用户名: 密码: 验证码:
环保型铝用冷捣糊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铝工业的发展和进步,特别是石墨质阴极炭块的使用,铝电解槽的寿命已有了很大的提高,因此,制约铝电解槽寿命的关键材料已由传统的阴极炭块逐渐地向炭块间的捣固糊转变。传统的捣固糊则主要以煤沥青为黏结剂制备的热捣糊和温捣糊,由于这两种糊料在施工捣固前,均需预热,因此会释放出对人体和环境都有害的沥青烟气体,操作环境恶劣,工人劳动强度高,且捣固的糊料易分层,局部出现缺陷的可能性很大,影响糊料自身的使用。冷捣糊室温下即可施工捣固,不存在上述情况。但冷捣糊的生产主要掌握在挪威埃肯公司、法国铝业等一些发达国家手中,因此,我国独立自主研究开发一种铝用冷捣糊,对于打破国际先进水平对冷捣糊的垄断,提高我国铝业的科技进步和国际竞争力,努力使我国成为铝业强国,将具有重要意义。本文以树脂为主要黏结剂,添加适量的混合煤沥青成功制备了一种环保、节能的铝用冷捣糊,且常规性能达到了国家工业标准,部分非常规性能也较适宜,主要研究内容和结论如下:
     (1)采用最紧密堆积中的Dinger-Funk方程从理论上计算了不同颗粒分布系数下的粒度分布,通过测定制备糊料的空隙率、电阻率、抗压强度等,确定了骨料的最佳颗粒配比即5-3mm为20.87%,3-1mm为31.49%,1-0.074mm为33.90%,<0.074mm为13.74%。
     (2)分别研究了以改质煤沥青、中温煤沥青、环氧树脂、呋喃树脂、酚醛树脂及复合黏结剂为黏结剂或主要黏结剂,以电锻煤、石墨或二硼化钛、碳纤维为骨料,经过配料、混料、混捏等工序制备了铝用冷捣糊,通过黏结剂的改性,对制备的糊料进行了相应改进,采用电子万能试验机、电阻率仪等测定了制备冷捣糊的常规理化性能,扫描电镜和能谱仪(SEM-EDS)对制备糊料的微观形貌及钠渗透后糊料的微观形貌及渗透的元素进行了分析,应用红外技术(FT-IR)及X衍射仪(XRD)分析了碳化后黏结剂的结构变化和石墨化程度,还利用热重-差热分析仪(TG-DSC)研究了制备冷捣糊在焙烧过程中各个阶段的质量变化和热量变化。结果表明:以煤沥青和葸油为黏结剂制备的冷捣糊,在焙烧过程分为三个阶段,但该黏结剂黏结性较差,制备的糊料疏松多孔,且其保鲜性较差,硫和苯甲醛对煤沥青结焦值的提高较明显,制备的糊料也得到改进。以酚醛树脂为糊料的12.5%时,制备冷捣糊的表观性状和常规理化性能最优,它在焙烧过程中分为四个阶段。苯甲醛改性酚醛树脂结焦值提高最明显,且改性后酚醛树脂制备的冷捣糊常规理化性能得到了提高。复合黏结剂为制备冷捣糊的黏结剂时,以复合黏结剂A3为糊料的12.5%时,制备的冷捣糊表观性状和常规理化性能较好,以2%苯甲醛为复合黏结剂A3的改性剂对制备的糊料进行改进,改进后的糊料常规性能最优,部分非常规性能也较合适,它在焙烧过程中分为五个阶段。其中复合黏结剂A3为酚醛树脂:混合煤沥青(中温煤沥青:蒽油=65:35)=80:20,骨料为电锻煤、石墨、碳纤维,它们分别为骨料的54.7%、45%和0.3%。
     (3)采用气相色谱-质谱仪(GC-MS)测定了制备糊料在焙烧过程中多环芳烃(PAH)的释放量,得出以2%苯甲醛为复合黏结剂A3的改性剂制备的铝用冷捣糊在施工捣固及捣固后糊料焙烧过程都具有环保的特点。
     (4)利用TG热分析方法研究了苯甲醛改性后复合黏结剂A3在焙烧过程的质量变化,选取失重较为明显的两段进行研究,采用热分析方法中积分法(Flynn-Wall-Ozawa方程)和微分法(Friedman方程)模拟其焙烧过程。结果表明,第一段(130-190℃)热解过程是由多步复杂的反应组成,这阶段主要是树脂固化过程中及黏结剂中一些小分子有机物的挥发;第二段(390-600℃)热解过程可分为两步过程,第一步则在转化率a为0.55-0.60间,平均表观活化能E为43.28kJ·mol-1,平均InA为1.3291s-1,第二步则在α为0.65-0.80间,此步E为168.34kJ·mol-1,平均InA为17.06s-1。但两步的机理函数相同即f(α)=3/2(1-α)4/3[(1-α)-1/3-1]-1.
