用户名: 密码: 验证码:
中国南方皂荚遗传资源评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皂荚(Gleditsia sinensis)是我国特有的乡土树种,具有较高的经济和生态价值;在全国范围内呈连续的星点状分布,资源分散,由于其长期的过度利用,天然林资源已遭到严重的破坏,种内遗传多样性保存面临严峻的挑战。对我国南方现有皂荚遗传资源进行收集、保存及遗传多样性测定评价,为科学合理的皂荚遗传资源保护、筛选优异种质和经济价值开发奠定坚实基础。本研究在我国南方的皂荚主要分布区抽取10个群体215个个体,采集荚果以及叶片进行遗传多样性分析、并对种子进行打破休眠处理、播种育苗试验以及果实化学成分测定,依据研究结果制定皂荚遗传资源的保护策略、构建保护机制,为皂荚种质保存及高效、综合利用开发这一宝贵植物资源提供理论指导。
     主要研究结果如下:
     1.皂荚果实、种子等性状在群体间和群体内存在丰富的变异,11个性状在群体间、群体内均达显著差异,11个性状的平均表型分化系数为20.42%,群体内的变异大于群体间的变异,群体内的变异是皂荚的主要变异来源;皂荚各性状平均变异系数为11.20%,变异幅度为4.55%-18.38%。群体间荚果的变异(14.75%)高于群体间种子变异(6.95%),表明种子变异稳定性高。荚果和种子各性状之间多呈极显著或显著正相关,表现为荚果越大,则种子越大,种子的千粒重也越大;在地理变异方面,荚果表现为同地理经度的南北变异,种子则表现为同地理纬度的东西变异。
     2.利用筛选出的14对荧光引物,对10个群体215个个体进行AFLP分子标记分析,共得到1782条带,其中多态性片段为1389条,平均多态位点百分率为77.94%。AFLP分子标记揭示了基因频率在群体间差异显著,进而在DNA水平上揭示了群体的遗传差异;皂荚不同群体的遗传多样性存在极显著差异(P<0.01),群体间的遗传分化系数(Gst)为26.87%,群体内的变异远大于群体间的变异,群体内的变异是皂荚的主要变异来源。皂荚群体平均有效等位基因数Ne、等位基因数Na、Shannon’s信息指数和Nei’s多样性指数分为1.261、1.714、0.256和0.168。皂荚基因流(Nm)为1.483,10个群体的平均遗传一致度和遗传距离分别为0.950和0.059,说明皂荚群体间存在着一定的遗传分化。贵州兴义群体的遗传多样性最高,广西桂林群体的遗传多样性最低。
     3.不同群体间皂荚果壳和种子的化学成分存在差异,在种子化学成分中,广西桂林群体皂甙、粗蛋白和粗淀粉的含量最高,分别为8.13%、22.87%和36.91%,湖北京山群体总糖的含量最高,为16.36%;果壳化学成分中,重庆秀山群体粗蛋白的含量最高,为4.41%,贵州兴义群体粗脂肪的含量最高为8.07%,甘肃天水群体果胶的含量最高,为0.71%湖南城步群体总糖含量最高为34.76%;山东费县群体皂甙的含量最高为18.33%。对不同群体皂荚全果有效成分的分析比较,为以后的良种选择,高效、综合利用开发这一宝贵植物资源提供了重要理论依据。
     4.浓硫酸可以打破皂荚种子休眠,经浓硫酸处理2个小时后,种子发芽率为95.70%,比对照提高了88.00%;破壳处理使皂荚种子的平均发芽时间缩短了近17天,发芽率提高了近11倍,浓硫酸浸泡2小时后,在25℃下皂荚发芽率和发芽势最高,分别为95.70%和85.40%。
     5.皂荚各群体内家系子代幼苗的苗高和地径都存在丰富变异,苗高和地径在群体间、群体内家系间的差异均达到极显著水平。各家系的子代幼苗生长方面存在较大差异,苗高的变异系数在19.45%-34.15%之间,平均为26.07%;地径变异系数在10.35%-21.38%之间,平均为15.09%。皂荚群体苗高生长与产地纬度和年平均温度呈显著负相关,表现出明显的纬向渐变型。
     6.皂荚遗传资源流失严重,群体处于濒危状态,遗传资源保存应该注意加强现有其遗传资源的保护,避免基因资源进一步流失,针对性开展遗传资源的原地保存和异地保存,并在其分布区内严格按照样本策略收集群体样本,营建皂荚遗传资源收集圃,建立种源/家系试验林,构建种子库开展设施保存,同时还可借助植物园的优势开展资源保存工作;在遗传改良工作中,遗传改良与保存相结合,收集保存丰富的变异材料,为育种工作提供充足的资源,从而为皂荚的可持续利用奠定基础。
Gleditsia sinensis, a unique native species of China with high economic and ecologicalvalues; is distributed continuously as scattered individual trees, particularly around villages. Atpresent, the natural resources of Gleditsia sinensis are being severely damaged because oflong-term over-exploitation, which also contributes to the loss of genetic diversity. In thepresentstudy, wild resources of Gleditsia sinensis in the southChina were investigated; thegenetic diversities were evaluated andthese results established basis foundation for theGleditsia sinensis resources protection, the genetic improvement and the screening of superiorgermplasms rationally and scientifically. Moreover, it is also provided the basement forexploiting the economic value of Gleditsia sinensis resources and its industrialized productionas the “forest-medicine” pattern in a large-scale area. Based on the multitudinous conservationmodel, the theory of field investigation, and natural distributionof scattered trees,215individuals with10populations of Gleditsia sinensis in the southern part of China wereconllected. The morphological diversity, the DNA diversity, the breaking dormancy of seed, theprogeny seedling growth traits, and the chemical constituents were studied. At the same time,out research provided the conservation strategy for genetic diversity of Gleditsia sinensis andconstructed conserving forests in different regions with more plots. The resultsare shown asfollows:
     1. The analysis of variances of all traits showed significant differences among/withinpopulations. The mean values of phenotypic differentiation coefficient for the eleven traitswere20.42%, and the variation within populations (70.58%) was higher than that amongpopulations (20.42%), which indicated that the variance within population was the main part ofthe phenotypic variation of the species. The variation ranges of CV among11traits were4.55%and18.38%, and the average was11.20%. The CV of pod within populations (14.75%) washigher than seed (6.95%),which means that the seed has high stability. Most of the pod and seed traits were positively correlated. The seed was proved a west-east variation at samelatitude. The pod was proved a west-east variation at same longitude.
