用户名: 密码: 验证码:
无线传感器网络任务调度若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感器节点互相合作共同完成指定任务是在资源受限的无线传感器网络中获得较高性能的有效途径之一。在无线传感器网络中,任务的执行与资源的使用紧密联系在一起,执行任务要消耗一定的计算和通信带宽等资源,但由于网络资源十分有限,往往需要尽可能高效地利用有限的资源以使任务得以顺利执行,即在能量受限、动态多变的网络环境中,要求有效分配网络内的任务,将特定的任务调度到最合适的节点上执行,并在保证网络负载均衡的同时实现对资源的有效分配,这就迫切要求在无线传感器网络领域开展有关于无线传感器网络任务调度的研究。
     虽然对于传统网络环境下任务调度算法的研究已经非常的成熟,但在无线传感器网络中的研究还有很大空间。受无线传感器网络本身所具有的动态拓扑性、能耗有限性、节点资源有限性以及数据传感的不可靠性等特点影响,现有算法不能直接应用于无线传感器网络中,从而在无线传感器网络中开展任务调度问题研究是非常迫切和关键的。围绕这一中心问题,本文从多方面展开了综合研究,并作了一些有益的尝试,主要有以下四个方面:
     (1)为了延长网络生命周期,减少网络能量消耗和均衡网络负载,引入了动态联盟思想,构造了无线传感器网络任务分配的动态联盟模型,继而提出了一种基于离散粒子群优化的任务分配算法。该算法根据任务总完成时间、能量损耗以及网络负载状况,建立代价函数,结合粒子群优化算法,实现优化任务分配策略。引入了变异算子,在很好地保持了种群多样性的同时提高了算法的全局搜索能力。仿真实验结果表明了该分配算法在局部求解与全局探索之间取得了较好的平衡,能有效减少无线传感器网络的计算时间和网络能耗,并有效地均衡网络负载。
     (2)无线传感器网络所具有的动态拓扑性特点要求要有一种更加优化和高效的拓扑控制机制,使拓扑结构能够根据节点的状况自我调整和自我配置,以保证在部分传感器节点损坏、失效和移动的情况下,不会影响到数据传输和全局任务。为此,本文针对传统方案所获拓扑的连通冗余度过高或结构健壮性较低等弊端,采纳了本地生成树结构的拓扑调整思路,对拓扑需求进行了建模分析并转化为多目标度约束最小生成树问题,继而设计了一个基于目标共享函数的适应度评价函数,给出了求解该问题的新型离散粒子群优化算法,基于种群的随机状态转移过程,理论分析了算法的全局收敛性,最后构建一种基于新型离散粒子群优化的拓扑控制方案,仿真实验结果表明了所提方案所获拓扑具有网络整体功耗低,结构健壮性高和节点间通信干扰可控的折衷特点,并能够有效地延长无线传感器网络的生命周期。
     (3)无线传感器网络所具有的能耗有限性和节点资源有限性要求在任务调度过程中进行实时数据交换时要尽量减少传感器节点的功耗,而数据融合能有效减少网络内的数据传输量,减少能源的消耗,并尽可能地挖掘传感器节点的处理能力。为此,本文综合运用前向反馈神经网络和粒子群优化算法,建立了一个面向无线传感器网络的多源时域数据融合模型。新模型首先构造了基于粒子群优化的特征选择算法用以简化大量的历史数据源,然后提出了一种基于粒子群优化的新型神经网络预测算法,利用粒子群优化训练前向反馈神经网络,获得全局优化的神经网络权值和阈值,最后依赖于过滤的数据,通过所提预测算法进行数值预测,达到节省能耗的目的,并克服了传统时序算法所无法实现的根据多种不同类型数据进行预测的缺点。
     (4)无线传感器网络自身的网络状况和所处的外界环境动态多变性等特点要求采取自适应机制使任务管理更加适应于无线传感器网络的实时应用需求。为此,本文引入多Agent系统理论,构建了一种基于多Agent的无线传感器网络系统模型,并在该系统模型基础上,提出了一种基于多Agent的无线传感器网络自适应任务调度策略。该策略有效地将多Agent技术融入到了无线传感器网络的自适应任务调度当中,能够对故障结点上未完成的任务及时地进行自适应调整,以达到用最小的开销恢复网络的正常运作。
Collaboration among sensors emerges as a promising solution to achieve highprocessing power in resource-restricted wireless sensor networks (WSNs).Usually in aWSN, the resource usage is highly realated to the execution of tasks, which consumea certain amount of computing resource and communication bandwidth. Since theresources in a specific network are limited, they must be efficiently used to smooththe execution of tasks. Therefore, how to assign a task to its own most appropriatesensor node and simultaneously balance the network load in the context of theuncertain and dynamic network environments becomes an important and urgent issuein WSNs
     Although task scheduling algorithms in traditional network enviroment have beenwell studied in the past, their application to WSNs remains largely unexplored. Due tothe limitations of WSNs, such as dynamic network topology, limited energy, limitedsensor node resources and unreliable sensing data, existing algorithms cannot bedirectly implemented in WSNs and task scheduling problem in WSNs is very urgentand pivotal. Therefore, this thesis endeavors to do an integrated study in some aspectsof task scheduling in WSNs and attempts to improve some key techniques of taskscheduling. It mainly includes the following four aspects:
     First, in order to prolong the lifetime, reduce the energy consumption and balancethe network load, a task allocation algorithm based on the discrete particle swarmoptimization (PSO), called PSO-DA, is proposed in this thesis. Inspired by theprinciple of dynamic alliance, we build a dynamic alliance model for task allocationin WSNs. In PSO-DA, we design a function taking into account the overall executiontime of tasks, the energy consumption and the network balance. In addition, amutation operator is incorporated into PSO-DA to maintain the population diversityand improve the global searching ability. Experimental results show that the proposedalgorithm achieves a good balance of local solutions and global exploration,effectively reduces the computation time of network and the network energyconsumption, and balances the whole network load.