     (5)采用红外和核磁共振(1H-NMR)分析了苯甲醛对复合黏结剂A3的改性机理,其机理反应为苯甲醛与酚醛树脂和混合煤沥青中活性小分子发生了亲电反应,使得酚醛树脂和混合煤沥青中的活性小分子缔结为大分子有机物,从而提高了它们的结焦值。
Life of aluminum electrolysis cell has been prolonged with the development and progress of aluminum industry, expecially use of graphitic cathode carbon block. So the key material to restrict life of aluminum electrolysis cell is transforming from cathode carbon block to ramming paste. Contraditonal ramming paste is hot or tepid with coal tar pitch as main binder. Both of pastes are needed to be preheated before tamping, so many genotoxic polycyclic aromatic hydrocarbons (PAHs) are released during tamping, which are hazardous for health and environment. What's more, the possibility of layers and defects of tamped paste is high in the local area, affecting their use. The above disadvantages doesn't exist in cold ramming paste because of its room tamping temperature, but production of cold ramming paste is controlled by developed countries such as Norway AIkem, French Aluminum Industy and etc. So it is of great significance to independently research and develop a cold ramming paste for aluminum industy, which can break the international developed countries' monopoly, enhance scientific and technological progress and international competitiveness of Chinese aluminum industry and make our country become a powerful aluminum industry. An eco-friendly and energy-efficient cold ramming paste for the aluminum electrolysis cell is prepared with resin and a spot of mixed coal tar pitch as binder. Additionally, its conventional properties can reach the national industry standard and some unconventional properties are very suitable. Main contents and conclusions of this paper are as follows:
     (1) Particle size distributions were calculated in theory using Dinger-Funk equation in closest packing models at different particle distribution coefficients and then optimal particle proportion (5-3mm20.87%,3-1mm31.49%,1-0.074mm33.90%,<0.074mm13.74%) was determined through measment of porosity, electrical resistivity, compressive strength of the prepared paste.
     (2) The cold ramming pastes for aluminum electrolysis cell were prepared through burden, mixing, kneading, etc, with high temperature coal tar pitch, mid-temperature coal tar pitch, epoxy resin, furan resin, phenol-formaldehyde (PF) resin and composite binders as binder or main binder, respectively, electro-calcined anthracite, graphite or TiB2, carbon fiber as aggregate. Additionally, the prepared pastes were improved by binder modification. Conventional properties of prepared pastes were measured by electronic universal testing machine, electrical resistivity and so on. Micro-morphology of prepared paste before and after sodium pentration and pentrated elements were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS). Structure change and graphitization degree of carbonized binders were observed by Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray diffraction (XRD). Heat and mass chang of prepared paste in every stage during the roasting were researched by Thermo Gravimetry-Differential Scanning Calorimetry (TG-DSC). The results show that the prepared paste used coal tar pitch as main binder can be devided into three stages during roasting process, which is loose and porous and its adhesion and shelf life are poor. Sulfur and benzaldehyde can obviously increase coking value of coal tar pitch. The prepared paste with coal tar pitch modified by sulfur and benzaldehyde as main binder can be improved. Apparent characters and conventional properties of the prepared paste used resin as binder is the best in a mass ratio of12.5%PF resin. This paste can be devided into three stages during roasting process. The coking value of PF resin modified by benzaldehyde is increased most obviously, what's more, the conventional propertie of cold ramming paste prepared by PF resin modified by benzaldehyde are improved. Apparent characters and conventional properties of the prepared paste used composite binder as binder is better in a mass ratio of12.5%composite binder A3. The paste prepared with composite resin A3modified by benzaldehyde in a mass ratio2%is improved and its conventional properties is the best, additionally, the paste can be devided into three stages during roasting process and its unconventional properties is very suitable. Composite resin A3contains PF resin and mixed coal tar pitch in a mass ratio of80:20and mixed coal tar pitch contains mid-temperature coal tar pitch and anthracene oil in a mass ratio of65:35. The aggregate contains electro-calcined anthracite, graphite and carbon fiber in a mass ratio of54.7%,45%,0.3%, respectively.
     (3) PAHs of the prepared paste were measured during the roasting process using Gas Chromatography-Mass Spectrometry (GC-MS) was calculated. It is concluded that an eco-friendly cold ramming paste for the aluminum electrolysis cell in the tamping and roasting processes is prepared with composite binder A3modified by benzaldehyde in a mass ratio of2%as binder.
     (4) The mass change of composite binder A3modified by benzaldehyde during roasting process was studied through TG. Two of the more obvious weight loss temperature stages were studied using thermal analysis of the integral method (Flynn-Wall-Ozawa equation) and differentiation (Friedman equations) to simulate the roasting process The results show that the first pyrolysis process (130-190℃) can include many complex reactions and volatilization of some small volatile organic molecules in the curing resin binder and binder occur during this process. The second pyrolysis process can be devided into two steps. Conversion of the first step is ranged from0.55to0.60, and average apparent activation energy (E) and lnA are43.28kJ-mol-1and1.3291s-1, respectively. Conversion of the second step is between0.65and0.80, and average apparent activation energy (E) and lnA are168.34kJ-mol-1and17.06s-1, respectively. However, the mechanism functions of both steps are the same (f(α)=3-2(1一α)4/3[(1-α)-1/3-1]-1).
     (5) Modification mechanism of composite binder A3modified by benzaldehyde was analyzed by IR and Nuclear Magnetic Resonance (H-NMR). The result shows that electrophilic reaction occurs between benzaldehyde and active small molecules of PF resin and mixed coal tar pitch, which makes these active small molecules react into large molecule organic compounds and increase coking value.
引文
[1]华一新.有色冶金概论.北京:冶金工业出版社,2007.
    [2]杨重愚.轻金属冶金学.北京:冶金工业出版社,1989.
    [3]M.马林切夫斯基,C.克罗恩,K.马其索夫斯基,J.索恩斯塔(著),邱竹贤,沈时英,郑宏(译),铝电解原理.北京:冶金工业出版社,1982.
    [4]顾松青,吴礼春等.有色金属进展(1995-2005),第三卷(轻金属).长沙:中南大学出版社,2007.
    [5]路忠胜.提高铝电解槽寿命的措施之一提高阴极炭块的抗热震性能.轻金属,2003,(8):41-42.
