous protein expression and secretion in thenon-conventional yeast Yarrowia lipolytica: a review. J Biotechnol,2004.109:63~81
    [88] Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M. Biodiesel production fromoleaginous microorganisms. Renew. Energy.2009.34:1~5
    [89] Moriyama S, Akimoto H, Suetsugu N, Kawasaki S, Nakamura T, Ohta K. Purification andproperties of an extracellular exoinulinase from Penicillium sp. strain TN-88and sequenceanalysis of the encoding gene. Biosci Biotechnol Biochem,2002.66:1887~1896
    [90] Moriyama S, Tanaka H, Uwataki M, Muguruma M, Ohta K. Molecular cloning andcharacterization of an exoinulinase gene from Aspergillus niger strain12and its expressionin Pichia pastoris. J Biosci Bioeng,2003.96:324~331
    [91] Moriyama S, Muguruma M, Ohta K. Quantitative expression analysis of inulinase genecluster of Penicillium sp. strain TN-88. J Biosci Bioeng,2006.101:277~279
    [92] Nagem RA, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA,Neustroev KN, Polikarpov I. Crystal structure of exo-inulinase from Aspergillus awamori:the enzyme fold and structural determinants of substrate recognition. J Mol Biol,2004.344:471~480
    [93] Nicaud JM, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C.Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res,2002.2:371~379
    [94] Negoro H, Kito E. β-Fructofuranosidase from Candida kefyr. J. Ferment.Technol.1973.51:96~102
    [95] Negoro H. Purification and characterization of inulinase from Kluyveromyces fragilis. J.Ferment. Technol.1978.51:102~107
    [96] Nakamura T, Hoashi S, Nakatsu S. Culture conditions for inulinase production by Aspergillus.Nippon Noge. Kaishi1978b.52:105~110
    [97] Nakamura T, Maruki S, Nakatsu S, Ueda S. General properties of an extracellular inulase(P-II) from Aspergillus sp. Nippon Noge. Kaishi1997.52:581~587
    [98] Nichols R,Andrews P C,Zhang P, et al. A universal nucleotide for use at ambiguous sites inDNA primers[J].Nature369:492~493
    [99] Nakamura T, Ogata Y, Hamada S, Ohta K. Ethanol production from Jerusalem artichoketubers by Aspergillus niger and Saccharomyces cerevisiae. J Fermen Bioeng1996.81:564~566
    [100] Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T. Molecular cloning andsequence analysis of two endoinulinase genes from Aspergillus niger. Biosci BiotechnolBiochem,1998.62:1731~1738
    [101] Ododera S, Shiomi N. Purification and substrate specificity of endo-type inulinase fromPenicillium purpurogenum. Agric. Biol Chem,1988.52(10):25692576.
    [102] Onodera S, Murakami T, Ito H, Mori H, Matsui H, Honma M, Chiba S, Shiomi N.Molecular cloning and nucleotide sequences of cDNA and gene encoding endo-inulinasefrom Penicillium purpurogenum. Biosci Biotechnol Biochem,1996.60:1780~1785.
    [103] Plant J.Cloning and functional analysis of chicory root fructan1-exohydrolase I (1-FEH I): avacuolar enzyme derived from a cellwall invertase ancestor. Mass fingerprint of the1-FEH Ienzyme.24:447~456.
    [104] Park S, Jeong HY, Kim HS, Yang MS, Chae KS. Enhanced production of Aspergillusficuum endoinulinase in Saccharomyces cerevisiae by using the SUC2-deletion mutation.Enzy Microb Technol,2001.29:107~110
    [105] Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Jose D et al. Recentdevelopments in microbial inulinases, its production, properties and industrial applications.Appl Biochem Biotechnol1999.81:35~52
    [106] Rabaatun Adawiyah S, Shuhaimi M, Mohd Yazid AM, Abdul Manaf A, Rosli AN,Sreeramana S. Molecular cloning and sequence analysis of an inulinase gene from anAspergillus sp. World J Microbiol Biotechnol,2011.27:2173~2185
    [107] Rouw enhorst R J et al. Applied and Environmental Microbiology,1988.54(5):1131~1137
    [108] Rouw enhorsL R J, Hensing M, Verbakel J, et al. Structure and properties of theextracellular inulinase of Kluyveromyces marxianus CBS-6556[J]. Applied andEnvironmental Microbiology,1990.56(11):3337~3345
    [109] Sanchez OJ and Cardona CA, Trends in biotechnological production of fuel ethanol fromdifferent feedstocks. Biores Technol2008.99:5270~5295
    [110] Sambrook J, Fritsch E.F, Maniatis T. Molecular Cloning: A Laboratory Manual,2nd edn.Cold Spring Harbor Laboratory Press, Beijing, pp.1989.367~370(Chinese trans-lating ed.)
