用户名: 密码: 验证码:
Y型矩形管节点滞回性能与应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管结构具有外形美观、结构性能优越、施工工期短等多方面优点,因而在海洋平台、大跨度屋盖、输电线塔、高层建筑等土木工程领域得到广泛应用。钢管节点作为钢管结构的重要组成部分,其性能受到研究人员的长期关注。已完成的研究工作主要集中于钢管节点的静力及高周疲劳性能,并形成了成熟的静力及疲劳设计方法。但对钢管节点抗震性能的研究较少,造成目前在役钢管结构的抗震性能评估及新建钢管结构的抗震设计存在诸多不确定性。有鉴于此,为进一步完善钢管结构的研究和推广使用钢管结构,有必要深入研究钢管节点及钢管结构的抗震性能。本文对Y型矩形管-管节点和Y型纵向板-矩形管节点的滞回性能进行了试验、有限元和理论分析。具体内容如下:
     (1)进行了10个Y型矩形管-管节点及8个Y型纵向板-矩形管节点的拟静力试验。试验中发现,大多数节点在弦管表面沿某条关键点连线形成穿透裂缝后不久,即由于裂缝迅速扩展导致试验停止。据此提出可将弦管表面沿关键点连线形成穿透裂缝视作节点稳定工作阶段结束的标志,并根据节点稳定工作阶段性能对其滞回性能进行合理评价。试验节点的滞回曲线均比较饱满。通过试验研究了去应力退火处理和几何参数对节点稳定工作阶段滞回性能的影响。结果表明,退火后,节点的延性比及累积能量耗散比明显增大。随支弦管夹角增大,退火管-管节点的延性比略有减小,板-管节点的延性比、累积延性比及累积能量耗散比明显增大。随着弦管宽厚比减小,管-管节点的累积延性比及累积能量耗散比减小。随节点板有效厚度与弦管宽度比增大,板-管节点的延性比及累积能量耗散比增大。
     (2)基于双线性强化模型及简化的Lemaitre损伤模型,建立了考虑损伤演化的混合强化本构模型,通过编制有限元程序ANSYS的用户子程序实现。给出了利用单轴拉伸材料常数计算材料损伤参数的近似方法。采用此本构模型考虑材料损伤,对本文的节点试验进行了有限元模拟。与试验中节点开裂部位相对应,定义了三维有限元模型的关键体元和关键面域。基于损伤耗散能值,给出了有限元模型中关键部位形成穿透裂缝的判断方法,从而可预测节点的稳定工作寿命。模拟试验的结果表明,本文提出的考虑损伤的有限元法可用于分析Y型矩形管-管节点和Y型纵向板-矩形管节点稳定工作阶段的滞回性能。
     (3)采用有限元法分析了加载制度对Y型矩形管-管节点和Y型纵向板-矩形管节点稳定工作阶段滞回性能的影响,得出以下结论:1)在等幅对称加载时随位移幅值增大,节点的稳定工作寿命降低,管-管节点的累积延性比和累积能量耗散比先减小后增大,板-管节点的累积延性比减小,板-管节点的累积能量耗散比先增大后减小。2)若位移幅值不变,适当的受拉或受压平均幅值可以小幅提高管-管节点的稳定工作寿命,并导致管-管节点的累积延性比、累积能量耗散比增大;但受拉或受压平均幅值降低了板-管节点的稳定工作寿命,并导致板-管节点的累积延性比和累积能量耗散比减小。
     通过有限元分析,给出了稳定工作阶段滞回性能较好的节点几何参数范围,可供工程应用时参考。
     (4)基于有限元分析结果,提出了Y型矩形管-管节点和Y型纵向板-矩形管节点的简化恢复力模型,通过编制ANSYS程序的用户自定义单元子程序实现。采用自定义单元模拟本文的节点试验,得到的滞回曲线与考虑损伤的三维有限元模型计算所得曲线吻合较好。在对整体结构的抗震性能进行有限元分析时,采用自定义单元替代三维有限元模型来模拟节点的滞回行为可显著简化有限元建模及分析过程。
     (5)鉴于Y型矩形管-管节点和Y型纵向板-矩形管节点良好的滞回性能,提出了利用上述节点耗能的支撑体系。选取文献中单层单跨框架结构作为基本结构,采用含Y型矩形管-管节点的人字形管支撑对基本结构进行抗震加固,用有限元法分析了加固效果。与文献中采用的光面钢板剪力墙、带波纹钢板剪力墙、有无钢立柱约束屈曲的单斜方钢管支撑及有无钢立柱约束屈曲的X型钢杆支撑等六种支撑的加固效果相比,结果表明,尽管采用含管节点的支撑体系加固后结构的初始刚度偏低,但综合考虑加固后结构的变形能力、耗能能力和经济性能,发现含管节点的支撑体系加固效果较好,且加固后结构的耗能性能稳定。可见,本文提出的新型管支撑具有良好的应用前景。
Steel tubular structures are widely used in civil engineering fields such as offshore platforms, large span roofs, transmission line towers, and high-rise buildings for their advantages such as the graceful shape, structural efficiency, and short construction period. As an important part of the tubular structure, the tubular joint has been studied for a long time. Completed researches mainly focused on the static and high cycle fatigue properties of tubular joints, from which, static and fatigue design methods have been proposed. However, only a little research work on the seismic properties of tubular joints has been carried out, leading to many uncertainties in seismic performance assessment of in-service tubular structure and seismic design of new tubular structure. In view of those facts above and to improve the research on tubular structure and promote the application of tubular structure, it’s necessary to investigate the seismic properties of steel tubular joints and structures thoroughly. In this dissertation, hysteretic properties of Y-type rectangular hollow section (RHS) joints including RHS-to-RHS joints and longitudinal plate-to-RHS joints were analyzed by experimental, finite element (FE), and theoretical methods. The details are as follows:
     (1) Quasi-static tests of ten Y-type RHS-to-RHS joints and eight Y-type longitudinal plate-to-RHS joints were carried out. For most specimens, the rapid crack propagation led to the test termination, soon after the penetrating cracks formed which located along the curves connecting key points on the chord surface. Thus the formation of the penetrating cracks along the connecting curves of key points could be considered as the symbol of entering unsteady working stage for the joint. And the hysteretic properties of the joint were assessed based on the performance in the steady working stage. The hysteresis curves of tested joints are plump. The influence of stress relief annealing treatment and geometrical parameters on the tested joints’hysteretic properties in the steady working stage was analyzed. It is shown that annealing significantly increases the ductility ratio and the accumulative energy dissipation ratio of the joint. With increasing brace-to-chord angle, the ductility ratio decreases slightly for annealed RHS-to-RHS joint, while the ductility ratio, the accumulative ductility ratio, and the accumulative energy dissipation ratio increase dramatically for plate-to-RHS joint. With decreasing width-to-thickness ratio of the chord, the accumulative ductility ratio and the accumulative energy dissipation ratio decrease for RHS-to-RHS joint. With increasing ratio of the effective thickness of plate to the chord width, the ductility ratio and the accumulative energy dissipation ratio increase for plate-to-RHS joint.
     (2) Using bilinear hardening model and simplified Lemaitre’s damage model, a constitutive model considering mixed hardening and damage evolution was established and then incorporated into the ANSYS FE code through a user subroutine. Using material properties from the uniaxial tensile test, an approximate method for calculating the material damage parameters was proposed. Considering the material damage evolution using the constitutive model, the aforementioned experiments of the joints were numerically simulated. Corresponding to the cracking zones of the tested joints, key volumes and key areas of the three-dimensional FE model were defined. Based on the damage dissipation energy, the method for judging crack penetrating in key zones was proposed, by which the steady working life of the joint can be predicted. Results of simulating the tests show that the FE model considering material damage evolution can be used to analyze the hysteretic properties of Y-type RHS-to-RHS joint and Y-type longitudinal plate-to-RHS joint in the steady working stage.
     (3) The influence of loading program on the Y-type RHS-to-RHS joint’s and the Y-type longitudinal plate-to-RHS joint’s hysteretic properties in the steady working stage was analyzed using FE method. It is concluded that: 1) When symmetrical loads with constant amplitudes were applied, with increasing displacement amplitude, the steady working life of the joint decreases, the accumulative ductility ratio and the accumulative energy dissipation ratio of the RHS-to-RHS joint first decrease and then increase, the accumulative ductility ratio of the plate-to-RHS joint decreases, and the accumulative energy dissipation ratio of the plate-to-RHS joint first increase and then decrease. 2) Keeping the displacement amplitude constant, appropriate average amplitude in tension or compression leads to slight increase in the steady working life, the accumulative ductility ratio, and the accumulative energy dissipation ratio of the RHS-to-RHS joint. However, average amplitude in tension or compression leads to decrease in the steady working life, the accumulative ductility ratio, and the accumulative energy dissipation ratio of the plate-to-RHS joint.