    [6]冯冰,周向阳.延长铝电解槽寿命的方法.中国科技信息,2010,(1):135-137.
    [7]M·索列,H.A.尔耶.铝电解槽阴极.邱竹贤,王隶庆等译.轻金属编辑部,1999.
    [8]邱竹贤.预焙槽炼铝.北京:冶金工业出版社,1988.
    [9]E.W. Dewing. The Reaction of Sodium with Nongraphitic Carbon:Reaction Occurring in the Linings of Aluminium Reduction Cells. Trans. Met. Soc. AIME,1963,227(1): 1328-1333.
    [10]M.B.Dell. Reaction between Carbon Lining and Hall Bath. In Extractive Metallurgy of Aluminium. vol.2 Gerard, G. (ed.), New York: Wiley Interscience publishers,1963, 403-416.
    [11]邱竹贤.预焙槽炼铝(第3版).北京:冶金工业出版社,2005.
    [12]杨丹丹.大型预焙电解槽早期阴极内衬破损机理及控制措施.甘肃冶金,2011,33(1):29-33.
    [13]李冰,邱竹贤,李军,徐金富.钠和电解质对阴极炭块及TiB2镀层的渗透.轻金属,2004,(7):23-26.
    [14]Jilai Xue, Qingsheng Liu, Jun Zhu, Wenli Ou. SODIUM PENENTRATION INTO CARBON-BASED CATHODES DURING ALUMINUM ELECTROLYSIS. Light Metals 2006,651-654.
    [15]Z. Wang, J. Rutlin, T. Grande. Sodium Diffusion in Cathode Lining in Aluminium Electrolysis Cells. Light Metals 2006,841-847.
    [16]冯乃祥,梁芳慧,孙阳.铝电解过程中金属钠在阴极炭块中的渗透.炭素技术,1999,(2):5-11.
    [17]刘世英,李文珍,王兆文.Na和电解质对阴极炭块的渗透.炭素,2008,(4):3-7.
    [18]任必军,石忠宁,刘世英,邱竹贤.300 kA铝电解槽阴极破损机理研究.东北大学学报(自然科学版),2007,28(6):843-847.
    [19]P. BRILLOIT, L.P. LOSSIUS, H.A.?YE. Penetration and Chemical Reactions in Carbon Cathodes during Aluminum Electrolysis:Part I. Laboratory Experiments. METALLURGICAL TRANSACTIONS B,1993,24B:75-89.
    [20]P. Rafiei, F. Hiltmann, M. Hyland, B. James, B. Welch. ELECTROLYTIC DEGRADATION WITHIN CATHODE MATERIALS. Light Metals 2001,747-752.
    [21]W.B. FULLER, S.E. THOMPSON. The laws of proportioning concrete. Trans ASCE,1907, 591:67-143.
    [22]严家及.道路建筑材料.人民交通出版社,1996,6(6):181-208
    [23]L.N. EDWARD. Proportioning the material of mortars and concretes by surface area of aggregate. Proc ASTM,1981,18(2):235-283.
    [24]http://www.sxjt.net/tsqk/lwtj/201012/303.html
    [25]http://www.lqgcs.com/jishu/lumian/201001/101795_2.html
    [26]F.G. Joseph, A.L. Lawrence. A new graphical chart for evaluating aggregate gradations. AAPT,1962,3(2):176-207
    [27]C.A.G. Waymouth. Effects of particle interference in mortars and concretes, Rock products, 1933,36(2):26-31.
    [28]C.A.G Waymouth. A study of fine aggregate in freshly mixed mortars and concretes, Proceedings of the American Society for Testing and Materials,1938,38(2):375-378.
    [29]C.A.G Waymouth. Designing workable concrete.Engineering News-Record,29 Dec 1938, p.818.
    [30]林绣贤.柔性路面结构设计方法.北京:人民交通出版社,1991.
    [31]G.N. Kiryukhin. Influence of rheological characteristics of asphalt concrete and interlayer bitumen on the formation of reflective cracks in pavements. Proceeding of soyuzdornii, 2001,3(1):207-216.
    [32]贾渝.高性能沥青路面Superpave技术实用手册[R].江苏省交通科研院,2002,1(1):57-100.
    [33]B.B. Mandelbrot. The fractal geometry of nature. W.H. Free-man, San Francisco,1982.
    [34]熊宇虹,温志渝,张流强,温中泉,梁玉前.分形理论在光谱识别中的应用.光谱学与光谱分析,2006,26(4):772-774.
    [35]郭伟秦鸿根陈惠苏孙伟.分形理论及其在混凝土材料研究中的应用.硅酸盐学报,2010,38(7):1362-1368.
    [36]曾丹苓,刘娟芳,张新铭.分形理论在分子动力学模拟中的应用.工程热物理学报,2005,26(6):909-911.
    [37]林艾静.分形理论在经济中的应用.北京:北京交通大学,2008.
    [38]周祎铭.分形理论引入现代景观设计的探索性研究[硕士论文].无锡:江南大学,2008.
    [39]毛丹.矿物微粉在水泥基复合胶凝材料中的颗粒级配效应研究[硕士论文].长沙,湖南大学,2005.
    [40]程荣超,王瑞和,王成文,步玉环.基于分形级配理论的油井水泥体系设计及评价.中国石油大学学报(自然科学版),2008,32(6):83-87
    [41]F.T. Olorunsogo. PARTICLE SIZE DISTRIBUTION OF GGBS AND BLEEDI. Cement and Concrete Research,1998,28(6):907-919.