     2. The AFLP system was built and used for the amplification reaction in the experiment.There were totally219individuals which were selected and analyzed by amplification using14pairs of AFLP primers screed1782bands were obtained and1389bands (77.94%) of themwere found to be polymorphic. The difference of frequency reflected the difference of geneticstructure. The genetic differentiation coefficient amonge10populations (Gst) was26.87%, andthe variation within populations (73.13%) was higher than that among populations (26.87%)These results indicated that the variance within population was the main part of the variation ofthe species. As for genetic diversity parameter, the average effective number of alleles is1.261.The average number of alleles was1.714. Shannon’s information index is0.256and that ofNei’s is0.168. The gene flow (Nm) was1.483. The average genetic identities and geneticdistance were0.950and0.059, respectively. These results indicated that a certain degrees ofgenetic differentiation exist amonge the populations. Gui Zhou Xing Yin population was thehighest diversity and Guang Xi Gui Lin was the lowest diversity.
     3. There are differences between populations for chemical constituents. In the podchemical constituent, the average content of saponins, crude protein, and crude starch is thehighest in Guangxi population is8.13%,22.87%,36.91%respectively. The average of totalsugar in Hubei Jingshan population is the highest is16.36%. In the seed chemical constituents,the average content of crude protein is the higtest in Chongqing Xiushan populations is4.41%;the average content of crude fat is the higtest in Guizhou Xingyi populations is8.07%; theaverage content of pectin is the higtest in Gansu Tianshui populations is0.71%;the averagecontent of total suggeris the higtest in Hunan populations is34.76%The average content ofsaponins in Shandong Feixian is18.33%, which is the highest in all pupulations. Analysis theChemical constituents of seed and pod can provide an important theoretical basis for theselection of superior cultivars, efficient and comprehensive utilization of the development ofthis valuable plant resource.
     4.The seed dormancy of Gleditsia sinensis could be broken through corrosion with highconcentrated H2SO4. The seed was95.70%, which was increased by88.00%than control afertreatment by concentrated H2SO4for two hours. The17days’ decrease in mean germinationdays and11fold’s increse in coefficient of germination speed after breaking skin. After treatedby sulphuric acid for120min, the optimum germination temperature was25℃, thegermination rate and germination power were95.70%and85.40%, respectively.
     5. The analysis of variance showed that there are significant differences between opulationand families within population for growth traits. There were differences of the growth traitsamong each family. The height ranges of CV among the populations were19.45%and34.15%,and the average was26.07%. The diameter s at ground range of CV among the populationswere10.35%and21.38%, and the average was15.09%. A significant negative correlation wasfound between the height growth and the latitude.
     6. Gleditsia sinensis genetic resource conservation programe should pay attention for theprotection of existing natural forest, forbiding logging reserved forests, while protecting theirhabitats. Sampling of seeds (or propagation materials) from more populations with a smallernumber of trees at each site is preferable except for in situ conservation. Conservationstands/gene banks, provenance/families trials, clone banks and seed banks shoud be established.While some botanical gardens and arboretums are also proposed to conserve the geneticresources of the species. The individual number of populations should be increased while thepopulations should be induced. The selection of good varieties should be taken seriously. It isparticularly important to protect the integrity of a population while the conservation.
引文
Aggarwal R, Shenoy V, Ramadevi J, et al. Molecular characterization of some Indian Basmati and other eliterice genotypes using fluorescent-AFLP. TAG Theoretical and Applied Genetics,2002,105(5):680-690.