     Using FE analysis, a range of geometrical parameters was given to obtain joints having superior hysteretic properties, which can be referenced in the engineering application.
     (4) Based on the results of the FE analysis, simplified restoring force model of the Y-type RHS-to-RHS joint and Y-type longitudinal plate-to-RHS joint was proposed, which was incorporated into the ANSYS FE code as a user-defined element through a user subroutine. The user-defined element was then used to simulate the experiments of joints carried out by the author. The calculated hysteresis curves agree well with the curves calculated by the three-dimensional FE model considering material damage evolution. In the FE analysis of the seismic behavior of the overall structure, it can significantly simplify the FE modeling and analysis to simulate the hysteresis behavior of the RHS joint using the user defined element instead of the three-dimensional FE model.
     (5) In view of the good hysteretic properties of the Y-type RHS-to-RHS joint and Y-type longitudinal plate-to-RHS joint, the RHS bracing system using these two types of joints to dissipate energy was proposed. A single-story, single-bay frame was chosen as the basic structure, which was retrofitted with the chevron RHS bracing system containing Y-type RHS-to-RHS joints. The retrofitting effect was investigated using FE method. Comparing to the properties of basic structures retrofitted with the steel plate shear wall (SPSW) with flat infill, the SPSW with corrugated infill, the single-diagonal RHS bracing member using steel studs to restrain brace against buckling, the single-diagonal RHS bracing member, the crossed-diagonal steel bracing members using steel studs to restrain braces against buckling, and the crossed-diagonal steel bracing members, the structure retrofitted with the bracing system containing RHS joints has better properties considering the deformation capacity, the energy dissipation capacity, and the economic performance synthetically, though it has lower initial stiffness relatively. Besides, the structure retrofitted with the bracing system containing RHS joints dissipated energy stably. Thus it can be seen that the application prospect of the RHS bracing system proposed by the author is bright.
引文
[1]沃登尼尔J.钢管截面的结构应用[M].张其林,刘大康译.上海:同济大学出版社,2004:1-184.
    [2]张耀春.吉林滑冰练习馆轻型钢结构设计[J].钢结构,1991,1:42-44.
    [3]付继飞.冷弯方形管桁架梁焊接工艺和质量控制[J].工业建筑,1995,25(5):45-48.
    [4]何家炎,高维元,刘赓启.跨度192m×146m方钢管网壳结构设计[J].空间结构,1997,3(4):34-38,63.
    [5]童乐为,王新毅,陈以一,等.国家体育场焊接方管桁架双弦杆KK型节点试验研究[J].建筑结构学报,2007,28(2):49-53,80.
    [6]建筑结构抗震高层钢结构分册编写组.建筑结构设计资料集5:建筑结构抗震高层钢结构分册[G].北京:中国建筑工业出版社,2010:255-283.
    [7]武振宇,张耀春.直接焊接钢管节点静力工作性能的研究现状[J].哈尔滨建筑大学学报,1996,29(6):102-109.
    [8]陈以一,陈扬骥.钢管结构相贯节点的应用与研究[J].工业建筑,2001(增刊):236-242.
    [9] Zhao X L, Wardenier J, Packer J A, et al. Current Static Design Guidance for Hollow-Section Joints[J]. Proceedings of the ICE-Structures and Buildings, 2010,163(6):361-373.
    [10]吴昌栋,陈云波.钢管结构在建筑工程中的应用[J].工业建筑,1997,27(2):10-15,24.
    [11] Kurobane Y, Makino Y, Ochi K. Ultimate Resistance of Unstiffened Tubular Joints[J]. Journal of Structural Engineering, 1984,110(2):385-400.
    [12] Bauer D, Redwood R G. Triangular Truss Joints Using Rectangular Tubes[J]. Journal of Structural Engineering, 1988,114(2):408-424.
    [13] Zhao X L, Hancock G J. T-Joints in Rectangular Hollow Sections Subject to Combined Actions[J]. Journal of Structural Engineering, 1991,117(8):2258-2277.
    [14] Lee M M K, Wilmshurst S R. Numerical Modelling of CHS Joints with Multiplanar Double-K Configuration[J]. Journal of Constructional Steel Research, 1995,32(3):281-301.