    [42]J. Antal, K. Miklos, R. Peter. Comparison of the Methods of Rock-Microscopic Grain-Size Determination and Quantitative Analysis.Mathematical Geology,1997,29(8):977-991.
    [43]崔巩,刘建忠,姚婷,林玮.基于Dinger-Funk方程的活性粉末混凝土配合比设计.东南大学学报(自然科学版),2010,40(II):15-19.
    [44]胡贵华.AC-13、AC-20沥青混合料骨架密实级配范围研究[硕士论文].长沙:长沙理工大学,2008.
    [45]沙庆林.SAC和其他粗集料断级配的矿料级配设计方法.公路,2005,(1):143-151.
    [46]彭波.基于变i法理论的级配组成设计方法.武汉理工大学学报(交通科学与工程版).2005,29(5):751-754.
    [47]侯再恩,张可村.堆积颗粒系统中颗粒级配的优化.高校应用数学学报A辑,2005,20(4):409-416.
    [48]张永娟,张雄.粉煤灰水泥堆积效应与其抗压强度的关系.建筑材料学报,2007,10(1):43-47.
    [49]聂晶.基于可压缩堆积模型的水泥基复合材料性能研究[硕士论文].长沙:湖南大学,2008.
    [50]高云琴,薛群虎,段锋,张颖.粒度分布对干式捣打料性能的影响.西安建筑科技大学学报(自然科学版),2008,40(6):764-978
    [51]祝洪喜,邓承继,白晨,罗星源.耐火材料连续颗粒分布的紧密堆积模型.武汉科技大学学报(自然科学版),2008,31(2):159-163.
    [52]杨彦昌.分形理论在沥青混合料中的应用研究[硕士论文].长沙:长沙理工大学,2009.
    [53]杨瑞华.基于分形理论的沥青混合料设计理论与方法研究[博士论文].上海:同济大学,2008.
    [54]F. Lange, H. Miirtel, V. Rudert. DENSE PACKING OF CEMENT PASTES AND RESULTING CONSEQUENCES ON MORTAR PROPERTIES. Cement and Concrete Research,1997,27(10):1481-1488.
    [55]G. Hiisken, H.J.H. Brouwers. A new mix design concept for earth-moist concrete:A theoretical and experimental study. Cement and Concrete Research,2008,38:1246-1259
    [56]Baoshan Huang, Guoqiang Li, N. M. Louay. Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures. Composites:Part B, 2003,34:705-714.
    [57]K. Darcovich, B. Laurent, S. Kazunari. Particle size distribution effects in an FEM model of sintering porous ceramics. Materials Science and Engineering A,2003,341:247-255.
    [58]S.M. Mohammed, S. Zitouni, S. Belaabes. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Construction and Building Materials,2010,24:505-512.
    [59]林起浪,李铁虎.对甲基苯甲醛改性煤沥青的流变行为.煤炭学报,2007,32(10):1075-1078.
    [60]陈智琴,刘洪波,何月德,陈鸯飞.高残炭率酚醛树脂的耐热性能研究.工程塑料应用,2006,34(11):56-60.
    [61]C.P. Reghunadhan. Advances in addition-cure phenolic resins. Progress in Polymer Science,29(5):401-498.
    [62]朱丛静.环氧树脂基耐高温胶粘剂的制备及性能研究[硕士论文].扬州,扬州大学,2007.
    [63]田志高,李本林,宋春玲.改性呋喃树脂的研制.襄樊学院学报,2008,29(2):37-40.
    [64]郭德英,田小虎,朱发亮.炭素填充糊.炭素科技,2001,(2):33-37.
    [65]杨琴,李铁虎,林起浪,单玲.对苯二甲醛改性煤沥青的结构及耐热性研究.煤炭转化,2003,26(3):80-83.
    [66]李成龙,石振海,张多大.耐高温铝改性酚醛树脂胶粘剂的制备及耐热性研究.粘接,2009,30(4):55-59.
    [67]万正国.改性环氧树脂的导热、耐热及光学性能研究[硕士论文].太原,太原理工大学,2008.
    [68]魏尊杰,王长文,曾岗,安阁英.呋喃树脂砂高温残留强度改性工艺研究.哈尔滨 理工大学学报,2001,6(1):60-64.
    [70]J.P.B. Beginb, E. Alain, G. Furdin, J.F. Marêchê, A. Albiniak. Effects of FeCl3 (intercalated or not in graphite) on the pyrolysis of coal or coal tar pitch. Fuel,1998,77(6):601-606.
    [71]Jigang Wang, Haiyun Jianga, Nan Jiang. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochimica Acta 2009,496:136-142.
    [72]R. Kotsilkova V. Petkova, Y. Pelovski. THERMAL ANALYSIS OF POLYMER-SILICATE NANOCOMPOSITES. Journal of Thermal Analysis and Calorimetry,2001,64:591-598.
    [73]续正国.鞍钢化工总厂改质沥青引进技术的调查.轻金属,1983,(1):39-40.
    [74]朱旺喜,邱竹贤.用葸油作稀释剂的冷捣糊性能.轻金属,1992,(7):45-47.
    [75]许文彪,王平甫,李庆宏.铝用阴极冷捣糊料的实验与研究.炭素技术,1992,(4):22-26.
    [76]樊留锁.冷捣糊的实验和讨论.炭素技术,1994,(1):12-14.
    [77]郭德英,田小虎,朱发亮.碳素填充湖.碳素科技,2001,11(2):33-37
    [78]姚海林,张桐林,张泉林.冷捣糊在自焙槽阴极捣固中的应用.轻金属,1997,(11):31-35.