    Baraket G, Chatti K, Saddoud O, et al. Comparative assessment of SSR and AFLP markers for evaluation ofgenetic diversity and conservation of Fig, Ficus carica L., genetic resources in Tunisia. Plant MolecularBiology Reporter,2011,29(1):171-184.
    Basbaa A, Geslot A, Neville P, et al. In vitro propagation of Gleditsia triacanthos L.. II. Subcultures ofprimary explants originated from seedlings. Acta Botanica Gallica,1995,142(3):169-181.
    Baskin C C, Baskin J M. Seeds: ecology, biogeography, and evolution of dormancy and germination,Elsevier,2001.
    Baskin J M, Davis B H, Baskin C C, et al. Physical dormancy in seeds of Dodonaea viscosa (Sapindales,Sapindaceae) from Hawaii. Seed science research,2004,14(1):81-90.
    Boffa J M. West African agroforestry parklands: keys to conservation and sustainable management.Unasylva-FAO,2000:11-17.
    Chechowitz N, Chappell D M, Guttman S I, et al. Morphological, electrophoretic, and ecological analysis ofQuercus macrocarpa populations in the Black Hills of South Dakota and Wyoming. Canadian Journalof Botany,1990,68(10):2185-2194.
    Cheung F, Chung H, Sun C C, et al. Inhibition of proteasome activity in Gleditsia sinensis fruitextract-mediated apoptosis on human carcinoma cells. International Journal of Molecular Medicine,2005,16(5):925-929.
    Christensen S, von Bothmer R, Poulsen G, et al. AFLP analysis of genetic diversity in leafy kale (Brassicaoleracea L. convar. acephala (DC.) Alef.) landraces, cultivars and wild populations in Europe. GeneticResources and Crop Evolution,2011,58(5):657-666.
    Chui C, Gambari R, Lau F, et al. Anti-cancer potential of traditional Chinese herbal medicines and microbialfermentation products. Minerva Biotecnologica,2005,17(3):183.
    Churak P, Miller R W, Ottman K, et al. Relationship between street tree diameter growth and projectedpruning and waste wood management costs. Journal of Arboriculture,1994,20:231-231.
    Das A, Kesari V, Satyanarayana V M, et al. Genetic relationship of Curcuma species from Northeast Indiausing PCR-based markers. Molecular biotechnology,2011,49(1):65-76.
    Das M, Banerjee S, Topdar N, et al. Development of large-scale AFLP markers in jute. Journal of PlantBiochemistry and Biotechnology,2011,20(2):270-275.
    Davis P H, Heywood V H. Principles of angiosperm taxonomy. Principles of angiosperm taxonomy,1963.
    Di Iorio O. Lophopoeum timbouvae Lameere,1884and L. bruchi Monné&Martins,1976(Coleoptera:Cerambycidae: Lamiinae: Acanthocinini): their relation to fruits of Leguminosae. Giornale italiano diEntomologia,1995,7:231-245.
    Elsner G. Morphological variability of oak stands (Quercus petraea and Quercus robur) in northernGermany. Annales des Sciences Forestières.1993.
    Eriksson G, Namkoong G, Roberds J H. Dynamic gene conservation for uncertain futures. Forest Ecologyand Management,1993,62(1):15-37.
    Evans P M, Smith F A. Patterns of seed softening in subterranean clover in a cool, temperate environment.Agronomy Journal,1999,91(1):122-127.
    Falcón J, Meissl H. The photosensory function of the pineal organ of the pike (Esox lucius L.) correlationbetween structure and function. Journal of Comparative Physiology,1981,144(1):127-137.
    FAO R F, Landscape R I, Roma. Forest genetic resources conservation and management: overview, conceptsand some systematic approaches. Forest Genetic Resources (IPGRI),2004,1.
    Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP andAFLP markers. TAG Theoretical and Applied Genetics,2003,107(2):271-282.
    Foroughbakhch R, Hauad L, Dupraz C, et al. Pod yield of16accessions of Gleditsia triacanthos. NitrogenFixing Tree Research Reports,1995,13:58-59.
    Frankham R, Briscoe D A, Ballou J D. Introduction to conservation genetics: Cambridge University Press,2002.
    Garcia D, Zamora R, Gomez J M, et al. Geographical variation in seed production, predation and abortion inJuniperus communis throughout its range in Europe. Journal of Ecology,2000,88(3):435-446.
    Geburek T, Tripp-Knowles P. Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred bymeans of spatial autocorrelation analysis. Plant Systematics and Evolution,1994,189(1-2):63-74.
    Genet T, Viljoen C, Labuschagne M. Genetic analysis of Ethiopian mustard genotypes using amplifiedfragment length polymorphism (AFLP) markers. African Journal of Biotechnology,2011,4(9).
    Geyer W A. Influence of environmental factors on woody biomass productivity in the Central Great Plains,USA. Biomass and bioenergy,1993,4(5):333-337.
    Gordon D. A revision of the genus Gleditsia (Leguminosae). Indiana University,1986.
    Graves W. Growth and iron content of three legume tree species at high root-zone temperature. J. Arboric,1991,17:313-317.