    [15] Lee M M K, Wilmshurst S R. Parameter Study of Strength of TubularMultiplanar KK-Joints[J]. Journal of Structural Engineering, 1996,122(8):893-904.
    [16] Lee M M K, Wilmshurst S R. Strength of Multiplanar Tubular KK-Joints under Antisymmetrical Axial Loading[J]. Journal of Structural Engineering, 1997,123(6):755-764.
    [17] Davies G, Crockett P. The Strength of Welded T-DT Joints in Rectangular and Circular Hollow Section under Variable Axial Loads[J]. Journal of Constructional Steel Research, 1996,37(1):1-31.
    [18] Cao J J, Packer J A, Yang G J. Yield Line Analysis of RHS Connections with Axial Loads[J]. Journal of Constructional Steel Research, 1998,48(1):1-25.
    [19] Cao J J, Packer J A, Kosteski N. Design Guidelines for Longitudinal Plate to HSS Connections[J]. Journal of Structural Engineering, 1998,124(7):784-791.
    [20] Dexter E M, Lee M M K. Static Strength of Axially Loaded Tubular K-Joints. I: Behavior[J]. Journal of Structural Engineering, 1999,125(2):194-201.
    [21] Dexter E M, Lee M M K. Static Strength of Axially Loaded Tubular K-Joints. II: Ultimate Capacity[J]. Journal of Structural Engineering, 1999,125(2):202-210.
    [22] Zhao X L. Deformation Limit and Ultimate Strength of Welded T-Joints in Cold-Formed RHS Sections[J]. Journal of Constructional Steel Research, 2000,53(2):149-165.
    [23] Rasmussen K J R, Young B. Tests of X- and K-Joints in SHS Stainless Steel Tubes[J]. Journal of Structural Engineering, 2001,127(10):1173-1182.
    [24] Rasmussen K J R, Hasham A S. Tests of X- and K-Joints in CHS Stainless Steel Tubes[J]. Journal of Structural Engineering, 2001,127(10):1183-1189.
    [25] Gazzola F, Lee M M K. Assessment of Strength Equations for Overlapped Tubular K-Joints[J]. Journal of Structural Engineering, 2002,128(1):119-124.
    [26] Kosteski N, Packer J A, Puthli R S. A Finite Element Method Based Yield Load Determination Proceduce for Hollow Structural Section Connections[J]. Journal of Constructional Steel Research, 2003,59(4):453-471.
    [27] Mashiri F R, Zhao X L. Plastic Mechanism Analysis of Welded Thin-Walled T-Joints Made up of Circular Braces and Square Chords under in-Plane Bending[J]. Thin-Walled Structures, 2004,42(5):759-783.
    [28] Qian X D, Choo Y S, Liew J Y R, et al. Static Strength of Thick-Walled CHS X-Joints Subjected to Brace Moment Loadings[J]. Journal of StructuralEngineering, 2007,133(9):1278-1287.
    [29] Gho W M, Yang Y. Parametric Equation for Static Strength of Tubular Circular Hollow Section Joints with Complete Overlap of Braces[J]. Journal of Structural Engineering, 2008,134(3):393-401.
    [30] Moazed R, Szyszkowski W, Fotouhi R. The in-Plane Behaviour and FE Modeling of a T-Joint Connection of Thin-Walled Square Tubes[J]. Thin-Walled Structures, 2009,47(6-7):816-825.
    [31] Bae K W, Park K S, Choi Y H, et al. Structural Resistance of Longitudinal Double Plates-to-RHS Connections[J]. Journal of Constructional Steel Research, 2009,65(4):940-947.
    [32] Feng R, Young B. Experimental Investigation of Cold-Formed Stainless Steel Tubular T-Joints[J]. Thin-Walled Structures, 2008,46(10):1129-1142.
    [33] Feng R, Young B. Tests and Behaviour of Cold-Formed Stainless Steel Tubular X-Joints[J]. Thin-Walled Structures, 2010,48(12):921-934.
    [34] Feng R, Young B. Design of Cold-Formed Stainless Steel Tubular T- and X-Joints[J]. Journal of Constructional Steel Research, 2011,67(3):421-436.
    [35]云大真,于万明,王喜闻,等. T型管节点的拟协调元的计算[J].计算结构力学及其应用,1989,6(1):217-224.
    [36]沈祖炎,张志良.焊接方管节点极限承载力计算[J].同济大学学报,1990,18(3):273-279.