    [79]路忠胜.低捣固温度铝用冷捣糊的研究.轻金属,2000,(9):50-51.
    [80]路忠胜.中国铝用阴极糊生产技术的进步.炭素科技,2002,12(3):19-21.
    [81]王凤旗,郭志刚,郝凤双,周自明.低温用冷捣糊的研制.炭素科技,2000,10(2):31-33.
    [82]廖贤安,包崇爱,赵无畏等.我国优质阴极炭素材料急需开发.轻金属,2003,(4):49-51.
    [83]郭德英.煤沥青热解缩聚行为研究及炭质冷捣糊的开发[硕士论文].武汉:武汉科技大学,2004.
    [84]刘世英,李文珍,王兆文等.石墨含量对阴极炭块渗透性的影响.炭素技术,2008,27(5):1-4
    [85]B.M. Fssaness, et al. Ramming paste related failure in cathode linings. Light metals 1989, 633-639.
    [86]D. Dumas, S. Meseguer, R. Paulus. Relevant properties of ramming paste for Aluminum Smelters, International Conference Aluminum of Siberia 98, Sept 1998, Krasnoysrsk, Russia.
    [87]G. Coxhill, B. Hocking. The compaction behaviour of cold ramming pastes for aluminum reduction cells, Light Metals 1995,91-794
    [88]K.R. Kvam, H. A. Oye. Resin Binders in Ramming Paste. Light Metals 1996,589-596.
    [89]Perruchoud R C, Hulse K L, Biihler U, et al. Production and Performance Aspects of Ramming Paste. Light Metals 1999,587-594.
    [90]Vergazova G. High Swelling Cold Ramming Paste for Aluminum Reduction Cell. Light Metals 2008,949-954.
    [91]Paulus R, Meseguer S. An Ecofriendly Ramming Paste for the Aluminum Electrolysis Cell. Light Metals 2001,147-158.
    [92]Lacroix S, Dumas D, Paulus R, Meseguer S. A New Ramming Paste for the Aluminum Electrolysis Cell Compatible with Technical and Environmental Constraints. Light Metals 2002,413-418.
    [93]M. S?rlie, H.A. Oye. Evaluation of cathode material properties relevant to the life of Hall-Heroult cells. Journal of Applied Electrochemistry,1989,19:580-588.
    [94]中华人民共和国有色金属行业标准.YS/T63.1-2006.铝用炭素材料检测方法第一部分阴极糊试样焙烧方法、焙烧失重的测定及生坯试样表观密度的测定.
    [95]中华人民共和国有色金属行业标准.YS/T63.1-2006.铝用炭素材料检测方法第一部分阴极炭块和预焙阳极室温电阻率的测定.
    [96]中华人民共和国有色金属行业标准.YS/T63.5-2006.铝用炭素材料检测方法第五部分有压下底部炭块钠膨胀率的测定.
    [97]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.GB/T8727-2008.煤沥青类产品结焦值的测定方法.
    [98]中华人民共和国有色金属行业标准.YS/T63-2006.铝用炭素材料检测方法.
    [99]宫波,李拴生,侯再恩.不定形耐火材料颗粒级配的优化.耐火材料,2003,37(6):26-29.
    [100]程荣超,王瑞和,王成文,步玉环.基于分形级配理论的油井水泥体系设计及评价.中国石油大学学报(自然科学版),2008,32(6):83-87.
    [101]周新建.水煤浆颗粒级配的研究.煤炭学报,2001,26(5):557-559.
    [102]C.C. Furnas. Grading aggregates- I -mathematical relations for beds of broken solids of maximum density. Industrial and Engr. Chem,1931,23(9):1052-1058.
    [103]C.C. Furnas. Relations volume between specific voids, and size composition in systems of broken solids of mixed sizes. U S Bureau of Mines Reports of Investigations,1928,12: 2894.
    [104]A.H.M Andreasen. Uber die Guhigkeit des stokes schen gesetzes fur nicht kugelformige teilchen. Kolloid Z,1929,49(2):175-179.
    [105]A.H.M Andersen. Uber die Beziehung zwischen und Zwischenraum in Produekten aus losen Kornern (mit einigen experimenten). KolloidZ,1930,50(3):217-228.
    [106]J.E. Funk, D.R. Dinger. Particle packing, part I:funamentals of particle packing monodisperse spheres. Interceram,1992,41(1):10-14.
    [107]D.R. Dinger, J.E. Funk. Particle packing, part Ⅱ:review of of packing polydisperse particle system. Interceram,1992,41(2):95-97.
    [108]史世庄,雷耀辉,曹素梅,张康华,吴琼,李凤霞.堆积密度对捣固炼焦焦炭性能的影响.武汉科技大学学报,2011,34(4):285-288.
    [109]郜迎君,彭振宇,赵明新.微粉堆积密度的测量方法.金刚石与磨料磨具工程.2007,(4):86-88.
    [110]陆思伟,赵美敬,李光明.无机化工产品中堆积密度测定方法概况.中国石油和化工标准与质量,2009,(10):17-19.
    [111]李方文,吴建锋,徐晓虹,许中坚,滕方雄.成型压力对基体体积密度、吸水率和显气孔率影响的探讨.中国陶瓷,2007,43(4):25-27.
    [112]徐顺建,乔冠军,王红洁,李涤尘,卢天健.酚醛树脂聚合相分离热解制备介孔碳.无机材料学报,2008,23(5):971-975.
    [113]郑水山,窦红兵,李国军,李应超.煤沥青改质生产超高功率石墨电极用粘结剂的研究.煤炭加工与综合利用,2005,(6):22-25.