     Second, dynamic topology characteristic of WSNs requires a more optimal andefficient topology control mechanism, in which topology can be self-adjusting andself-configuration according to the status of sensor nodes, to ensure that it does notaffect the data transmission and the overall tasks for the damage, failure and mobile ofsome sensor nodes. Therefore, following an analysis of the major disadvantages, suchas higher connectivity redundancy, lower structural robustness etc, in the traditionaltopology control schemes, this thesis presents a novel discrete particle swarmoptimization (NDPSO) based on the local minimum spanning tree (MST). Due to the demand for the optimization of the network lifetime, we transform the topologycontrol problem into a multi-criteria degree-constrained minimum spanning tree(mcd-MST) problem and design a phenotype sharing function of the objective spaceto obtain a better approximation of true Pareto front. The global convergence of thealgorithm is proved using the theorem of Markov chain. Then a topology controlscheme based on NDPSO is put forward. Experimental results indicate that theobtained topology has low overall power consumption, is roust, controls theinter-node communication interference, and prolongs effectively the lifetime of theWSN.
     Third, the energy and resources constraints of sensor nodes in the WSN requirereducing the power consumption of sensor nodes as little as possible in real-timeexchange of task scheduling. Data aggregation can reduce the number oftransmissions of sensor nodes and energy consumption effectively and it also canexploit sensor node's processing capabilities as much as possible. Therefore, based onBack-Progagation Neural Network (BPNN) and PSO, we propose an energy-efficientmulti-source temporal data aggregation model for WSNs, termed MSTDA. It consistsof two phases. In the first phase, we present a feature selection algorithm based onPSO to simplify the historical data source. In the second one, we introduce aBPNN-based data prediction algorithm with PSO (PSO-BPNN). Consequrently, thefirst phase reduces the number of input nodes for BPNN and the second one, one ofdata aggregation methods, effectively reduces the energy consumption what WSNsneed in real-time exchange of task scheduling. In addition, MSTDA is able to carry ondata prediction by aggregation multivariable data.
     Finally, in order to adapt task management to real-time applications of WSNs, wepropose a self-adaptive mechanism taking into consideration the network status ofWSNs in the context of uncertain, dynamic environments. Inspired by the multi-agentsystem (MSA) theory, we design a multi-agent model for WSNs. In this model, wegive an adaptive MAS-based task scheduling strategy, which self adaptively adjuststhe status of unfinished tasks on the fault nodes in order to minimize the cost of thenetwork recovery.
引文
[1] Weiser M. The Computer of the21Century. Scientific American,1991,265(3):66-75.
    [2]徐光佑,史元春,谢伟凯.普适计算.计算机学报,2003,26(9):1042-1052.
    [3] Shih E, Cho S, Ickes N, et al. Physical Layer Driven Protocol and Algorithm Design forEnergy-Efficient Wireless Sensor Networks. In: Proceedings of the seventh annualinternational conference on Mobile computing and networking. Rome Italy: ACM Press,2001.272-287.
    [4] Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless Sensor Networks: A Survey.Computer Networks,2002,38(4):393-422.
    [5]孙利民,李建中,陈渝,等.无线传感器网络.北京:清华大学出版社,2005.
    [6]于海斌,曾鹏,梁韡.智能无线传感器网络系统.北京:科学出版社,2005.
    [7] Lacoss R, Walton R. Strawman Design for a DSN to Detect and Track Low FlyingAircraft. In: Proceedings of the Distributed Sensor Nets Conference. Carnegie-MellonUniversity, Pittsburgh, USA,1978.41-52.
    [8] Hewish M. Little Brother is Watching You: Unattended Ground Sensors. DefenseReview,2001,34(6):46-52.
    [9] Walrod J. Sensor Network Technology for Joint Undersea Warfare [Online]. Available at:http://www.ndia.org/committees/usw/walrod_sensornets.pdf.
    [10]任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003,14(7):1282-1290.
    [11] Chong C Y, Kumar S P. Sensor Network: Evolution, Opportunities, and Challenges.Proceedings of the IEEE,2003,91(8):1247-1256.
    [12] David C, Deborah E, Mani S. Overview of Sensor Network. IEEE Computer,2004,37(8):41-49.
    [13] Konrad L, David J M, Thaddeus R F, et al. Sensor networks for emergencyresponse-challenges and opportunities. IEEE Pervasive Computing,2004,3(4):16-23.