    [37]张志良,沈祖炎,陈学潮.方管节点极限承载力的非线形有限元分析[J].土木工程学报,1990,23(1):12-22.
    [38]沈祖炎,罗永峰,陈扬骥.矩形钢管屋架的试验研究[J].钢结构,1995,10(27):58-61.
    [39]武振宇,张耀春.直接焊接T型钢管节点性能的试验研究[J].钢结构,1999,14(2):36-40.
    [40]武振宇,张耀春.曲壳有限元法中曲面交线处位移连续性问题的坐标转换法[J].哈尔滨建筑大学学报,1997,30(5):20-23.
    [41]贺东哲,王元清,李少甫.管节点承载力的非线性有限元分析[J].工程力学,2000,17(4):50-55.
    [42]刘建平,郭彦林.管节点弹塑性大挠度有限元分析[J].青海大学学报(自然科学版),2001,19(1):38-42.
    [43]武振宇,谭慧光,张耀春.不等宽T型方钢管节点的刚度计算[J].哈尔滨建筑大学学报,2002,35(5):13-16,27.
    [44]吴庆,周明智,张运涛. T、Y型方圆相贯管节点极限承载力有限元分析[J].淮南工业学院学报,2002,22(4):19-22.
    [45]陈以一,陈扬骥,詹琛,等.圆钢管空间相贯节点的实验研究[J].土木工程学报,2003,36(8):24-30.
    [46]武胜,武振宇.等宽K形间隙方管节点静力工作性能的研究[J].哈尔滨工业大学学报,2003,35(3):269-275.
    [47]方敏勇,郝际平. X型方管相贯节点极限承弯能力分析[J].重庆建筑大学学报,2003,25(6):43-45,57.
    [48]舒兴平,朱邵宁,夏心红,等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究[J].建筑结构学报,2004,25(3):8-13,37.
    [49]武振宇,张耀春.等宽T型方管节点静力工作性能与设计[J].土木工程学报,2004,37(4):23-28.
    [50]武振宇,张壮南,丁玉坤,等. K型、KK型间隙方钢管节点静力工作性能的试验研究[J].建筑结构学报,2004,25(2):32-38.
    [51]张壮南,武振宇,丁玉坤,等.弦杆轴向压力作用下K型、KK型间隙方管节点静力工作性能的试验研究[J].土木工程学报,2005,38(4):32-37.
    [52]丁玉坤,武振宇,张华山,等. K型、KK型搭接方管节点的试验研究[J].土木工程学报,2005,38(4):25-31.
    [53]吴文奇,卢晋福,吴耀华.考虑截面圆角效应的T型方管相贯节点静力承载力研究[J].钢结构,2005,20(2):21-25.
    [54]张君,武秀丽,白桂南.空间XK型圆钢管相贯节点极限承载力非线性有限元分析[J].钢结构,2005,20(4):18-21.
    [55]何小辉.节点刚度对方管空间三角形桁架静动力性能的影响[D].哈尔滨:哈尔滨工业大学学位论文,2007:1-78.
    [56]梁战场.直接焊接K型间隙矩形管节点轴向刚度研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:1-75.
    [57]邱国志.圆钢管X型相贯节点刚度及其对结构整体性能的影响[D].上海:上海交通大学学位论文,2008:1-188.
    [58]井司南.直接焊接K型、KK型圆钢管节点静力性能的有限元分析[D].哈尔滨:哈尔滨工业大学学位论文,2009:1-87.
    [59]崔国勇.几何参数对直接焊接KK型间隙方管节点静力性能影响的研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:1-88.
    [60]何金峰. X型钢管-板连接节点受力性能及X型相贯节点抗弯性能研究[D].重庆:重庆大学学位论文,2010:1-63.
    [61]陈誉,赵宪忠.平面KT型圆钢管搭接节点有限元参数分析与承载力计算[J].建筑结构学报,2011,32(4):134-141.
    [62] van Wingerde A M, Packer J A, Wardenier J. Criteria for the Fatigue Assessment of Hollow Structural Section Connections[J]. Journal of Constructional Steel Research, 1995,35(1):71-115.
    [63] Soh A K, Soh C K. A Parameric Stress Analysis of T/Y and K Square-to-Square Tubular Joints[J]. Journal of Constructional Steel Research, 1990,15(3):173-190.
