用户名: 密码: 验证码:
竖向荷载对高层建筑结构侧向变形影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着研究工作的深入开展,高层建筑结构侧向变形的计算与控制越来越受到重视。然而,目前许多商用软件在计算混凝土高层建筑结构侧向变形时,忽视了竖向荷载对侧向变形的影响,或者只考虑了竖向荷载对结构侧向变形的不利影响(如P-Δ效应),对于竖向荷载可能限制竖向受力构件的裂缝开展,从而使其截面刚度比不考虑竖向荷载时大,侧向变形有可能比不考虑竖向荷载时小的情况却考虑不够。因此,计算出的侧向变形值有可能不够准确,影响了需要用侧向变形进行控制的设计。
     本文在查阅了大量文献资料的基础上,针对竖向荷载对高层建筑结构侧向变形的影响问题进行了研究,取得了以下主要成果:
     (1)完成了10根钢筋混凝土悬臂柱的试验,比较了有竖向荷载作用和无竖向荷载作用时侧向变形的变化,为本研究奠定了基础。
     (2)提出了钢筋混凝土压弯构件截面刚度的简化计算公式,反应了竖向荷载大小对钢筋混凝土压弯构件截面刚度的影响。
     (3)采用建议的钢筋混凝土压弯构件截面刚度的简化计算公式对钢筋混凝土柱的侧向变形进行了分析,计算值与试验结果吻合较好,并将其运用于重力二阶效应的简化计算。
     (4)根据王传志推荐的公式和国内外的试验结果,提出了钢筋混凝土竖向受力构件考虑竖向荷载影响的截面刚度理论简化计算公式和钢筋混凝土柱考虑竖向荷载作用时侧向变形的计算方法。
     (5)研究了竖向荷载对钢筋混凝土框架结构侧向变形的影响,得到了不同竖向荷载作用下楼层侧向变形的曲线特征,比较了不同参数对竖向荷载作用下侧向变形的影响程度。
     (6)探讨了竖向荷载对钢筋混凝土框架-剪力墙结构侧向变形的影响,建立了适宜的等代柱计算模型,考虑了剪力墙剪切变形的影响,对比了墙元模型和等代柱模型的计算结果。
     (7)分析了竖向荷载对钢筋混凝土框支剪力墙结构侧向变形的影响,总结了等代柱计算模型的优缺点,提出了适合于钢筋混凝土框支剪力墙结构的等代柱计算模型,考虑了剪力墙剪切变形和转换梁剪切变形的影响,比较了按等代柱模型与按墙元模型进行计算时侧向变形的差异。
     (8)研究了竖向荷载对带转换层高层钢筋混凝土结构静力弹塑性分析(Pushove分析)的影响,对一栋由本人主持设计的带转换层的混凝土高层结构进行了静力弹塑性分析,比较了考虑竖向荷载和不考虑竖向荷载对结构破坏过程的影响。
     (9)本文的试验和对各类高层混凝土结构的分析表明,在进行混凝土高层建筑结构的侧向变形计算时,应考虑竖向荷载的影响。
With the deep development of the research work, the calculation and control of lateral deformation of tall building structures become more and more important. However, the influence of vertical loads on the lateral deformation of tall building structures is neglected in many commercial computer softwares or only factors, such as the effect of P-△, which increases the lateral deformation, is considered when the lateral deformation is calculated. In fact, it can restrain crack developing, increases section stiffness of vertical elements and decreases lateral deformation of tall building structures.But those are always not considered. Thus, the calculated values of lateral deformation are not accurate and it affects the designs, when they are controlled by the lateral deformation.
     Based on a great number of literature, research works have been done as follows:
     (1)10 reinforced concrete cantilever columns were tested. The influences of vertical loads on lateral deformations are recorded and discussed.
     (2)A simplified formula of section stiffness on RC compression-bending members is proposed, which shows the effect of vertical load to section stiffness of RC compression-bending members.
     (3)Using the simplified formula proposed above, lateral deformations of some reinforced concrete columns are calculated. The calculation results coincide well with the test ones. The formula is applied to the calculation of gravity second order effect.
     (4)Based on the formula recommended by professor Wang Chuanzhi and the test results at home and abroad, a theoretical formula of section stiffness and the calculation method of lateral deformation on reinforced concrete compression- bending members are proposed.