    [14] Estrin D, Govindan R, Heidemann J, et al. Next Century Challenges: ScalableCoordination in Sensor Networks. In: The Fifth Annual ACM/IEEE InternationalConference on Mobile Computing and Networking. Seatle, Washington: ACM Press,1999.263-270.
    [15] Phipatanasuphorn V, Ramanathan P. Vulnerability of Sensor networks to UnauthorizedTraversal and Monitoring. IEEE Transactions on Computers,2004,53(3):364-369.
    [16] Martinez K, Hart J K, Ong R. Sensor Network Applications. IEEE Computer,2004,37(8):50-56.
    [17] Huang G T. Casting the Wireless Sensor Net. Technology Review,2003,106(6):50-56.
    [18] Rentala P, Musunuri R, Gandham S, et al. Survey on Sensor Networks. Technical Report,UTDCS-33-02, University of Texas at Dallas,2002.
    [19]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展.软件学报,2003,14(10):1717-1727.
    [20]马祖长,孙怡宁,梅涛.无线传感器网络综述.通信学报,2004,25(4):114-124.
    [21] Akyildiz I F, Su W, Sankarasubramaniam Y, et al. A Survey on Sensor Networks. IEEETransactions on Communications Magazine,2002,40(8):102-114.
    [22]王殊,阎毓杰,胡富平,等.无线传感器网络的理论及应用.北京:北京航空航天大学出版社,2007.
    [23] Rappaport T. Wireless Communication: Principles and Practice. NJ, USA: Prentice Hall,1996.
    [24]王小英.传感器网络的任务调度问题:[博士学位论文].沈阳:东北大学,2005.
    [25]李建中.无线传感器网络专刊前言.软件学报,2007,18(5):1077-1079.
    [26] Pottie G J, Kaiser W J. Wireless Integrated Network Sensors. ACM Communications,2000,43(5):51-58.
    [27] Chandrakasan A P. Power-Aware Wireless Microsensor Networks[Online]. Available at:http://www-mtl.mit.edu/researchgroups/icsystems/uamps/pubs/files/Anantha_PACC_05_00.pdf.
    [28] Sri K. DARPA SensIT Program. DARPA Information Technology Office,2002.
    [29] Rabaey J M, Ammer M J, Da Silva J L Jr, et al. PicoRadio Supports Ad hoc Ultra-lowPower Wireless Networking. IEEE Computer.2000,33(7):42-48.
    [30] Akyildiz I F, Pompili D, Melodia T. Challenges for Efficient Communication inUnderwater Acoustic Sensor Networks. ACM SIGBED Review,2004,1(2):3-8.
    [31] Kahn J M, Katz R H, Pister K S J. Next Century Challenges: Mobile Networking forSmart Dust. In: Proceedings of the5th Annual ACM/IEEE International Conference onMobile Computing and Networking. Seattle, Washington, USA: ACM,1999.483-492.
    [32] Intanagonwiwat C, Govindan R, Estrin D. Directed Diffusion: A Scalable and RobustCommunication Paradigm for Sensor Networks. In: Proceedings of the Sixth AnnualInternational Conference on Mobile Computing and Networks. Boston,MA: ACM,2000.56-67.
    [33] Braginsky D, Estrin D. Rumor Routing Algorithm for Sensor Networks. In: Proceedingsof the1st ACM international workshop on Wireless sensor networks and applications.Atlanta, Georgia, USA: ACM,2002.22-31.
    [34] Srinivasan V, Nuggehalli P, Rao P. Design of Optimal Energy Aware Protocols forWireless Sensor Networks. In: IEEE VTS53rd Vehicular Technology Conference.Rhodes, Greece: IEEE Press,2001.2494-2498.
    [35] Hill J, Szewczyk R, Woo A, et al. System Architecture Directions for Networked Sensors.In: Architectural Support for Programming Languages and Operation Systems. Berkeley,CA, USA: ACM,2000.93-104.
    [36] Liu J W. Real-time Systems. NJ, USA: Prentice Hall,2000.
    [37] Corrêa R C, Ferreira A, Rebreyend P. Scheduling Multiprocessor Tasks with GeneticAlgorithms. IEEE Trans. on Parallel and Distributed Systems,1999,10(8):825-837.
    [38]刘涛,曾国荪,吴长俊.异构网格环境下任务分配的自主计算方法.通信学报,2006,27(11):139-143.
    [39]季一木,王汝传.基于粒子群的网格任务调度算法研究.通信学报,2007,28(10):60-66.
    [40] Park H, Srivastava M B. Energy-efficient task assignment framework for wireless sensornetworks. Technical Report, Sept.7,2003.
    [41] Tian Y, Boangoat J, Ekici E, et al. Real-Time Task Mapping and Scheduling forCollaborative In-network processing in DVS-Enabled Wireless Sensor Network. In:Proceedings of Parallel and Distributed Processing Symposium (IPDPS'06). RhodesIsland, Greece: IEEE Computer Society,2006.
    [42] Tian Y, Gu Y Y, Ekici E, et al. Dynamic Critical-path Task Mapping and Scheduling forcollaborative In-network Processing in Multi-Hop Wireless Sensor Networks. In:Proceedings of the2006International Conference on Parallel Processing Workshops.Columbus, Ohio, USA: IEEE Computer Society,2006.215-222.