    Graves W R, Joly R J, Dana M N. Water use and growth of honey locust and tree-of-heaven at highroot-zone temperature. HortScience,1991,26(10):1309-1312.
    Hamrick J, Godt M, Brown A, et al. Allozyme diversity in plant species. Plant population genetics, breeding,and genetic resources.1990:43-63.
    Haruna M, Tanaka M, Sugimoto T, et al. Alteration of Na+permeability in human erythrocytes as studied by23Na-NMR and inhibition of the kidney Na+, K+-ATPase activities with saponins: interaction ofGleditsia saponins with human erythrocyte membranes. Bioorganic&Medicinal Chemistry Letters,1995,5(8):827-830.
    Hauer R J, Wang W, Dawson J O. Ice storm damage to urban trees. Journal of Arboriculture,1993,19:187-187.
    Heywood J S. Spatial analysis of genetic variation in plant populations. Annual Review of Ecology andSystematics,1991,22:335-355.
    Hosseini Moghaddam H, Leus L, De Riek J, et al. Construction of a genetic linkage map with SSR, AFLPand morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistancein diploid roses. Euphytica,2012:1-15.
    Hu J J, Lv J H, Lu M Z Genetic linkage map of willow (Salix leucopithecia×S. erioclada L) based on AFLPand SSR markers. BMC Proceedings, BioMed Central Ltd.2011.
    Huh M K. Comparison of mating systems in populations of Gleditsia japonica var. koraiensis. Journal ofEcology and field biology,2006,29(5):411-414.
    Huh M K, Lee H Y, Huh H W. Genetic diversity and population structure of Gleditsia japonica var.koraiensis in Korea. Botanical Bulletin of Academia Sinica,1999,40.
    Ipek A, Barut E, Gulen H, et al. Genetic diversity among some blackberry cultivars and their relationshipwith boysenberry assessed by AFLP Markers. African Journal of Biotechnology,2011,8(19).
    Jacobi W. Resistance of honeylocust cultivars to Thyronectria austro-americana. Plant Disease,1989,73(10):805-807.
    Jiang T, Zhou B, Gao F, et al. Genetic linkage maps of white birches (Betula platyphylla Suk. and B. pendulaRoth) based on RAPD and AFLP markers. Molecular Breeding,2011,27(3):347-356.
    Kimura M, Crow J F. The number of alleles that can be maintained in a finite population. Genetics,1964,49(4):725.
    Konoshima T, Fukushima H, Inui H, et al. The structure of prosapogenin obtained from the saponin ofGleditsia japonica. Phytochemistry,1981,20(1):139-142.
    Konoshima T, Yasuda I, Kashiwada Y, et al. Anti-AIDS agents,21. triterpenoid saponins as Anti-HIVprinciples from fruits of Gleditsia japonica and Gymnocladus chinesis, and a structure-activitycorrelation. Journal of Natural Products,1995,58(9):1372-1377.
    Korir N K, Han J, Shang G L, et al. Plant variety and cultivar identification: Advances and prospects.Critical Reviews in Biotechnology,2012,(00):1-15.
    Kuo W. Delayed-permeability of soybean seeds: characteristics and screening methodology. Seed Scienceand Technology,1989,17.
    Lai P, Du J R, Zhang M X, et al. Aqueous extract of Gleditsia sinensis Lam. fruits improves serum and liverlipid profiles and attenuates atherosclerosis in rabbits fed a high-fat diet. Journal of ethnopharmacology,2011,137(3):1061.
    Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits.Genetics,1990,124(3):743-756.
    Lee H R, Kim K T, Kim H J, et al. QTL analysis of fruit length using rRAMP, WRKY, and AFLP markers inchili pepper. Horticulture, Environment, and Biotechnology,2011,52(6):602-613.
    Lewontin R C. The apportionment of human diversity. Evolutionary Biology, Springer,1995:381-398.
    Li J, Bogle A L, Klein S. Interspecific relationships and genetic divergence of the disjunct genusLiquidambar (Hamamelidaceae) inferred from DNA sequences of plastid gene matK. Rhodora,1997,99.
    Lim JC, Park J H, Budesinsky M, et al. Antimutagenic constituents from the thorns of Gleditsia sinensis.Chemical and Pharmaceutical Bulletin,2005,53(5):561-564.
    Li W, LI Q, Wang X, et al. A study on the anti-HIV activity of five lupane-type triterpenoids from the stingsof Gleditsia sinensis Lam. Journal of Northwest University (Natural Science Edition),2007:03.
    Li X, Baskin J M, Baskin C C. Anatomy of two mechanisms of breaking physical dormancy by experimentaltreatments in seeds of two North American Rhus species (Anacardiaceae). American Journal of Botany,1999,86(11):1505-1511.
    Liu R, Wang B, Guo W, et al. Differential gene expression and associated QTL mapping for cotton yieldbased on a cDNA-AFLP transcriptome map in an immortalized F2. TAG Theoretical and AppliedGenetics,2011,123(3):439-454.