    [111] Saha, B.C. Production of mannitol from inulin by simultaneous enzymatic saccharificationand fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microb. Technol.2006.39:991~995
    [112] Sheng J, Chi Z, Gong F, Li J. Purification and characterization of extracellular inulinasefrom a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase.Appl Biochem Biotechnol,2008.144:111~121
    [113] Sheng J, Chi ZM, Li J, Gao L, Gong F. Inulinase production by the marine yeastCryptococcus aureus G7a and inulin hydrolysis by crude inulinase. Proc Biochem,2007.42:805~811
    [114] Spiro RG. Analysis of sugars found in glycoproteins. Methods Enzymol1966.8:23~26
    [115] Scorer CA, Clare JJ, McCombie W R, et al. Rapid selection using G418of high copynumber transformants of Pichia pastoris for high-level foreign gene expression.[J]. Bio/Technology,1994.12(2)
    [116] Shen Zhi-Yuan,Wells R L,L IU Jing et al. Identification of a cytochrome P450gene byreverse transcription PCR using degenerate primers containing inosine[J]. Proc Natl AcadSci,1993.90:11483~11487
    [117] Sharma A D, Gill P K. Purification and characterization of heal-stable exo-inulinase fromStreptomyces sp.[J].Journal of Food Eneineerine,2007.79(4):1172~1178
    [118] Thompson J.D, Gibson TJ, Plewniak F, Jeanmougin F, Higgins D.G. The ClustalX windowsinterface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res.1997.24:4876~4882
    [119] Tong Zhang, Zhenming Chi, Jean-Luc Parrou, Fang Gong. Expression of the inulinase genefrom marine-derived Pichia guilliermondii in Saccharomyces sp. W0and ethanol productionfrom inulin. Microbial biotechnology,2010. DOI:10.1111/j.1751-7915.2010.00175.x.
    [120] Tsang EW, GrootWassink J.W.D. Extraordinarily rapid appearance of aβ-fructofuranosidase (exo-inulase)-hyperproducing mutant in continuous culture ofKluyveromyces fragilis. J. Gen. Microbiol.1988.134:679~688
    [121] Thonart P, Roblain D, Rikir R. Improvement of inulin hydrolysis yeast cell reactor bymutants selection. Appl. Biochem. Biotechnol.1988.17:193~202
    [122] Vandamme EJ, Derycke DG. Microbial inulinases: fermentation process,properties andapplications. Adv. Appl. Microbiol.1983.29:139~176
    [123] Wada k,Wada Y,Doi H, et al. Codon usage tabulated from the GenBank genetic sequencedata[J]. Nucleic acids research,1991.
    [124] Wang F, Yue L, Wang L, Madzak C, Li J, Wang X, Chi Z. Genetic modification of themarine-derived yeast Yarrowia lipolytica with high-protein content using aGPI-anchor-fusion expression system. Biotechnol Prog,2009.25:1297~1303
    [125] Wang L, Huang Y, Long X, Meng X, Liu Z. Cloning of exoinulinase gene from Penicilliumjanthinellum strain B01and its high-level expression in Pichia pastoris. J Appl Microbiol,2011.111:1371~1380
    [126] Wang J, Teng D, Yao Y, Yang Y, Zhang F. Expression of Aspergillus niger9891endoinulinase in Pichia pastoris. High Technol Lett,2004.10:52~56
    [127] Wei, W., Wu, K., Qin, Y., Xie, Z., Zhu, X. Intergeneric protoplast fusion betweenKluyveromyces and Saccharomyces cerevisiae to produce sorbitol from Jerusalem artichokes.Biotechnol. Lett.2001.23:799~803
    [128] Wen T, Liu F, Huo K, Li YY. Cloning and analysis of the inulinase gene fromKluyveromyces cicerisporus CBS4857. World J MicrobiolBiotechnol,2003.19:423~426
    [129] Yu J, Jiang J, Fang Z, Li Y, Lv H, Liu J. Enhanced expression of heterologous inulinase inKluyveromyces lactis by disruption of hap1gene. Biotechnol Lett,2010.32:507~512
    [130] Yu J, Jiang J, Ji W, Li Y, Liu J. Glucose-free fructose production from Jerusalem artichokeusing a recombinant inulinasesecreting Saccharomyces cerevisiae strain. Biotechnol Lett,2011.33:147~152.