    [64] Hellier A K, Connolly M P, Dover W D. Stress Concentration Factors for Tubular Y- and T-Joints[J]. International Journal of Fatigue, 1990,12(1):13–23.
    [65] Pang H L J, Lee C W. Three-Dimensional Finite Element Analysis of a Tubular T-Joint under Combined Axial and Bending Loading[J]. International Journal of Fatigue, 1995,17(5):313-320.
    [66] Chang E, Dover W D. Stress Concentration Factor Parametric Equations for Tubular X and DT Joints[J]. International Journal of Fatigue, 1996,18(6):363-387.
    [67] Chang E, Dover W D. Prediction of Stress Distributions along the Intersection of Tubular Y and T-Joints[J]. International Journal of Fatigue, 1999,21(4):361-381.
    [68] van Wingerde A M, Packer J A, Wardenier J. SCF Formulae for Fatigue Design of K-Connections between Square Hollow Sections[J]. Journal of Constructional Steel Research, 1997,43(1-3):87-118.
    [69] Morgan M R, Lee M M K. New Parametric Equations for Stress Concentration Factors in Tubular K-Joints under Balanced Axial Loading[J]. International Journal of Fatigue, 1997,19(4):309-317.
    [70] Chiew S P, Soh C K. Strain Concentrations at Intersection Regions of a Multiplanar Tubular DX-Joint[J]. Journal Of Constructional Steel Research, 2000,53(2):225-244.
    [71] Bian L C, Lim J K. Fatigue Strength and Stress Concentration Factors of CHS-to-RHS T-Joints[J]. Journal of Constructional Steel Research, 2003,59(5):627-640.
    [72] Nazari A, Guan Z, Daniel W J T, et al. Parametric Study of Hot Spot Stresses around Tubular Joints with Doubler Plates[J]. Practice Periodical on StructuralDesign and Construction, 2007,12(1):38-47.
    [73] Gao F, Shao Y B, Gho W M. Stress and Strain Concentration Factors of Completely Overlapped Tubular Joints under Lap Brace IPB Load[J]. Journal of Constructional Steel Research, 2007,63(3):305-316.
    [74] N’Diaye A, Hariri S, Pluvinage G, et al. Stesss Concentration Factor Analysis for Welded, Notched Tubular T-Joints under Combined Axil, Bending and Dynamic Loading[J]. International Journal of Fatigue, 2009,31(2):367-374.
    [75] Lotfollahi-Yaghin M A, Ahmadi H. Effect of Geometrical Parameters on SCF Distribution along the Weld Toe of Tubular KT-Joints under Balanced Axial Loads. International Journal of Fatigue, 2010,32(4):703-719.
    [76] Ahmadi H, Lotfollahi-Yaghin M A, Aminfar M H. Geometrical Effect on SCF Distribution in Uni-Planar Tubular DKT-Joints under Axial Loads. Journal of Constructional Steel Research, 2011,67(8):1282-1291.
    [77] Nwosu D I, Olowokere D O. Evaluation of Stress Intensity Factors for Steel Tubular T-Joints Using Line Spring and Shell Elements[J]. Engineering Failure Analysis, 1995,2(1):31-44.
    [78] Olowokere D O, Nwosu D I. Numerical Studies on Crack Growth in a Steel Tubular T-Joint[J]. International Journal of Mechanical Sciences, 1997,39(7):859-871.
    [79] Cao J J, Yang G J, Packer J A, et al. Crack Modeling in FE Analysis of Circular Tubular Joints[J]. Engineering Fracture Mechanics, 1998,61(5-6):537-553.
    [80] Lie S T, Lee C K, Chiew S P, et al. Validation of Surface Crack Stress Intensity Factors of a Tubular K-Joint[J]. International Journal of Pressure Vessels and Piping, 2005,82(8):610-617.
    [81] Bj?rk T, Heinil? S, Marquis G. Assessment of Subzero Fracture of Welded Tubular K-Joint[J]. Journal of Structural Engineering, 2008,134(2):181-188.
    [82] Lie S T, Yang Z M. Fracture Assessment of Damaged Square Hollow Section (SHS) K-Joint Using BS7910:2005[J]. Engineering Fracture Mechanics, 2009,76(9):1303-1319.
    [83] Kurobane Y. Static Behavior and Earthquake Resistant Design of Welded Tubular Structures[G]// Jármai K, Farkas J, Editors. Mechanics and Design of Tubular Structures. Wien(Austria):Springer-Velag, 1998:53-116.