    Liu X, Hua Z, Wang Y. Quantitative trait locus (QTL) analysis of percentage grains chalkiness using AFLPin rice (Oryza sativa L.). African Journal of Biotechnology,2011,10(13):2399-2405.
    Lord J, Westoby M, Leishman M. Seed size and phylogeny in six temperate floras: constraints, nicheconservatism, and adaptation. American Naturalist,1995:349-364.
    Lumaret R, Yacine A, Berrod A, et al. Mating system and genetic diversity in holm oak (Quercus ilex L.Fagaceae). Biochemical markers in the population genetics of forest trees. Pudoc Academic, The Hague,Netherlands,1991:149-153.
    Maksimenko A. Laser activation pretreatment of seeds and cuttings of forest tree species. LesnoeKhozyais tvo,1997,(6):31-32.
    McCord P, Sosinski B, Haynes K, et al. QTL mapping of internal heat necrosis in tetraploid potato. TAGTheoretical and Applied Genetics,2011,122(1):129-142.
    Meudt H M, Clarke A C. Almost forgotten or latest practice? AFLP applications, analyses and advances.Trends in Plant Science,2007,12(3):106-117.
    Ming C C L, Chung H I N C, Cheuk O TJ, et al. Gleditsia sinensis fruit extract is a potentialchemotherapeutic agent in chronic and acute myelogenous leukemia. Oncology Reports,2003,10(5):1601-1607.
    Ming C C L, Chung H I N C, Cheuk O T J, et al. Anti-angiogenic potential of Gleditsia sinensis fruit extract.International Journal of Molecular Medicine,2003,12(2):269-273.
    Mir B A, Koul S, Kumar A, et al. Assessment and characterization of genetic diversity in Withania somnifera(L.) Dunal using RAPD and AFLP markers. African Journal of Biotechnology,2011,10(66):14746-14756.
    Mitton J. The dynamic mating systems of conifers. New Forests,1992,6(1-4):197-216.
    Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy ofSciences,1973,70(12):3321-3323.
    Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics,1978,89(3):583-590.
    Nei M. Molecular evolutionary genetics: Columbia University Press,1987.
    Nomura K, Ozaki A, Morishima K, et al. A genetic linkage map of the Japanese eel (Anguilla japonica)based on AFLP and microsatellite markers. Aquaculture,2011,310(3):329-342.
    Okada Y, Takahashi K, Okuyama T, et al. Gleditsia Saponins. Planta medica,2007,46(10):74-77.
    Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite)markers for germplasm analysis. Molecular Breeding,1996,2(3):225-238.
    Prus-Glowacki W, Bernard E. Allozyme Variation in Populations of Pinus sylvestris L. from a1912Provenance Trial in Pulawy (Poland). Silvae Genetica,1994,43(2):132-137.
    Rana V, Bachetii R. Seed Galactomannans: A Natural Source of Industrial Potential.
    Roberts B R, Schnipke V M. The relative water demand of five urban tree species. Journal of Arboriculture,1994,20(3):156-159.
    Rohlf F J. NTSYS-pc: numerical taxonomy and multivariate analysis system: Applied Biostatistics,1992.
    Saker M M, Youssef S S, Abdallah N A, et al. Genetic analysis of some Egyptian rice genotypes usingRAPD, SSR and AFLP. African Journal of Biotechnology,2011,4(9).
    SangB P, JongS J, Jao K. Studies on utilization of oil-producing forest resources.(II) Development of naturalcosmetics for skin. FRI Journal of Forest Science Seoul,1996,53:102-109.
    Santamour J F S, Riedel L G H. Susceptibility of various landscape trees to root-knot nematodes. Journal ofArboriculture,1993,19(5):257-259.
    Schaal B A, Leverich W J, Rogstad S H. Comparison of methods for assessing genetic variation in plantconservation biology. Genetics and Conservation of Rare Plants,1991:123-134.
    Schnabel A, Hamrick J. Organization of genetic diversity within and among populations of Gleditsiatriacanthos (Leguminosae). American journal of botany,1990:1060-1069.
    Schnabel A, Hamrick J. Understanding the population genetic structure of Gleditsia triacanthos L.: the scaleand pattern of pollen gene flow. Evolution,1995:921-931.
    Schnabel A, Krutovskii K V. Conservation genetics and evolutionary history of Gleditsia caspica: Inferencesfrom allozyme diversity in populations from Azerbaijan. Conservation Genetics,2004,5(2):195-204.
    Schnabel A, Laushman R H, Hamrick J. Comparative genetic structure of two co-occurring tree species,Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity,1991,67(3):357-364.
    Schnabel A, McDonel P E, Wendel J F. Phylogenetic relationships in Gleditsia (Leguminosae) based on ITSsequences. American Journal of Botany,2003,90(2):310-320.
    Schnabel A, Nason J, Hamrick J. Understanding the population genetic structure of Gleditsia triacanthos L.:seed dispersal and variation in female reproductive success. Molecular Ecology,1998,7(7):819-832.