    [114]李玉财,刘勇,魏中振,甄凡玉,于灵.浸渍剂沥青.精细与专用化学品,2001,(12):14-15.
    [115]王平甫,姜绍娴,罗英涛.铝用炭素材料(7).炭素技术,2000,(6):44-47.
    [116]李庆宏,续正国,王平甫.铝用炭素材料(10).炭素技术,2001,(3):46-47.
    [117]吕洪全,英有林,刘锡坤,朱文菊.采用葸油替代煤焦油降低中温煤沥青软化点.炭素,2002,(2):47-49.
    [118]P. Brilloit, L.P. Lossius, H.A. Oye. Penetration and chemical reactions in carbon cathodes during Aluminum Electrolysis:Part 1. Laboratory experiments. Metallurgical and Materials Transactions B,1993,24 (1):75-89.
    [119]刘世英,李文珍,王兆文,石忠宁.石墨含量对阴极炭块渗透性的影响.炭素技术,2008,27(5):1-4.
    [120]李冰,邱竹贤,李军,徐金富.铝电解质对TiB2镀层的渗透.中国腐蚀与防护学报,25(1):44-47.
    [121]J.A. Sekhar, V. Bello, V. Nora, et al. Cathodic coating for improved cell performance. Light Metals 1995,507-513.
    [122]许斌,宋子逵,任玉明,魏贤勇,陈文,陈前琬.改性结合剂对炭素捣打料性能的影响.耐火材料,2009,43(6):438-440.
    [123]李其祥,向东栋,张瑜,张继军,刘扣,王世英.混合改性沥青流变性能研究.武汉工程大学学报,2009,37(7):23-25.
    [124]刘洪波,张红波,张武,高福龙.活化剂对煤沥青及其沥青焦的改性作用初探.炭素技术,2001,(1):1-3.
    [125]肖劲,王英,刘永东,赖延清,李士力.煤沥青的改性研究进展.炭素技术,2010,29(2):31-36.
    [126]李劲,李伟,范群,陈振华.碳纤维单丝带对酚醛树脂基复合材料力学性能的增强作用.复合材料学报,2006,23(1):51-55.
    [127]李克智,王闯,李贺军,罗发,侯党社.碳纤维增强水泥基复合材料电磁性能的研究.稀有金属材料与工程,2007,36(10):1703-1709.
    [128]高宇,黄科科,华中,高忠民,李向山.碳纤维中的单层石墨物相及其对力学性能的影响.高等学校化学学报,2007,28(10):2014-2017.
    [129]Huimin Lu, LanlanYu, Chao Wang, PengSun. Colloidal Alumina-bonded TiB2 Coating on Cathode Carbon Blocks in Aluminum Cells. RARE METALS,2001,20(2):101-107.
    [130]LI Jie, FANG Jing, LI Qingyu, LAI Yanqing. Effect of TiBz content on resistance to sodium penetration of TiB2/C cathode composites for aluminium electrolysis. Journal of Central South University of Technology,2004,11(4):400-403.
    [131]XUE Ji-lai, Oye H A. Sodium and bath penetration into TiB2-carbon cathodes during laboratory aluminium electrolysis. Light Metals 1992,773-778.
    [132]XUE Ji-lai, Oye H A. Investigating carbon/TiB2 materials for aluminum reduction cathodes. JOM,1992,44(11):28-34.
    [133]吕晓军.TiB2/C复合阴极涂层的导电性能、耐压强度及抗钠渗透性能的研究[硕士论文].长沙,中南大学,2006.
    [134]李庆余,赖延清,李劫,刘业翔.常温固化TiB2涂层阴极抗钠渗透性.中南大学学报(自然科学版),35(6):907-910.
    [135]韩欢庆,卢惠民,邱定藩.铝电解阴极用TiB2基复合材料的研究现状.稀有金属材料与工程,2002增刊,31:390-392.
    [136]田园晋(著),李堃,李成林,侯莉(译).炭素工业用黏结剂的研究.吉林:吉林 炭素厂研究所,1982.
    [137]齐仲辉,刘洪波,向左良.铝电解槽用石墨化阴极材料的研究.炭素技术,2003,(4):15-20.
    [138]黄剑,介玉洁,郝志彪,邹武,程文.沥青炭石墨化度的间接表征方法研究.炭素技术,2007,26(6):1-5.
    [139]中国冶金百科全书总编辑委员会.中国冶金百科全书-炭素材料.北京:冶金工业出版社,2004.
    [140]许斌,郭德英,张雪红,夏添虹.煤沥青热解缩聚行为的研究.武汉科技大学学报(自然科学版),2004,27(1):24-27.
    [141]许斌,郭德英,张雪红,刘建国,肖骏.升温速率对煤沥青热解缩聚的影响.炭素技术,2004,23(3):1-4.
    [142]任玉明.煤沥青/炭复合物料热解缩聚行为研究[硕士论文].武汉,武汉科技大学,2009.
    [143]郑长征,孙磊,马丽斯,王梅芳.煤沥青的热分析.煤炭转化,2009,34(4):78-82.
    [144]单长春,刘春法,张秀云,高晋生.TGA在精制沥青研究中的应用.煤化工,2007,(3):36-38.
    [145]吴碧英,张雪红,王薇,任玉明,刘锐剑.炭材料生产用煤沥青热解缩聚行为的分析.炭素工艺与设备,2006,26:1-5.
    [146]Hongliang Zhang, Jinlong Hou, Xiaojun Lu, Yanqing Lai, Jie Li. Furan Resin and Pitch Blends as Binders for TiB2-C Cathodes. Light Metals 2011,1117-1121.