    [84] Soh C K, Fung T C, Qin F, et al. Behavior of Completely Overlapped Tubular Joints under Cyclic Loading[J]. Journal of Structural Engineering, 2001,127(2):122-128.
    [85] Qin F, Fung T C, Soh C K. Hysteretic Behavior of Completely Overlap Tubular Joints[J]. Journal of Constructional Steel Research, 2001,57(10):811-829.
    [86]陈以一,沈祖炎,翟红,等.圆钢管相贯节点滞回特性的实验研究[J].建筑结构学报,2003,24(6):57-62.
    [87] Wang W, Chen Y Y. Hysteretic Behaviour of Tubular Joints under Cyclic Loading[J]. Journal of Constructional Steel Research, 2007,63(10):1384-1395.
    [88]武振宇,陈鹏,王渊阳. T型方管节点滞回性能的试验研究[J].土木工程学报,2008,41(12):8-13.
    [89]陈鹏.轴向力作用下T型方管节点滞回性能的试验研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:1-96.
    [90]高洋. K型间隙方管节点滞回性能的试验研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:1-78.
    [91]何远宾,郝际平,曾珂. T型、N型圆管相贯节点滞回性能实验[J].重庆大学学报,2008,31(7):730-734,739.
    [92] Yin Y, Han Q H, Bai L J, et al. Experimental Study on Hysteretic Behaviour of Tubular N-Joints[J]. Journal of Constructional Steel Research, 2009,65(2):326-334.
    [93]尹越,白林佳,韩庆华. N型圆钢管相贯节点滞回性能有限元数值分析[J].天津大学学报,2009,42(5):413-418.
    [94] Wang W, Chen Y Y, Meng X D, et al. Behavior of Thick-Walled CHS X-Joints under Cyclic Out-of-Plane Bending[J]. Journal of Constructional Steel Research, 2010,66(6):826-834.
    [95]陈以一,赵必大,王伟,等.平面KK型圆钢管相贯节点平面外受弯性能研究[J].土木工程学报,2010,43(11):8-16.
    [96]侯文景.板管连接方管节点滞回性能的有限元分析[D].哈尔滨:哈尔滨工业大学学位论文,2010:1-67.
    [97]高超.基于损伤的N型钢管节点静力与滞回性能研究[D].北京:北京交通大学学位论文,2010:1-75.
    [98] Shao Y B, Li T, Lie Seng T, et al. Hysteretic Behaviour of Square Tubular T-Joints with Chord Reinforcement under Axial Cyclic Loading[J]. Journal of Constructional Steel Research, 2011,67(1):140-149.
    [99]卡恰诺夫L M.连续介质损伤力学引论[M].杜善义,王殿富译.哈尔滨:哈尔滨工业大学出版社,1989:1-137.
    [100]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002:1-154.
    [101]Lemaitre J.损伤力学教程[M].倪金刚,陶春虎译.北京:科学出版社,1996:1-145.
    [102]Lemaitre J, Sermage J P. One Damage Law for Different Mechanisms[J]. Computational Mechanics, 1997,20(1-2):84-88.
    [103]Lemaitre J, Sermage J P, Desmorat R. A Two Scale Damage Concept Applied to Fatigue[J]. International Journal of Fracture, 1999,97(1-4):67-81.
    [104]Li Z X, Mroz Z. Damage Model for Viscoplastic-Softening Behavior: Cement Paste and Concrete[J]. Theoretical and Applied Fracture Mechanics, 1994,20(2):105-113.
    [105]Kumar S, Usami T. A Note on the Evalutation of Damage in Steel Structures under Cyclic Loading[J]. Journal of Structural Engineering, JSCE. 1994,40A:177-188.
    [106]Kumar S, Usami T. Damage Evaluation in Steel Box Columns by Cyclic Loading Tests[J]. Journal of Structural Engineering, 1996,122(6):626-634.
    [107]Jiang M W. A Damaged Evolution Model for Strain Fatigue of Ductile Metals[J]. Engineering Fracture Mechanics, 1995,52(6):971-975.
    [108]郝际平,陈绍蕃.钢结构在循环荷载作用下的局部屈曲和低周疲劳的试验研究[J].土木工程学报,1996,29(6):40-52.
    [109]郝际平,陈绍蕃.循环荷载作用下钢结构滞回性能的数值模型[J].西安建筑科技大学学报,1996,28(2):119-123,151.