    Schnabel A, Wendel J F. Cladistic biogeography of Gleditsia (Leguminosae) based on ndhF and rpl16chloroplast gene sequences. American Journal of Botany,1998,85(12):1753-1765.
    Shan T F, Pang S J, Zhang Y R, et al. An AFLP-based survey of genetic diversity and relationships of majorfarmed cultivars and geographically isolated wild populations of Saccharina japonica (Phaeophyta)along the northwest coasts of the Pacific. Journal of Applied Phycology,2011,23(1):35-45.
    Singh D, Hooda M, Bonner F. An evaluation of scarification methods for seeds of two leguminous trees.New Forests,1991,5(2):139-145.
    Singh P, Singh O, Chandra V. Estimating seed quality in hard seeded leguminous trees by accelerated agingand leachate conductivity. Indian Forester,1996,122(5):415-418.
    Smith J. Diversity of United States hybrid maize germplasm; isozymic and chromatographic evidence. CropScience,1988,28(1):63-69.
    Smolik M, Kubus M. ISSR analysis of chosen Gleditsia accessions obtained from Polish collections.Dendrobiology,2009,62:63-70.
    Souza F H, Marcos-Filho J. The seed coat as a modulator of seed-environment relationships in Fabaceae.Revista Brasileira de Botanica,2001,24(4):365-375.
    Spongberg S A. Cultivar registration at the Arnold Arboretum1992. HortScience,1993,28(4):280-280.
    Srinivas G, Huang Y, Carver B F, et al. AFLP genetic diversity analysis in Russian wheat aphid resistantwheat accessions. Euphytica,2012:1-9.
    Stebbins Jr C. Variation and evolution in plants.1950.
    Surles S, Arnold J, Schnabel A, et al. Genetic relatedness in open-pollinated families of two leguminous treespecies, Robinia pseudoacacia L. and Gleditsia triacanthos L. Theoretical and Applied Genetics,1990,80(1):49-56.
    Tabor I, Res B. Souckova-M. Preservation of the gene pool of memorable trees in Southern and EasternBohemia. Acta Pruhoniciana,1998,6(7):84.
    Tang Y, Su Z Q, Zhao D Q, et al. The effect of Gleditsia Saponin on simultaneous saccharification andfermentation of furfural residue for ethanol production. Advanced Materials Research,2011,236:108-111.
    Teo I T N, Cheuk On Tang J, Chui C H, et al. Superoxide anion is involved in the early apoptosis mediatedby Gleditsia sinensis fruit extract. International Journal of Molecular Medicine,2004,13(6):909-913.
    Thanos C A, Georgidou K, Kadis C, et al. Cist aceae: A plant Family With Hard Seeds.1992.
    Tilstone G, Pasiecznik N, Harris P, et al. The growth of multipurpose tree species in the Almeria province ofSpain and its relationship to native plant communities. International Tree Crops Journal,1998,9(4):247-259.
    Todd J, Wu Y, Wang Z, et al. Genetic diversity in tetraploid switchgrass revealed by AFLP markerpolymorphisms. Genetics and Molecular Research,2011,10(4):2976-2986.
    Tomi L, tajner N, Jovanovi Cvetkovi T, et al. Collection and genetic characterization of Vitisvinifera’ ilavka’by microsatellites and AFLP markers.2012.
    Uzun F, Aydin I. Improving germination rate of Medicago and Trifolium species. Asian Journal of PlantSciences,2004,3(6):714-717.
    Valenti G S, Melone L, Ferro M, et al. Comparative studies on testa structure of hard-seeded and soft-seededvarieties of Lupinus angustifolius L.(Leguminosae) and on mechanisms of water entry. Seed Scienceand Technology,1989,17(3):563-581.
    Vlietinck A, De Bruyne T, Apers S, et al. Plant-derived leading compounds for chemotherapy of humanimmunodeficiency virus (HIV) infection. Planta Medica-Natural Products and Medicinal PlantResearch,1998,64(2):97-109.
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414.
    Weeden N, Lamb R. Identification of apple cultivars by isozyme phenotypes. Journal of the AmericanSociety for Horticultural Science,1985,110.
    Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers areuseful as genetic markers. Nucleic Acids Research,1990,18(22):6531-6535.
    Willson M F, Michaels H J, Bertin R I, et al. Intraspecific variation in seed packaging. American MidlandNaturalist,1990:179-185.
    Wilson A. Silvopastoral Agroforestry Using Honeylocust (Gleditsia triacanthos L.). Wanatca Yearbook,1996,20:58-66.
    Wright S. The genetical structure of populations. Annals of eugenics,1949,15(1):323-354.
    Yu X, Li X, Ma Y, et al. A genetic linkage map of crested wheatgrass based on AFLP and RAPD markers.Genome,2012,55(4):327-335.
    Zhang Z, Koike K, Jia Z, et al. Triterpenoidal saponins acylated with two monoterpenic acids from Gleditsiasinensis. Chemical and Pharmaceutical Bulleyin-tokoy,1999,47:388-393.