     (5)The influence of vertical loads on RC frame structures is analyzed. Curve features of story displacement with different vertical loads are carried out. The influence degree of different factors to lateral deformation under vertical loads are compared. And blind spot of basic commercial computer software in deformation calculation is pointed out.
     (6)The influence of vertical loads on RC frame-shear wall structures is studied. A suitable model of equivalent column is established by considering the effect of shear deformation of shear walls, and the results of wall element model and equivalent column model are compared.
     (7)The influence of vertical loads on RC frame-supported shear wall structures is discussed. Comparing the advantages and disadvantages of different equivalent column models, and considering the effect of shear deformation of shear walls and transfer beams, a new equivalent column model for RC frame-supported shear wall structures is proposed. Similar results have been gotten after comparing this model and wall element model.
     (8)The influence of vertical loads on push-over analysis of tall reinforced concrete structures with transfer story is researched. A tall structure with transfer story designed by the author is analyzed through push-over method and the influence of vertical loads on lateral deformation is or is not considered.
     (9)The experimental and theoretical study indicates that the effect of vertical loads must be considered when lateral deformation of RC tall building structures is calculated.
引文
[1]杨志勇.高层建筑结构弹性阶段变形验算的研究:[哈尔滨建筑大学硕士学位论文] .哈尔滨:1999,1-32
    [2]刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版社,1993,9-57
    [3]张相庭.高层建筑抗风抗震设计计算.上海:同济大学出版社,1997,219-221
    [4]武藤清.结构物动力设计.滕家禄等.北京:中国建筑工业出版社,1984,1-75,136-181
    [5]赵西安.高层建筑结构实用设计方法.上海:同济大学出版社,1992,47-50,74-78,102-118
    [6] N.M.纽马克E.罗森布卢斯.地震工程学原理.叶耀先,蓝倜恩,钮泽蓁.北京:中国建筑工业出版社,1986,67-123
    [7] Ignacio Martin.高层建筑中侧向位移的限制.见:高层建筑结构概念与结构设计译文集.北京:中国建筑工业出版社,1988,121-132
    [8]包世华,方鄂华.高层建筑结构设计.第二版.北京:清华大学出版社,1990,25-40,189-242,440-456
    [9]钟益村,王文基,田家骅.钢筋混凝土结构房屋变形性能及容许变形指标.建筑结构,1984,(2):38-45
    [10]龚思礼,高小旺,汪颖富.建筑抗震设计新规范(89)讲评.北京:中国建筑工业出版社,1990,29-45
    [11] Farzad Naeim.抗震设计手册.王亚勇.原著第二版.北京:中国建筑工业出版社,2008,310-359,713-744
    [12]陈宇.带加强层框架-核心筒结构自由振动与抗震性能研究:[湖南大学硕士学位论文] .长沙:2008,131-136
    [13]夏心红.高层混合结构施工过程影响与动力性能研究:[湖南大学博士学位论文] .长沙:2008,57-78
    [14]徐培福.复杂高层建筑结构设计.北京:中国建筑工业出版社,2006,32-54,58-77,145-150,165-179
    [15]唐兴荣.特殊和复杂高层建筑结构设计.北京:机械工业出版社,2006,43-65,90-193,324-361
    [16] B.S.Smith, A.Coull. Tall Building Structures: Anslysis and Design. John Wiley & Son, Inc, 1991, 12-16,217-327,442-523
    [17] R.Rosman.Stability and Dynamics of Shear-Wall Frame Structures. Building Sciences, 1974,9:55-63
    [18] Charles Birnstiel, Jerome S.B. Iffland. Factors Influencing Frame Stability. Journal of the Structural Division,ASCE,1980,106(2):491-504
    [19] James G. MacGregor, Sven E. Hage. Stability Analysis and Design of Concrete Frames. Journal of the Structural Division,ASCE,1977,103(10):1953-1970