    [110]Bonora N. On the Effect of Triaxial State of Stress on Ductility Using Nonlinear CDM Model[J]. International Journal of Fracture, 1997,88(4):359-371.
    [111]Shen Z Y, Dong B. An Experiment-Based Cumulative Damage Mechanics Model of Steel under Cyclic Loading[J]. Advances in Structural Engineering, 1997,1(1):39-46.
    [112]董宝.高层钢框架结构在多维地震作用下考虑损伤累积效应的弹塑性反应分析[D].上海:同济大学学位论文,1997:1-37.
    [113]陈荣毅.高层钢结构巨型结构体系的地震反应损伤累积研究[D].上海:同济大学学位论文,2000:1-75.
    [114]沈祖炎,沈苏.高层钢结构考虑损伤累积及裂纹效应的抗震分析[J].同济大学学报,2002,30(4):393-398.
    [115]Shen Z Y, Wu A H. Seismic Analysis of Steel Structures Considering Damage Cumulation[J]. Frontiers of Architecture and Civil Engineering in China,2007,1(1):1-11.
    [116]段忠东,欧进萍.金属材料的非线性疲劳累积损伤模型及强度衰减分析[J].应用力学学报,1998,15(3):104-109.
    [117]宋振森,顾强,苏明周.考虑混合强化和弹塑性损伤的有限元模型[J].西安交通大学学报,2000,34(11):95-98.
    [118]郑宏,俞茂宏,顾强.结构钢损伤本构关系的研究[J].计算力学学报,2001,18(4):469-472.
    [119]郑宏,顾强.钢板件考虑损伤的循环弹塑性大变形分析[J].土木工程学报,2001,34(5):35-39.
    [120]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41-49.
    [121]连尉安.焊接工字形钢支撑低周疲劳性能及其应用研究[D].哈尔滨:哈尔滨工业大学学位论文,2006:1-171.
    [122]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报,2007,40(8):29-34.
    [123]Belnoue J P, Nguyen G D, Korsunsky A M. A One-Dimensional Nonlocal Damage-Plasticity Model for Ductile Materials[J]. International Journal of Fracture, 2007,144(1):53-60.
    [124]Mashayekhi M, Ziaei-Rad S, Parvizian J, et al. Ductile Crack Growth Based on Damage Criterion: Experimental and Numerical Studies[J]. Mechanics of Materials, 2007,39(7):623-636.
    [125]Seal C K, Hodgson M A, Clifton G C, et al. A Novel Method for Predicting Damage Accumulation in Seismically Deformed Steel[J]. Journal of Constructional Steel Research, 2009,65(12):2157-2166.
    [126]Castiglioni C A, Pucinotti R. Failure Criteria and Cumulative Damage Models for Steel Components under Cyclic Loading[J]. Journal of Constructional Steel Research, 2009,65(4):751-765.
    [127]Mashayekhi M, Torabian N, Poursina M. Continuum Damage Mechanics Analysis of Strip Tearing in a Tandem Cold Rolling Process[J]. Simulation Modelling Practice and Theory, 2011,19(2):612-625.
    [128]Tarigopula V, Hopperstad O S, Langseth M, et al. An Evaluation of a Combined Isotropic-Kinematic Hardening Model for Representation of Complex Strain-Path Changes in Dual-Phase Steel[J]. European Journal of Mechanics - A/Solids, 2009,28(4):792-805.
    [129]Alfano G, Rosati L. A General Approach to the Evaluation of ConsistentTangent Operators for Rate-Independent Elastoplasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1998,167(1-2):75-89.
    [130]ANSYS, Inc. Theory Reference[R]. ANSYS, Inc.,2004.
    [131]郭力,李兆霞,陈志文.面向结构状态评估的多尺度损伤模型[J].东南大学学报(自然科学版),2010,40(5):1047-1051.
    [132]Safe Technology Limited. Fe-Safe Works, Volume 2-Fatigue Theory Reference Manual[R]. Safe Technology Limited,2003.
    [133]Owen D R J, Prakash A, Zienkiewicz O C. Finite Element Analysis of Non-Linear Composite Materials by Use of Overlay Systems[J]. Computers and Structures, 1974,4(6):1251-1267.
    [134]Berman J W, Celik O C, Bruneau M. Comparing Hysteretic Behavior of Light-Gauge Steel Plate Shear Walls and Braced Frames[J]. Engineering Structures, 2005,27(3):475-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700