    Zhou L, Li D, Jiang W, et al. Two ellagic acid glycosides from Gleditsia sinensis Lam. with antifungalactivity on Magnaporthe grisea. Natural Product Research,2007,21(4):303-309.
    毕胜,李桂兰,焦玉莲.山东猪牙皂的栽培管理技术.特产研究,1994,2.
    蔡永立,王希华.中国东部亚热带青冈果实形态变异的研究.生态学报,1999,19(4):580-586.
    曹学锋,尹伟伦,夏新莉.北京引种无刺美国皂荚试验初报.山东林业科技,2008,38(5):11-12.
    曹玉峰,韩红娟.山皂解引种栽培与利用.林业月报,1992,(12):12-12.
    程诗明.苦楝聚合群体遗传多样性研究与核心种质构建.北京:中国林业科学研究院,2005.
    冯蕾,白志英,路丙社.氯化钠胁迫对枳椇和皂荚生长、叶绿素荧光及活性氧代谢的影响.应用生态学报,2008,19(11):2503-2508.
    葛颂,洪德元.濒危物种裂叶沙参及其近缘广布种泡沙参的遗传多样性研究.遗传学报,1999,26(4):410-417.
    葛颂,洪德元.泡沙参复合体(桔梗科)的物种生物学研究.植物分类学报,1994,32:489-503.
    葛颂.同工酶与林木群体遗传变异研究.南京林业大学学报(自然科学版),1988,1:9.
    辜云杰,罗建勋,吴远伟.川西云杉天然种群表型多样性.植物生态学报,2009,33(2):291-301.
    顾万春,孙翠玲.皂荚优良产地和优良种质推荐.林业科技通讯,2001,(4):10-13.
    顾万春.森林遗传资源学概论.中国科学技术出版社,1998.
    顾万春.统计遗传学.科学出版社,2004.
    顾万春.中国林木育种区.中国林业出版社,1995.
    郭志芬.适于我国草地建设的部分绿篱植物.中国草地学报,1990,1:3.
    贺超英,陈益泰.桤木种源苗期生长和固N能力的变异.林业科学研究,2002,15(6):680-686.
    黄平.月季品种分子鉴定与遗传多样性分析.北京:林业科学研究院,2012.
    黄元鸿.皂荚种子胶的羧甲基化及其应用.上海:上海科技出版社.1965.
    江先甫,贺士元.北京植物志.北京:北京出版社.1984.
    蒋建新,安鑫南,朱莉伟.皂荚豆组成及皂荚胶的流变性质.南京林业大学学报(自然科学版),2003,1-3.
    焦月玲,周志春,余能健,等.三尖杉苗木生长和形态种源差异.林业科学研究,2006,19(4):452-456.
    兰彦平,顾万春.北方地区皂荚种子及荚果形态特征的地理变异.林业科学,2006,42(7):47-51.
    兰彦平,林富荣,顾万春.皂荚种子萌发的酸蚀处理效应.种子,2007,26(11).
    李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究.生物多样性,2002,10(2):181-188.
    李丙贵.湖南皂荚属一新种.云南植物研究,1982,4(2):169-170.
    李东,徐智敏,孟金凤.皂荚中天然防腐成分的防腐作用研究.南京中医药大学学报,2011,27(1):89-91.
    李林初.中国科学院研究生院学报,1982,20(2)228-229
    李庆梅,刘艳,侯龙鱼.几种处理方式对皂荚直播造林地微环境和出苗率的影响.林业科学研究,2009,22(6):851-854.
    李润唐.湖南野生宽皮柑桔核型研究.湖南农业大学学报,2000,26(1):54-58.
    李万华,傅建熙.皂角刺化学成分的研究.汉中师范学院学报:自然科学版,1999,17(1):41-42.
    李文荣,齐力旺.山西华北落叶松地理种源苗期生长与性状变异的分析.山西农业大学学报(自然科学版),1994,14(4):339-345.
    李文英,顾万春.蒙古栎天然群体表型多样性研究.林业科学,2005,17(1):19-25.
    李文英.蒙古栎天然群体遗传多样性研究.北京林业大学学位论文,2003.
    李因刚,周志春,金国庆,等.乳源木莲苗生长和形态的地理种源分化.林业科学研究,2007,20(1):35-39.
    李莹桥.山皂荚皂苷的提取工艺及其表面活性剂的性能分析.吉林农业大学,2011.
    李原园,张映.AFLP技术及其应用.国外畜牧学:猪与禽,2009,(6):94-96.
    梁静谊,安鑫南,蒋建新.皂荚化学组成的研究.中国野生植物资源,2003,22(3):44-46.
    廖久明,江小玲,何明华.皂角中活性剂的提取及性能评价.日用化学工业,2000,30(4):54-56.
    刘美正,郭忠武.皂苷研究新进展.天然产物研究与开发,1997,9(2):81-85.
    刘启慎,李建兴.低山石灰岩区不同植被水保功能的研究.水土保持学报,1994,8(1):78-83.
    娄永峰.雷竹不同变异类型的遗传多样性分析.浙江:浙江农林大学,2010.