    [20] Robert J. Hansen, Erik H. Vanmarcke. Human Response to Wind-Induced Motion of Buildings. Journal of the Structural Division,ASCE,1973,99(7):1589-1605
    [21]杨志勇,何若全.高层、超高层建筑结构弹性阶段变形验算的研究.哈尔滨建筑大学学报,2001,34(5):14-18
    [22]方鄂华.高层建筑钢筋混凝土结构概念设计.北京:机械工业出版社,2004,150-155,190-191,223-224
    [23]沈蒲生.高层建筑结构设计.北京:中国建筑工业出版社,2006,30-33,81-86,161-163,208-225,262-291
    [24]王耀伟,黄宗明.对建筑结构抗震变形验算中层间位移角取值的认识.建筑结构,2006,36(7):21-24
    [25]郭子雄.高层RC结构小震下变形验算若干问题研究.华侨大学学报(自然科学版),1998,19(3):284-289
    [26]吕西林,王亚勇,郭子雄.建筑结构抗震变形验算.建筑科学,2002,18(1):11-15
    [27]梁兴文,邓明科,李晓文等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究.建筑结构,2006,36(7):15-20
    [28]钱稼茹,罗文斌.建筑结构基于位移的抗震设计.建筑结构,2001,31(4):3-6
    [29]魏琏.地震作用下建筑结构变形计算方法.建筑结构学报,1994,15(2):2-10
    [30] Regina Gaiotti, Bryan Stafford Smith. P-Delta Analysis of Building Structures. Journal of Structural Engineering,ASCE, 1989,115(4):755-770
    [31] Don Nixon, Denis Beaulieu, and Peter F. Adams. Simplified Second Order Frame Analysis. Can. J. Civ. Eng,1975,2(4):602-605
    [32] Rutenberg. A. Direct P-Delta Analysis Using Standard Plane Frame Computer Programs. COMP. & STRUCT,1981,14(1-2):97-102
    [33] Avigdor Rutenberg. Simplified P-Delta Analyses for Asymmetric Structures. Journal of the Structural Division,ASCE,1982,108(9):1995-2013
    [34]沈蒲生.高层建筑结构疑难释义.北京:中国建筑工业出版社,2003,1-2,29-34,90-101
    [35]方鄂华,钱稼茹,叶列平.高层建筑结构设计.北京:中国建筑工业出版社,2003,1-8,41-43,74-89
    [36]陈惠发.钢框架稳定设计.周绥平.上海:世界图书出版公司,1999,43-50,99-103,161-263
    [37]中华人民共和国建设部.高层建筑混凝土结构技术规程(JGJ 3-2002).北京:中国建筑工业出版社,2002,14-26,41-48
    [38]傅剑平,朱爱萍,陈小英等.框架高剪压比中间层中节点抗震性能试验研究.重庆建筑大学学报,2006,28(1):40-46
    [39]傅剑平,张川,陈滔等.钢筋混凝土抗震框架节点受力机理及轴压比影响的试验研究.建筑结构学报,2006,27(3):67-77
    [40]潘峰,简斌,王正霖.轴压比对竖向荷载下预应力混凝土框架的影响.重庆建筑大学学报,2004,26(6):44-48
    [41]陈道政,李爱群.钢筋混凝土柱轴压比限值控制的讨论.工业建筑,2002,32(8):75-76
    [42] Murat Saatcioglu,Salim R.Razvi.Displacement-Based Design of Reinforced Concrete Columns for Confinement.ACI Structural Journal,2002,99(1):3-11
    [43] Gill Wayne Douglas,Park R Priestley M J N.Ductility of rectangular reinforced concrete columns with axial load.Christchuch : Department of Civil Engineering,University of Canterbury,Christchuch,New Zealand,1979,131-152
    [44] Zhou Xiaozhen,Satoh Toshio,Jiang Weishan,et al.Behavior of reinforced concrete short column under high axial load.Transactions of the Japan Concrete Institute,1987,9(16):541-548
    [45]张国军,吕西林,刘伯权.钢筋混凝土框架柱在轴压比超限时抗震性能的研究.土木工程学报,2006,39(3):47-54
    [46]曹万林,范燕飞,张建伟等.不同轴压比下内藏钢桁架混凝土组合剪力墙抗震研究.地震工程与工程振动,2007,27(4):42-46
    [47]程文瀼,李爱群,张晓峰等.钢筋砼柱的轴压比限值.建筑结构学报,1994,15(6):25-30
    [48]范燕飞,曹万林,张建伟等.高轴压比下内藏钢桁架混凝土组合高剪力墙抗震试验研究.世界地震工程,2007,23(3):18-22
    [49]张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究.建筑结构学报,2006,27(1):90-98
    [50]薛峰.轴压比对SRC结构的影响.四川建筑科学研究,2007,27(5):120-123
    [51] E.L.Wilson , A.Habibullah.Static and Dynamic Analysis of Multi-StoryBuildings Including P-ΔEffects.Earthquake Spectra,1987,3(2):289-298
    [52] Siu Lai Chan. Geometric and material non-linear analysis of beam-columns and frames using the minimum residual displacement method. International Journal for Numerical Methods in Engineering,2005,26(12):2657-2669