    [43] Lin J W, Chen Y T. Improving the Coverage of Randomized Scheduling in WirelessSensor Networks. IEEE Trans. on Wireless Communications,2008,7(12):4807-4812.
    [44] Lee Kee Goh, Bharadwaj V. An Energy-balanced Task Scheduling Heuristic forHeterogeneous Wireless Sensor Networks. In: Proceedings of the15th InternationalConference on High Performance Computing. Bangalore, India: Springer-Verlag,2008.257-268.
    [45] Zeng Z W, Liu A F, Li D, et al. A Highly Efficient DAG Task Scheduling Algorithm forWireless Sensor Networks. In: Proceedings of the9th International Conference for YoungComputer Scientists. Hunan, China: IEEE Computer Society,2008.570-575.
    [46]朱敬华,高宏.无线传感器网络中能源高效的任务分配算法.软件学报,2007,18(5):1198-1207.
    [47]沈艳,郭兵,丁杰雄,等.无线传感器网络节能动态任务分配.四川大学学报(工程科学版),2008,40(4):143-147.
    [48]刘梅,李海昊,沈毅.无线传感器网络空中目标跟踪任务分配技术的研究.宇航学报,2007,28(4):960-965.
    [49]王小英,赵海,陈英革,等.传感器网络的任务双效节能调度研究.电子学报,2006,34(5):778-783.
    [50]高尚,杨静宇.群智能算法及其应用.北京:中国水利水电出版社,2006.
    [51]吴启迪,汪镭.智能微粒群算法研究及其应用.南京:江苏教育出版社,2005.
    [52] Kennedy J, Eberhart R C. Particle Swarm Optimization. In: Proceedings of IEEEInternational Conference on Neural Networks. Piscataway, NJ: IEEE service center,1995.1942-1948.
    [53] Kennedy J, Eberhart R C. Swarm Intelligence. San Mateo. CA: Morgan Kaufmann,2001.
    [54] Angeline P J. Evolutionary Optimization versus Particle Swarm Optimization: Philosophyand Performance Differences. In: Proceedings of the Seventh Annual Conference onEvolutionary Programming. San Diego, CA, USA: Springer,1998.601-610.
    [55]陈震亦.粒子群优化算法研究及其在TSP问题中的应用:[硕士学位论文].福州:福州大学,2005.
    [56]郭文忠,陈国龙.粒子群优化算法中惯性权值调整的一种新策略.计算机工程与科学,2007,29(1):70-72.
    [57] Shi Y H, Eberhart R C. Parameter Selection in Particle Swarm Optimization. In:Evolutionary Programming VII: Proceedings of the Seventh Annual Conference onEvolutionary Programming. New York, USA: Springer-Verlag,1998.591-600.
    [58] Shi Y H, Eberhart R C. Empirical Study of Particle Swarm Optimization. In: Proceedingsof the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press,1999.1945-1950.
    [59] Wolpert D H, William G M. No Free Lunch Theorems for Optimization. IEEETransaction on Evolutionary Computation,1997,1(1):67-82.
    [60] Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory, In:Proceedings of the Sixth International Symposium on Micro Machine and HumanScience, Nagoya, Japan: IEEE Service Center,1995.39-43.
    [61] Shi Y H, Eberhart R C. Experimental Study of Particle Swarm Optimization. In:Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics.Orlando, FL: IIIS Press,2000.
    [62] Shi Y H, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization.In: Proceedings ofthe Congress on Evolutionary Computation, Seoul, Korea: IEEE Press,2001.101-106.
    [63] Shi Y H, Eberhart R C. Particle Swarm Optimization with Fuzzy Adaptive Inertia Weight.Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN, USA:Purdue School of Engineering and Technology, IUPUI,2001.
    [64] Eberhart R C, Simpson P, Dobbins R. Computational Intelligence PC Tools. San Diego,CA, USA: Academic Press Professional,1996.
    [65] Eberhart R C, Shi Y H. Tracking and Optimizing Dynamic Systems with Particle Swarms.In: Proceedings of the Congress on Evolutionary Computation, Seoul, Korea: IEEE Press,2001.94-97.
    [66]郭文忠,陈国龙.求解TSP问题的模糊自适应粒子群算法.计算机科学,2006,33(6):161-162
    [67] Suganthan P N. Particle Swarm Optimizer with Neighborhood Operator. In: Proceedingsof the IEEE Congress on Evolutionary Computation. Washington DC: IEEE,1999.1958-1962.
    [68] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical ParticleSwarm Optimizer with Time-varying Acceleration Coefficients. IEEE Transactions onEvolutionary Computation,2004,8(3):240-255.
    [69] Guo W Z, Chen G L, Fen X. A New Strategy of Acceleration Coefficients for ParticleSwarm Optimization. In: Progress in the10th International Conference on ComputerSupported Cooperative Work in Design. Najing, China: IEEE Press,2006.72-76.
    [70] Kennedy J. Small Worlds and Mega-Minds: Effects of Neighborhood Topology onParticle Swarm Performance. In: Proceedings of the Congress on EvolutionaryComputation. Washington DC, USA: IEEE Service Center,1999.1931-1938.