    罗建勋,黄晓江.云杉天然群体的表型变异.东北林业大学学报,2003,31(1):9-11.
    马庆国.中国核桃品种的遗传多样性研究.北京中国林业科学研究院,2012.
    明军,顾万春.紫丁香表型多样性研究.林业科学研究,2006,19(2):199-204.
    彭幼芬.种子生理学.中南工业大学出版社,1994.
    任金保,杨春华.郑州市引种绒毛皂角试验初报.河南林业科技,1997,17(2):35-35.
    沈熙环.森林遗传育种资源的保存策略.林业科技开发,2007,21(3):1-4.
    史篮华,黎念林,金玲.秤锤树种子休眠与萌发的初步研究.浙江林学院学报,1999,16(3):228-233.
    唐进,汪发瓒.中国主要植物志图说——豆科.北京:科学出版社.1955.
    王崇云.植物交配系统与遗传资源的保护和持续利用.云南大学学报(自然科学版),1997,19:94-97.
    王明庥.林木遗传育种学.中国林业出版社,2001.
    王娅丽,李毅.祁连山青海云杉天然群体的种实性状表型多样性.林业科学,2008,32(2):355-362.
    王娅丽,李毅.陈晓阳.祁连山青海云杉天然群体表型性状遗传多样性分析.植物生态学报,2008,44(2):70-77.
    王娅丽.祁连山青海云杉天然群体表型性状遗传多样性分析.甘肃农业大学学位论文,2007.
    王正武,李干佐,李英.研究与开发皂荚素及其复配体系表面活性的研究.日用化学工业,2000,6:1-4.
    王中仁.等位酶分析的遗传学基础.生物多样性,1994,2(3):149-156.
    王中仁.植物等位酶分析.科学出版社,1996.
    徐本美,冯桂强,史晓华.7种硬实种子特性的研究.种子,2008,(6).
    徐道英.硫酸处理硬实种子效果研究(Ⅰ).贵州师范大学学报:自然科学版,1995,13(1):39-43.
    徐莉清,舒常庆.酸蚀处理促进盐肤木种子萌发的研究.华中农业大学学报,2007,26(2):243-245.
    阎爱民,陈文新.苜蓿,草木樨,锦鸡儿根瘤菌的表型多样性分析.生物多样性,1999,7(2):1-8.
    杨期和,尹小娟,叶万辉.硬实种子休眠的机制和解除方法.植物学通报,2006,23(1):108-118.
    姚永胜,马秀琴.银川地区皂角引种及造林试验.宁夏农林科技,1998,(6):34-35.
    袁绍西,颜桂芳,王鼎福.用石碱水处理皂荚种子效果好.江苏林业科技,1996,2:61.
    张风娟,徐兴友,孟宪东.皂荚种子休眠解除及促进萌发.福建林学院学报,2004,24(2):175-178.
    张宏利,韩崇选,杨学军.皂荚化学成分及杀鼠活性初步研究.西北农业学报,2005,14(4):117-120.
    张萍,金国庆,周志春,等.木荷苗木性状的种源变异和地理模式.林业科学研究,2004,17(2):192-198.
    赵博光.六种植物提取物对马尾松毛虫的抑食作用及毒性.南京林业大学学报,1994,18(2):73-78.
    赵罕.白皮松遗传资源评价及保存策略研究.北京:中国林业科学研究院,2012.
    赵志刚,郭俊杰,沙二.我国格木的地理分布与种实表型变异.植物学报,2009,44(3):338-344.
    郑健,李新凤,关楠.野生花卉多花胡枝子种子萌发特性.林业科学研究,2007,20(6):879-882.
    郑健,郑勇奇,宗亦尘.花楸树天然群体种实多样性研究.植物遗传资源学报,2009,10(3):385-391.
    郑健.花楸树遗传资源评价,保存与利用.北京:中国林业科学研究院,2008.
    郑晴霞,王凤翱.绒毛皂荚离体茎段培养及再生植株的细胞组织学研究.湖南农学院学报,1994,20(3):244-248.
    郑万钧.中国树木志.中国林业出版社,1983.
    郑勇奇.常规林木育种研究现状与发展趋势.世界林业研究,2001,14(3):10-17.
    周连第,兰彦平,韩振海.板栗品种资源分子水平遗传多样性研究.华北农学报,2006,21(3):81-85.
    周日宝,刘清平.皂荚属植物过氧化物同工酶和脂酶同工酶的研究.长沙电力学院学报(自然科学版),1994,2.
    周延清.遗传标记的发展.生物学通报,2000,35(5):17-18.
    朱莉伟,蒋建新.皂荚豆和日本皂荚豆氨基酸及脂肪酸组成分析.中国野生植物资源,2001,20(4):40-41.
    朱翔,李忠.2年生白桦种源的地理变异.东北林业大学学报,2001,29(6):7-10.
    竺利波,顾万春,李斌.紫荆群体表型性状多样性研究.中国农学通报,2007,23(3):138-145.
    庄程彬.山皂角是寒地围园最佳树种.现代农业,1997,11:14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700