    [53] Shamim Sheikh, Ching-Chung Yeh. Tied Concrete Columns Under Axial Load and Flexure. Journal of Structural Engineering,1990,116(10):2780-2800
    [54] Stathis N. Bousias, Guido Verzeletti, Michael N. Fardis et al. Load-Path Effects in Column Biaxial Bending with Axial Force. Journal of engineering mechanics,1995,121(5):596-605
    [55] Yan Xiao, Martirossyan. Seismic Performance of High-Strength Concrete Columns. Journal of Structural Engineering,1998,124(3):241-251
    [56] T. Paulay, R. Park, M. J. N. Preistley. Reinforced Concrete Beam-Column Joints Under Seismic Actions. ACI Journal Proceedings,1978,75(11):585-593
    [57] Kenneth J. Elwood Jack P. Moehle. Axial Capacity Model for Shear-Damaged Columns. ACI Structural Journal,2005,102(4):578-587
    [58] Ioannis D. Lefas, Michael D. Kotsovos Nicholas N. Ambraseys. Behavior of Reinforced Concrete Structural Walls: Strength, Deformation Characteristics, and Failure Mechanism. ACI Structural Journal,1990,87(1):23-31
    [59] Kenneth J. Elwood,Jack P. Moehle. Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement. Earthquake Spectra,2005,21(1):71-89
    [60] Emrah Erduran and Ahmet Yakut. Drift based damage functions for reinforced concrete columns. Computers & Structures,2004,82(2-3):121-130
    [61] J. P. Moehle, K. J. Elwood, and H. Sezen. Gravity Load Collapse of Building Frame During Earthquakes. ACI Special Publication,2002,197:215-238
    [62] Abraham C. Lynn, Jack P. Moehle, Stephen A. Mahin, et al. Seismic Evaluation of Existing Reinforced Concrete Building Columns. Earthquake Spectra,1996,12(4):715-739
    [63] NAKAMURA T, YOSHIMURA M. Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes. Journal of Architecture and Building Science,2002,117(1486):21-27
    [64] Halil Sezen and Jack P. Moehle. Shear Strength Model for Lightly Reinforced Concrete Columns. Journal of Structural Engineering, ASCE,2004,130(11):1692-1703
    [65] B. John Bett, Richard E. Klingner, and James O. Jirsa. Lateral Load Response ofStrengthened and Repaired Reinforced Concrete Columns. ACI Structural Journal,1988,85(5):499-508
    [66] M. J. Nigel Priestley, Ravindra Verma, and Yan Xiao. Seismic Shear Strength of Reinforced Concrete Columns. Journal of Structural Engineering, ASCE,1994,120(8):2310-2329
    [67] S. J. Pantazopoulou. Detailing for Reinforcement Stability in RC Members. Journal of Structural Engineering, ASCE,1998,124(6):623-632
    [68] Mattock, A.H., and Hawkins, N. Shear Transfer in Reinforced Concrete– Recent Research. Journal of Prestressed Concrete Institute,1972,17(2):55-75
    [69] H. Krawinkler, R. Medina and B. Alavi. Seismic drift and ductility demands and their dependence on ground motions. Engineering Structures,2003,25(5):637-653
    [70] H.Bachmann, T.Wenk, P.Linde. Nonlinear time history analysis of R/C frame-wall buildings to determine the ductility demand of gravity load columns.In: Proceedings of the Tenth World Conference on Earthquake Engineering.Madrid,Spain:A.A.BALKEMA/ROTTERDAM/BROOKFIELD,1994,6791-6809