    [71] Ven Den Bergh F, Engelbrecht A P. Using Neighbourhoods with the GuarranteedConvergence PSO. In: Proceedings of the IEEE Swarm Intelligence Symposium.Indianapolis, Indiana: IEEE,2003.235-242.
    [72] Ven den Bergh F, Engelbrecht A P. Effects of Swarm Size on Cooperative Particle SwarmOptimizers. In: Proceedings of the Genetic and Evolutionary Computation Conference.San Francisco, USA: Morgan Kaufmann,2001.892-899.
    [73] Clerc M. Think Locally, Act Locally: the Way of Life of Cheap-PSO, an Adaptive ParticleSwarm Optimizer [Online]. Available at: http://www.mauriceclerc.net.
    [74] Xie X F, Zhang W J, Yang Z L. Dissipative Particle Swarm Optimization. In: Proceedingof the Congress on Evolutionary Computation. Honolulu, HI: IEEE,2002.1456-1461.
    [75] Angeline P J. Using Selection to Improve Particle Swarm Optimization. In: Proceedingsof the IEEE Conference on Evolutionary Computation, Anchorage, Alaska: IEEEComputer Society,1998.84-89.
    [76] L vbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breedingand Subpopulations. In: Proceeding of the Genetic and Evolutionary ComputationConference. San Francisco, California: Morgan Kaufmann,2001.469-476.
    [77] Natsuki H, Hitoshi I. Particle Swarm Optimization with Gaussian Mutation. In: IEEEProceedings of the Swarm Intelligence Symposium. Indianapolis, IN: IEEE,2003.72-79.
    [78]高鹰,谢胜利.混沌粒子群优化算法.计算机科学,2004,31(8):13-15.
    [79]高鹰,谢胜利.免疫粒子群优化算法.计算机工程与应用,2004,40(6):4-6.
    [80]高鹰,谢胜利.基于模拟退火的粒子群优化算法.计算机工程与应用,2004,40(1):47-50.
    [81]吕振肃,候志荣.自适应变异的粒子群优化算法.电子学报,2004,32(3):416-420.
    [82]高尚,韩斌,吴小俊,等.求解旅行商问题的混合粒子群优化算法.控制与决策,2004,19(11):1286-1289.
    [83]王俊伟.粒子群优化算法的改进及应用:[博士学位论文].沈阳:东北大学,2006.
    [84] Parsopoulos K E, Vrahatis M N. Recent Approaches to Global Optimization Problemsthrough Particle Swarm Optimization. Natural Computing,2002,1(2-3):235-306.
    [85] Salman A, Ahmad I, Al-Madani S. Particle Swarm Optimization for Task AssignmentProblem. Microprocessors and Microsystems,2002,26(8):363-371.
    [86]高海兵,周驰,高亮.广义粒子群优化模型.计算机学报,2005,28(12):1980-1987.
    [87] Kennedy J, Eberhart R C. A Discrete Binary Version of The Particle Swarm Algorithm. In:Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics.Piscataway, NJ: IEEE Press,1997.4104-4109.
    [88] Clerc M. Discrete Particle Swarm Optimization-Illustrated by the Traveling SalesmanProblem [Online]. Available at: http://www.mauriceclerc.net.
    [89] Pan Q K, Tasgetiren M F, Liang Y C. A Discrete Particle Swarm Optimization Algorithmfor the Permutation Flowshop Sequecing Problem with Makespan Criteria. In: theTwenty-sixth SGAI International Conference on Innovative Techniques and Applicationsof Artificial Intelligence. Cambridge, UK: Springer-Verlag,2006.19-31.
    [90] Ozcan E, Mohan C K. Particle Swarm Optimization: Surfing the Waves. In: Proceedingof the IEEE Congress on Evolutionary Computation. Picataway, NI: IEEE,1999.1939-1944.
    [91]熊勇.粒子群优化算法的行为分析与应用实例:[博士论文].江苏:浙江大学,2005.
    [92] Van den Bergh F. An Analysis of Particle Swarm Optimizers:[PhD Thesis]. Pretoria,South Africa: University of Pretoria,2001.
    [93] Kennedy J. The Particle Swarm: Social Adaptation of Knowledge. In: IEEE InternationalConfernce on Evolutionary Computation. Piscataway NJ: IEEE Service Center,1997.303-308.
    [94]王凌,刘波.微粒群优化与调度算法.北京:清华大学出版社,2008.
    [95]董颖,唐加福,许宝栋,等.一种求解非线性规划问题的混合粒子群优化算法.东北大学学报,2003,24(12):1141-1144.
    [96]龙云,王健全.基于粒子群算法的同步发电机参数辨识.大电机技术,2003,1:8-11.
    [97]李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法.系统工程理论与实践,2004,24(4):130-135.
    [98]李宁,刘飞,孙德宝.基于带变异算子粒子群优化算的约束布局优化研究.计算机学报,2004,27(7):897-903.
    [99]张利彪,周春光,马铭,等.基于粒子群算法求解多目标优化问题.计算机研究与发展,2004,41(7):1286-1291.
    [100]王雪,王晟,马俊杰.无线传感器网络布局的虚拟力导向微粒群优化策略.电子学报,2007,35(11):2038-2042.