    [147]LAI Yan-qing, LI Qing-yu, YANG Jian-hong, Jie Li. Ambient Temperature Cured TiB2 Cathode Coating for Aluminum Electrolysis. Transactions of Nonferrous Metals Society of China,2003,13(3):704-707.
    [148]Shoujun Yi, Jinhua Chen, Haiyong Li, Lu Liu, Xiong Xiao, Xiaohua Zhang. Effect of graphite oxide on graphitization of furan resin carbon. Carbon,2010,48:926-928.
    [149]Yanqiao Jin, Xiansu Cheng, Zuanbin Zheng. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresource Technology,2010,101:2046-2048.
    [150]陈为新,杨斌,殷树梅,王汉清,孙学青.三聚氰胺对间苯二酚-双酚A环氧树脂的改性研究.山东化工,2007,36(6):4-6.
    [151]林生军,李远才,祝辉,王文清.新型低醛高强度呋喃树脂的研究.铸造,2009,28(12):1212-1215.
    [152]沈红.杯芳烃改性低粘度高残炭酚醛树脂的研究[硕士论文].成都,四川大学,2004.
    [153]韩永芹.石墨/粘结剂导电复合材料性能的研究.玻璃钢/复合材料,2006,(2):32-33.
    [154]刘野,杜明.环氧树脂增韧改性技术研究进展和新方法及其机理.化学与黏合,2007,29(3):197-201.
    [155]郭红红,单国荣,翁志学.聚醚型聚氨醋增强增韧环氧树脂的研究.化学反应工程与工艺,2007,23(3):253-258.
    [156]王德波,杨继萍,黄鹏程.硫酸钙晶须改性聚氨酯环氧树脂的粘接性能.复合材料学报,2008,25(4):1-6.
    [157]李芳,张吉才,杜文才.用差热分析(DTG)法对环氧树脂固化条件的研究.光谱实验室,2001,11(3):369-373.
    [158]刘彦方,杜中杰,张晨,励杭泉.双酚A甲醛酚醛环氧树脂与甲基六氢邻苯二甲酸酐的固化反应及热性能.高分子材料科学与工程,2007,23(2):73-76.
    [159]湛志华,丘克强.废弃环氧树脂电路板的热解机理及动力学研究.中南大学学报(自然科学版),2011,42(3):610-616.
    [160]王鸿波,魏晓萍,何优选,李红山.聚酰胺固化环氧树脂的热分解动力学研究.胶体与聚合物,2011,29(2):75-78.
    [161]肖卫东,何培新,何本桥.热重法研究环氧树脂胶粘剂.化学与粘合,2003,(2):54-56.
    [162]乌云其其格.一种高温固化环氧树脂性能研究.航空材料学报,2005,25(5):46-49.
    [163]田志高,李本林,宋春玲.改性呋喃树脂的研制.襄樊学院学报,2008,29(2):37-40.
    [164]E. Fitzer, W. Schafer. The effect of cross linking on the formation of glass like carbons from thermo setting resins. Carbon,1970,8(3):353-364.
    [165]Z. WANG, Z. Lu, X. HUANG, R. XUE, L. CHEN. Chemical and crystalline structure characterizations of polyfurfuryl alcohol pyrolyzed at 600℃. Carbon,1998,36(1-2): 51-59.
    [166]林华,黄启忠,邹志强,黄伯云,黄培云,谭明福,曹鹏.C/C复合材料石墨化度的研究.炭素,1998,93(1):8-11.
    [167]赵根祥。玻璃炭.新型炭材料,2000,15(1):79.
    [168]高莹,黄启忠,王秀飞,谢志勇,苏哲安.模压成形制备高电阻率炭材料.粉末冶金材料科学与工程,2006,11(3):172-175.
    [169]邱海鹏,赵根祥.利用XRD研究呋喃树脂制备玻璃炭过程中的结构变化.新型炭材料,1999,14(2):49-54.
    [170]S. Abid, R.E. Gharbi, A. Gandini. Synthesis and characterization of furan-aromatic homologues. Polymer,2004,45:5793-5801.
    [171]X.L. Gang, Z.H. Bo, X. Xiang. Thermal degradation of furan resin as a matri precursor for glassy carbon materials. The Seventh Cross-Strait New Carbon Material Conference, New Carbon Material,2008:253-257.
    [172]Lin Liu, Ziping Ye. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polymer Degradation and Stability, 2009,94:1972-1978.
    [173]O.A. Mohamed, A. Ludwick, T. Mitchell. Boron-modified phenolic resins for high performance applications. Polymer,2003,44:7353-7359.
    [174]V.V. Korshak, I.A. Gribova, A.P. Krasnov, Y.S. Nekrasov, I.S. Mazayeva, M.M. Badayeva, V.A. Sergeyev, V.K. Shitikov. A mass-spectrometric study of chemical changes in filled polymer systems based on a phenolphthalein-phenol-formaldehyde oligomer and molybdenum disulphide, subjected to heat and mechanical action. Polymer Science U.S.S.R.,1980,22(4):815-822.
    [175]Y.F. Chen, Z.Q. Chen, S.Y. Xiao, et al. A Novel Thermal Degradation Mechanism of Phenol-Formaldehyde Type Resins. Thermochimica Acta,2008,476(1-2):39-43.
    [176]王继刚,郭全贵,刘朗等.白炭黑、BC4改性酚醛树脂热解过程的红外分析.材料科学与工程,2000,18(3):73-77.
    [177]崔志中,李涤尘,乔冠军,李济顺.孔道可控的酚醛树脂多孔碳支架的制备研究.无机材料学报,2006,21(4):848-854.