    [71] Sashi K. Kunnath, Garret Hoffmann, Andrei M. Reinhorn, et al. Gravity-Load-Designed Reinforced Concrete Buildings--Part I: Seismic Evaluation of Existing Construction. Engineering Structures,2003,25(5):637-653
    [72] Attila Beres,Stephen P. Pessiki, Richard N et al. White. Implications of Experiments on the Seismic Behavior of Gravity Load Designed RC Beam-to-Column Connections. Earthquake Spectra,1996,12(2):185-198
    [73] Cosenza, E., Manfredi, G. | Verderame, G. M.. Seismic assessment of gravity load designed R.C. frames: critical issues in structural modelling. Journal of Earthquake Engineering,2002,6(1):101-122
    [74] H. Krawinkler, R. Medina and B. Alavi. Seismic drift and ductility demands and their dependence on ground motions. Engineering Structures,2003,25(5):637-653
    [75] Adel G. El-Attar, Richard N. White, and Peter Gergely. Behavior of Gravity Load Design Reinforced Concrete Buildings Subjected to Earthquakes. ACI Structural Journal,1997,94(2):133-145
    [76] Angelo Masi. Seismic Vulnerability Assessment of Gravity Load Designed R/C Frames. Bulletin of Earthquake Engineering,2003,1(3):371-395
    [77] Mohamed H. Harajli. Behavior of Gravity Load-Designed Rectangular Concrete Columns Confined with Fiber Reinforced Polymer Sheets. J. Compos. for Constr,ASCE,2005,9(1):4-14
    [78] Lee, Seok-Yong,Lee, Dong-Guen. Effects of gravity load on seismic response of multistorey buildings. Engineering Structures,1994,16(6):445-454
    [79] Chang-Ho Park , Dong-Guen Lee and Jin-Keun Kim. Effect of gravity load on seismic response of steel-framed structures. Engineering Structures,1997,19(6):439-451
    [80]钱稼茹,徐福江.钢筋混凝土剪力墙基于位移的变形能力设计方法.清华大学学报(自然科学版),2007,47(3):305-308
    [81]童申家,童岳生.风荷载及竖向荷载作用下框架的侧移二阶效应.建筑结构,2006,36(7):41-43
    [82]蒋利学.用广义剪切变形参数分析超高层混凝土结构的层间变形.建筑结构,2001,31(1):7-10
    [83]吴波,熊焱.一种直接基于位移的结构抗震设计方法.地震工程与工程振动,2005,25(2):62-67
    [84]傅光耀.巨型框架结构水平位移实用子结构算法.四川建筑科学研究,2006,32(4):106-110
    [85]王传志,滕智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985,340-365
    [86]中华人民共和国建设部.混凝土结构设计规范(GB 50010-2002).北京:中国建筑工业出版社,2002,99-111
    [87]国家建委建筑科学研究院.钢筋混凝土结构研究报告选集.北京:中国建筑工业出版社,1977,237-289
    [88]张明,孟焕陵,沈蒲生.考虑轴压比影响时框架侧移计算的试验及理论研究.建筑结构学报,2007,28(6):191-197
    [89]张明,沈蒲生,孟焕陵等.考虑轴压比影响时框架稳定性的刚重比控制方法.湖南大学学报(自然科学版),2007,34(12):6-10
    [90] Bryan Stafford Smith. Modified Beam Method for Analyzing Symmetrical Interconnected Shear Walls. ACI Journal Proceedings,1970,67(12):977-980
    [91] Amiya K. Basu, Ashok K. Nagpal. Frame-Wall Systems with Rigidly Jointed Link Beams. Journal of the Structural Division,ASCE,1980,106(5):1175-1190
    [92] B. Stafford Smith and Amal Girgis. Simple Analogous Frames for Shear Wall Analysis. Journal of Structural Engineering, ASCE,1984,110(11):2655-2666
    [93]沈蒲生.高层建筑结构设计例题.北京:中国建筑工业出版社,2005,34-404
    [94]汪大绥,贺军利,芮明倬等.带有剪力墙(筒体)结构静力弹塑性分析方法与应用.建筑结构,2006,36(7):3-7
    [95]汪大绥,贺军利,张凤新.静力弹塑性分析(Pushover Analysis)的基本原理和计算实例.世界地震工程,2004,20(1):46-53