    [101]袁智皓,耿军平,金荣洪,等.基于改进的粒子群算法的二维阵列天线方向图综合技术.电子与信息学报,2007,29(5):1236-1239.
    [102]衣杨,李强,容福丽,等.时间窗口约束资源配置的混合粒子群算法.计算机研究与发展,2008,45(S1):233-238.
    [103]张晓东,李小平,王茜,等.服务工作流的混合粒子群调度算法.通信学报,2008,29(8):87-93.
    [104] Guo W Z, Chen G L, Feng X, et al. Solving Multi-criteria Minimum Spanning TreeProblem with Discrete Particle Swarm Optimization. In: The3rd InternationalConference on Natural Computation. Hainan China: IEEE Press,2007.471-475.
    [105] Guo W Z, Chen G L, Huang M, et al. A Discrete Particle Swarm Optimization Algorithmfor the Multiobjective Permutation Flowshop Sequencing Problem. In:2nd InternationalConference on Fuzzy Information and Engineering, Guangzhou China: Springer,2007.323-331.
    [106]郭文忠,陈国龙,陈庆良,等.基于粒子群优化算法和相关性分析的特征子集选择.计算机科学,2008,35(2):144-146.
    [107]郭文忠,陈国龙,陈庆良.高维数据环境下的改进否定选择算法.计算机应用,2009,29(3):805-807.
    [108]郭文忠,陈国龙,陈庆良,等.基于粒子群和人工免疫的混合入侵检测系统研究.计算机工程与科学,2007,29(10):4-6.
    [109] Xia T, Guo W Z, Chen G L. An Improved Particle Swarm Optimization for Data StreamsScheduling on Heterogenous Cluster. In: The2nd International Symposium onIntelligence Computation and Applications, LNCS4683. Wuhan China, Springer,2007.393-400.
    [110]郭文忠,陈国龙,夏添.异构机群下数据流自适应分配策略.计算机辅助设计与图形学学报,2009,21(8):1175-1181.
    [111] Guo W Z, Chen G L, Lin Z M, et al. PSO-FNN-based Extraction of Security SituationElement. In: the3th International Conference on Intelligent System and KnowledgeEngineering. Xiamen China: IEEE Press,2008.1314-1318.
    [112] Armstrong R, Hensgen D, Kidd T. The Relative Performance of Various MappingAlgorithms is Independent of Sizable Variances in Runtime Predictions. In:7th IEEEHeterogeneous Computing Workshop. Orlando, Florida, USA: IEEE Computer Society,1998.79-87.
    [113] Freund R, Gherrity M, Ambrosius S, et al. Scheduling Resources in Multi-user,Heterogeneous, Computing Environments with Smartnet. In:7th IEEE HeterogeneousComputing Workshop. Orlando, Florida, USA: IEEE,1998.184-199.
    [114] Braun T, Siegel H, Beck N, et al. A Comparison Study of Static Mapping Heuristics forA Class of Meta-Tasks on Heterogeneous Computing Systems. In: Proceedings of the8thIEEE Heterogeneous Computing Workshop. Washington, DC, USA: IEEE Press,1999.15-29.
    [115] Wu M Y, Shu W, Zhang H. Segmented Min-Min: a Static Mapping Algorithm forMeta-tasks on Heterogeneous Computing Systems. In: Proceedings of the9th IEEEHeterogeneous Computing Workshop. Cancun, Mexico: IEEE Press,2000.375-385.
    [116] Wang L, Siegel H J, Roychowdhury V P, et al. Task Matching and Scheduling inHeterogeneous Computing Environments Using a Genetic Algorithm based Approach.Journal of Parallel and Distributed Computing,1997,47(1):58-77.
    [117] Zhong Y W, Yang J G, Qi H N. A Hybrid Genetic Algorithm for Tasks Scheduling inHeterogeneous Computing Systems. In: Proceedings of the third InternationalConferences on Machine Learning and Cybernetics. Shanghai, China: IEEE Press,2004.2463-2468
    [118]陈国龙,郭文忠,陈羽中.无线传感器网络任务分配动态联盟模型与算法研究.通信学报,2009,30(11):48-55.
    [119]何炎祥,罗先林,吴思,等.对三种典型分布式任务分配算法的分析.小型微型机算机系统,1997,18(11):1-6.
    [120] Lqbal M, Gondal I, Dooley L. An Energy-Time Based Load Balance Technique forWireless Sensor Works. In Proceeding of the2005International Conference on IntelligentSensors, Sensor Networks and Information Processing. Melbourne, Australia: IEEE,2005.57-62.
    [121]王守才,王国英,戴景瑞.关于高等植物转基因遗传问题的讨论.生物工程进展,2000,20(4):64-66.
    [122]贾平.企业动态联盟.北京:经济管理出版社,2003.
    [123] Zheng D, Gen M, Cheng R. Multiobjective Optimization Using Genetic Algorithm.Engineering Valuation and Cost Analysis,1998,2:303-310.
    [124]桂小林,钱德沛,何戈.基于校园网络的元计算实验系统WADE的设计与实现.计算机研究与发展,2002,39(7):888-893.
    [125] Wang Z, Yan Y J, Jia P, et al. Market-based Adaptive Task Scheduling for SensorNetworks. In: Proceeding of the2nd International Conference on WirelessCommunications, Networking and Mobile Computing. Wuhan, China: IEEE Press,2006.1-5.