    [131] Yuan XL, Goosen C, Kools H, van der Maarel MJ, van den Hondel CA, Dijkhuizen L, RamAF. Database mining and transcriptional analysis of genes encoding inulin-modifyingenzymes of Aspergillus niger. Microbiology (Reading, Engl),2006.152:3061~3073
    [132] Yuan XL, Roubos JA, van den Hondel CA, Ram AF. Identification of InuR, a newZn(II)2Cys6transcriptional activator involved in the regulation of inulinolytic genes inAspergillus niger. Mol Genet Genomics,2008.279:11~26
    [133] Yue L, Chi Z, Wang L, Liu J, Madzak C, Li J, Wang X. Construction of a new plasmid forsurface display on cells of Yarrowia lipolytica. J Microbiol Methods,2008.72:116~123
    [134] Yun JW, Choi YJ, Song CH, Song SK. Microbial production of inulo-oligosaccharides byan endoinulinase from Pseudomonas sp. expressed in Escherichia coli. J Biosci Bioeng,1999.87:291~295
    [135] Yuan B, Hu N, Sun J, Wang SA, Li FL. Purification and characterization of anovelextracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Appl.Microbiol. Biotechnol. http://dx.doi.org/10.1007/s00253-012-4108-y.2012
    [136] Zhang T, Gong F, Peng Y, Chi ZM. Optimization for high-level expression of the Pichiaguilliermondii recombinant inulinase in Pichia pastoris and characterization of therecombinant inulinase. Proc Biochem,2009a.44:1335~1339
    [137] Zhang T, Gong F, Chi Z, Liu G, Chi Z, Sheng J, Li J, Wang X. Cloning and characterizationof the inulinase gene from a marine yeast Pichia guilliermondii and its expression in Pichiapastoris. Antonie Van Leeuwenhoek,2009b.95:13~22
    [138] Zhang T, Chi Z, Zhao CH, Chi ZM, Gong F. Bioethanol production from hydrolysates ofinulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. BioresourTechnol,2010a.101:8166~8170
    [139] Zhang T, Chi Z, Chi Z, Parrou JL, Gong F. Expression of the inulinase gene from themarine-derived Pichia guilliermondii in Saccharomyces sp. W0and ethanol production frominulin. Microb Biotechnol,2010b.3:576~582
    [140] Zhang S, Yang F, Wang Q, Hua Y, Zhao ZK. Highlevel secretory expression andcharacterization of themrecombinant Klyuveromyces marxianus. Proc Biochem,2012.47:151~155
    [141] Zhao CH, Zhang T, Li M, Chi ZM. Single cell oil production from hydrolysates of inulinand extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. ProcBiochem,2010a.45:1121~1126
    [142] Zhao CH, Cui W, Liu XY, Chi ZM, Madzak C. Expression of inulinase gene in theoleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containingmaterials. MetabEng,2010b.12:510~517
    [143] Zhenming Chi, Zhe Chi, Tong Zhang et al. Inulinase-expressing microorganisms andapplications of inulinases[J]. Appl Microbiol Biotechnol.2009.82:211~220
    [144] Zhe CHI, Lin WANG, et al. Optimisation of riboflavin production by the marine yeastCandida membranifaciens subsp. flavinogenie W14-3using response surface methodology.Annals of Microbiology,2008.58(4):677~681
    [145] Zittan, L. Enzymatic hydrolysis of inulin—an alternative way to fructose production.Starch1981.33:373~377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700