    [178]Shinn-Shyong Tzeng, Ya-Ga Chr. Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis. Materials Chemistry and Physics, 2002,73:162-169.
    [179]陈姝帆,李朗晨,洪海霞.环氧改性酚醛树脂的耐腐蚀性能研究.化工新型材料,2009,37(6):104-107.
    [180]李士斌,侯宝花,宋长刚,郭燕生,郭宁,查庆芳,吴明铂.改性沥青树脂及其复合材料的制备及相关性能.炭素,2010,(4):13-17.
    [181]张秋民,黄大军,赵树昌.用聚合物试剂减少煤沥青中3,4一苯并芘的研究.煤化工,2007,(1):58-60.
    [182]杨琴,李铁虎,林起浪,单玲.呋喃树脂对煤沥青流变性能的影响.新型炭材料,2005,20(1):67-70.
    [183]李小燕,李仲谨,郭焱,李存本.环氧化酚醛耐温胶粘剂的制备及性能研究.化工 新型材料,2005,33(7):61-63.
    [184]刘运传,魏莉萍,郑会保,孟祥艳,周燕萍.硼酚醛改性环氧树脂的成炭性能及热解动力学.四川兵工学报,2009,20(8):7-10.
    [185]http://www.alacd.com/redirect.php?fid=9&tid=7207&goto=nextoldset
    [186]http://wenku.baidu.com/view/c874a341bel e650e52ea997d.html
    [187]Rudolf Riesen(著),陆立明(译).热固性树脂.上海:东华大学出版社,2009.
    [188]NIOSH, US department of health and Human services, Physical and Chemical Analytical Method N 5506, Polynuclear Aromatic Hydrocarbons, Third Edition, USA,1985.
    [189]A.A. Mirtchi, L. Noel. Polycyclic Aromatic Hydrocarbons (PAHs) in Pitches used in the Aluminum Industrial. Carbon'94,1994,794-795.
    [190]K.E. Thrane. Ambient air concentrations of Polycyclic Aromatic Hydrocarbons, fluoride, suspended particles and particulate carbon in areas near aluminum production plants. Atomspheric Environment,1987,21(3):617-628.
    [191]E. Aas, J. Beyer, G. Jonsson, W.L. Reichert, O.K. Andersen. Evidence of uptake, biotransformation and DNA binding of Polyaromatic Hydrocarbons in Atlantic cod and corkwing wrasse caught in the vicinity of an aluminum works. Marine Environmental Research,2001,52:213-229.
    [192]J. Knutzen. Effects on marine organisms from polycyclic aromatic hydrocarbons (PAH) and other constituents of waste water from aluminium smelters with examples from Norway. The Science of the Total Environment,1995,163:107-122.
    [193]N. Gistoffer, J. Knutzen, L. Berglind. Occurrence of PAlEx in marine organisms and sediments from smelter discharge in Norway. The Science of the Total Environment,1995, 163:93-106.
    [194]A. Dhenain, G. Mercier, B. Jean-Francois, M. Chartier. Combined column and cell flotation process for the treatment of PAH contaminated hazardous wastes produced by an aluminium production plant. Journal of Hazardous Materials,2009,165:394-407.
    [195]黄大军.煤沥青与聚合物反应减少苯并(a)芘的研究[硕士论文].大连,大连理工大学,2006.
    [196]黄杨柳.煤沥青化学改性减少致癌多环芳烃含量的研究[硕士论文].大连,大连理工大学,2009.
    [197]E. Aas, J. Beyer, G. Jonsson, W.L. Reichert, O.K. Andersen. Evidence of uptake, biotransformation and DNA binding of Polyaromatic Hydrocarbons in Atlantic cod and corkwing wrasse caught in the vicinity of an aluminum works. Marine Environmental Research,2001,52:213-229.
    [198]J. Knutzen. Effects on marine organisms from polycyclic aromatic hydrocarbons (PAH) and other constituents of waste water from aluminium smelters with examples from Norway. The Science of the Total Environment,1995,163:107-122.
    [199]N. Gistoffer, J. Knutzen, L. Berglind. Occurrence of PAlEx in marine organisms and sediments from smelter discharge in Norway. The Science of the Total Environment,1995, 163:93-106.
    [200]胡荣祖,高胜利,赵凤起,石启祯,张同来,张建军.热分析动力学(第二版).北京:科学技术出版社,2008.
    [201]任元林, 程博闻,张金树,康卫民,李振环,庄旭品.N-N二(5,5-二甲基-2-磷杂-2-硫代-1,3-二嗯烷-2-基)乙二胺在空气中的热分解动力学研究.化学学报,2008,66(9):1123-1128.
    [202]张予东,徐翔民,郭有刚,张普玉.聚乳酸/纳米石墨薄片复合材料的热分解动力学.河南大学学报(自然科学版),2010,40(1):31-35.
    [203]陶友田,占丹,张克立.消旋卡多曲在空气中的热分解动力学.化学学报,2006,(5):435-438.
    [204]宋士华,魏健宁,马明亮.对甲基苯甲醛改性煤沥青的改性机理研究.九江学院学报,2007,(3):82-84.
    [205]宋士华,马明亮,魏健宁,林起浪,李铁虎,李世斌,杜大明.对甲基苯甲醛改性煤沥青的研究.煤炭转化,2005,28(1):78-81.
    [206]林起浪,李铁虎,郑长征,杨琴,单玲.对甲基苯甲醛改性煤沥青的原位成纤机理研究.新型炭材料,2003,18(4):291-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700