    [126]张学,陆桑璐,陈贵海,等.无线传感器网络的拓扑控制.软件学报,2007,18(4):943-954.
    [127] Amis A D, Prakash R, Vuong T H P, et al. Max-Min D-Cluster Formation in Wireless AdHoc Networks. In: Proceedings of the Nineteenth Annual Joint Conference of the IEEEComputer and Communications Societies. Tel Aviv, Israel: IEEE Computer Society,2000.32-41.
    [128] Poduri S, Pattem S, Krishnamachari B, et al. A Unifying Framework for TunableTopology Control in Sensor Networks. Technical Report, CRES-05-004, University ofSouthern California,2005.1-5
    [129] Li L, Halpern J Y, Bahl P, et al. Analysis of a Cone-based Distributed Topology ControlAlgorithm for Wireless Multi-Hop Networks. In: Proceedings of the Twentieth AnnualACM Symposium on Principles of Distributed Computing. Newport, Rhode Island, USA:ACM,2001.264-273.
    [130] Rodoplu V, Meng T H. Minimum Energy Mobile Wireless Networks. Selected Areas inCommunications,1999,17(8):1333-1344.
    [131] Li L, Halpern J Y. A Minimum-Energy Path-Preserving Topology-Control Algorithm.IEEE Transaction on Wireless Communications,2004,3(3):910-921
    [132] Li N, Hou J C, Sha L. Design and Analysis of an MST-based Topology Control Algorithm.In: Proc of Twenty-Second Annual Joint Conference of the IEEE Computer andCommunications Societies. San Francisco: IEEE Press,2003.1702-1712.
    [133]刘林峰,刘业.传感器网络中基于模拟退火算法的拓扑控制方案.通信学报,2006,27(9):71-77.
    [134]刘林峰,庄艳艳,刘业.基于遗传算法的传感器网络拓扑控制研究.中国工程科学,2008,10(2):66-71
    [135]严蔚敏,吴伟民.数据结构,第二版.北京:清华大学出版社,1992.
    [136] Zhou G G, Gen M. Genetic Algorithm Approach on Multi-criteria Minimum SpanningTree Problem. European Journal of Operational Research,1999,114(1):141-152.
    [137] Gottlieb J, Julstrom B A, Rothlauf F, et al. Prüfer Numbers: A Poor Representation ofSpanning Trees for Evolutionary Search. In: Proceedings of the2001Genetic andEvolutionary Computation Conference. San Francisco, USA: Morgan Kaufmann,2001.343-350.
    [138] Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in GeneticAlgorithms. Evolutionary Computation,1995,2(3):221-248.
    [139] Knowles J D. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization:
    [Ph.D. Thesis]. RG66AY, UK: University of Reading,2002.
    [140]陈国龙,郭文忠,涂雪珠,等.求解多目标最小生成树问题的改进算法.软件学报,2006,17(3):364-370.
    [141] Chen G L, Chen S L, Guo W Z, et al. The Multi-Criteria Minimum Spanning TreeProblem Based Genetic Algorithm. Information Sciences,2007,177(22):5050-5063.
    [142]谢涛,陈火旺,康立山.多目标优化的演化算法.计算机学报,2003,26(8):97-1003.
    [143] Diestel R. Graph theory,影印版,第2版.北京:世界图书出版公司,2003.
    [144]涂雪珠.遗传算法在多目标优化中的应用:[硕士学位论文].福州:福州大学,2004.
    [145]郭文忠,陈国龙.一种求解多目标最小生成树问题的有效离散粒子群优化算法.模式识别与人工智能,2009,22(4).
    [146] Balling R. The Maximin Fitness Function, Multiobjective City and Regional Planning. In:Second International Conference on Evolutionary Multi-Criterion Optimization. Faro,Portugal: Springer,2003.1-15.
    [147] Laumanns M, Thiele L, Deb K, et al. Combining Convergence and Diversity inEvolutionary Multi-objective Optimization. Evolutionary Computation,2002,10(3):263-282.
    [148]曲中水,刘淑兰.基本遗传算法的收敛性分析方法.哈尔滨理工大学学报,2003,8(1):42-45.
    [149] Heidemann J, Silva F, Intanagonwiwat C, et al. Building Efficient Wireless SensorNetworks with Low-level Naming. In: Proceeding of the18thSymposium on OperatingPrinciples. Chateau Lake Louise, Banff, Canada: ACM,2001.146-159.
    [150] Krishnamachari B, Estrin D, Wicker S. Modelling Datacentric Routing in WirelessSensor Networks. In: Proceeding of the21th Conference on Computer Communications(INFOCOM2002). New York: IEEE Press,2002.174-185.
    [151] Heinrelman W R, Chandrakasan A, Balakrishnan H. Energy Efficient CommunicationProtocol for Wireless Microsensor Networks. In: Proceeding of the33rdAnnual HawaiiInternational Conference on System Sciences. Maui, Hawaii, USA: IEEE ComputerSociety,2000.3005-3014
    [152] Madden S, Szewczyk R, Franklin M J, et al. Supporting Aggregate Queries over Ad-HocWireless Sensor Networks. In: Proceeding of the4thIEEE Workshop Mobile ComputingSystems and Applications. New York: IEEE Press,2002.49-58.
    [153] Madden S, Franklin M J, Hellerstein J M, et al. TAG: A Tiny Aggregation Service forAd-Hoc Sensor Networks. In: Proceeding of the5thSymposium on Operating SystemDesign and Implementation. Boston, Massachusetts, USA: USENIX Association,2002.131-146.
    [154] Sharaf M A, Beaver J, Labrinidis A, et al. TiNA: A Scheme for Temporal CoherencyAware in Network Aggregation. In: Proceeding of Third International ACM Workshop onData Engineering for Wireless and Mobile Access, San Diego, California: ACM,2003.69-76.
    [155] Chu D, Deshpande A, Hellerstein J M, et al. Approximate Data Collection in SensorNetworks Using Probabilistic Model. In: Proceeding of the22nd InternationalConference on Data Engineering. Atlanta, GA: IEEE Computer Society,2000.48-53.
    [156] Anisi M H, Rezazadeh J, Dehghan M. FEDA: Fault-tolerant Energy-Efficient DataAggregation in Wireless Sensor Networks. In: Proceedings of the16thInternationalConference on Software, Telecommunications and Computer Networks. Croatia: IEEEPress,2008.188-192.
    [157] Vapnik V N. The nature of statistical learning theory [M]. New York: Springer,1995.12-38
    [158]杨向荣.入侵检测系统中数据挖掘和人工免疫原理的研究:[博士学位论文].西安:西安交通大学,2003.
    [159] Manoranjan D, Huan L. Feature Selection for Classification. Intelligent Data Analysis,1997,1(3):131-156.
    [160] Koller D, Sahami M. Toward Optimal Feature Selection. In: Proceedings of InternationalConference on Machine Learning. Bari, Italy: IEEE,1996.284-292.
    [161] Liu H., Setiono R. A Probabilistic Approach to Feature Selection-A Filter Solution. In:Proceedings of International Conference on Machine Learning. Bari, Italy: IEEE,1996.319-327.
    [162]刘勇国,李学明,张伟,等.基于遗传算法的特征子集选择.计算机工程,2003,29(6):19-20.
    [163] Liu H, Setiono R. Feature Selection with Selective Sampling. In: Proceedings of the19thInternational Conference on Machine Learning. Sydney, Australia: IEEE,2002.395-402.
    [164] Ding C, Peng H.C. Minimum Redundancy Feature Selection from Microarray GeneExpression Data. In: Proc. IEEE Computer Soc. Bioinformatics Conf. Stanford, CA, USA:IEEE CS Press,2003.523-528.
    [165] Witten L H, Frank E.数据挖掘实用机器学习技术,第2版,董琳,邱泉,于晓峰,等译..北京:机械工业出版社,2006.
    [166] Takayama K, Fujikawa M, Nagai T. Artificial Neural Network as a Novel Method toOptimize Pharmaceutical Formulations. Pharmaceutical Research,2001,16(1):1-6.
    [167] KDD Cup1999Data [Online]. Available at: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.西安交通大学,2003.
    [169] Weka数据挖掘工具[Online]. Available at: http://www.cs.waikato.ac.nz/ml/weka/.
    [170] Intel Lab2004Data [Online]. Available at: http://db.csail.mit.edu/labdata/labdata.html.
    [171]周炳玉,卢野,刘珍阳.多传感器数据融合中的数据预处理技术研究.红外与激光工程,2007,36(z2):246-249.
    [172]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术.北京:科学出版社,2006.
    [173] Ortiz C L, Eric H. Structured Negotiation. In: Proceedings of the first InternationalConference on Autonomous Agents and Multiagent Systems (AAMAS2002). Bologna,Italy: ACM,2002.1215-1222
    [174] Ortiz C L, Hsu E, Jardins M, et al. Incremental Negotiation and Coalition Formation forResource-bounded Agents.In: Proceedings of the2001AAAI Fall Symposium onNegotiation Methods for Autonomous Cooperative Systems. Massachusetts: AAAI Press,2001.
    [175] Yadgar O, Kraus S, Ortiz C L. Hierarchical organizations for Real-time Large-scale Taskand Team Environments. In: Proceedings of the first International Conference onAutonomous Agents and Multiagent Systems (AAMAS2002). Bologna, Italy: ACM,2002.1147-1148.
    [176] Sandholm T, Suri S. Improved Algorithm for Optimal Winner Determination inCombinatorial Auction and Generalizations. In: Proceedings of the Seventeenth NationalConference on Artificial Intelligence and Twelfth Conference on Innovative Applicationsof Artificial Intelligence. Austin, Texas, USA: AAAI Press/MIT Press,2000.90-97.
    [177]张国富.基于群智能的复杂联盟机制研究:[博士学位论文].安徽:合肥工业大学,2008.
    [178] Durfee E H, Lesser V. Negotiating Task Decomposition and Allocation Using PartialGlobal Planning. Distributed Artificial Intelligence, San Francisco: Morgan Kaufmann,1989,2:229-244.
    [179]陈志,王汝传,孙力娟.一种无线传感器网络的多Agent系统模型.电子学报,2007,35(2):47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700