    [96]龚胡广,方辉,沈蒲生.框筒结构的简化分析方法.建筑结构,2006,36(7):79-82
    [97]崔鸿超.框筒(筒中筒)结构的简化计算方法.建筑结构学报,1982,(6):38-50
    [98]中国建筑科学研究院建筑结构研究所.高层建筑转换层结构设计及工程实例.北京:中国建筑工业出版社,1993,1-126
    [99]赵西安.现代高层建筑结构设计.北京:科学出版社,2000,148-203,937-1160
    [100]唐兴容.高层建筑转换层结构设计与施工.北京:中国建筑工业出版社,2002,27-48,160-176
    [101]沈蒲生,刘杨.水平地震作用下框支剪力墙结构的变形研究.建筑科学与工程学报,2005,22(1):58-63
    [102]张同亿,李从林,王忠礼.框支剪力墙结构简化分析的超元法.建筑结构,2001,31(1):37-39
    [103]李国胜.关于底部大空间剪力墙结构的转换层设计.建筑结构,2001,31(7):39-42
    [104]徐培福,王翠坤,郝锐坤等.转换层设置高度对框支剪力墙结构抗震性能的影响.建筑结构,2000,30(1):38-42
    [105]M.Saiidi, M.A.Sozen. Simple Nonlinear Seismic Analysis of R/C Structures. Journal of the Structural Division, 1981,107(6):937-963
    [106]P.Fajfar, P.Gaspersic. The N2 Method for The Seismic Damage Analysis of RC Buildings. Earthquake Engineering & Structural Dynamics, 1996, 26(1):31-46
    [107]H.Krawinkler, G.D.P.K.Seneviratna. Pros and Cons of A Pushover Analysis of Seismic Performance Evaluation. Engineering Structures, 1998, 20(4-6):462-464
    [108]小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构,2000,30(6):3-9
    [109]M.Ozaki, T.Yzuhata.延性建筑考虑非弹性变形限值基于性能的抗震设计简化方法.建筑结构,2000,30(6):10-13
    [110]A.K.Chopra, R.K.Goel.A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings. Earthquake Engineering & Structural Dynamics, 2001, 31(3):661-682
    [111]C.Chintanapakdee, A.K.Chopra. Evaluation of Modal Pushover Analysis Using Generic Frames. Earthquake Engineering & Structural Dynamics, 2003, 32(3):417-442
    [112]R.K.Goel,A.K.Chopra.Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings. Earthquake Spectra, 2004, 20(1):226-264
    [113]C.Chintanapakdee , A.K.Chopra.Seismic Response of Vertically Irregular Frames: Response History and Modal Pushover Analysis. Journal of Structural Engineering, 2004, 130(8):1177-1186
    [114]杨溥,李英民,王亚勇等.结构静力弹塑性分析(push-over)方法的改进.建筑结构学报,2000,21(1):44-60
    [115]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-43
    [116]叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进.合肥工业大学学报,2000,23(2):149-163
    [117]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具.建筑结构,2000,30(6):23-26
    [118]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学,2001,17(6):8-13
    [119]魏巍,冯启民.几种push-over分析方法对比研究.地震工程与工程振动,2002,22(4):66-73
    [120]侯爱波,汪梦甫,周锡元.Pushover分析方法中各种不同的侧向荷载分布方式的影响.世界地震工程,2007,23(3):120-128
    [121]李峻,叶燎原.Push-over分析法中及其与非线性动力分析法的对比.世界地震工程,1999,16(2):34-39
    [122]方鄂华,何国松,容柏生等.广州天王中心大厦弹塑性地震反应分析.建筑结构学报,2000,21(6):10-16
    [123]叶献国.多层建筑结构的抗震性能的近似评估-改进的能力谱方法.工程抗震,1998,12(4):9-14
    [124]王理,王亚勇,程绍革.空间结构非线性静力分析的工程应用.建筑结构学报,2000,21(1):67-62
    [125]陈宇,张明,沈蒲生.带加强层框架—核心筒结构的Pushover分析.工程抗震与加固改造,2008,30(6),33-40
    [126]朱杰江,吕西林,王震波.带加强层框架-芯筒结构的非线性推覆分析.上海大学学报(自然科学版),2003,9(6):446-460
    [127]陈伏立. Pushover法评估已建建筑结构的抗震性能:[福州大学硕士学位论文].福州:福州大学,2003,10-34,67-68
    [128]汪梦甫,周锡元.高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究.土木工程学报,2003,36(11):44-49
    [129]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进.工程力学,2003,20(4):46-49
    [130]朱杰江,吕西林,容柏生.高层混凝土结构重力二阶效应的影响分析.建筑结构学报,2003,24(6):38-43
    [131]毛建猛,谢礼立,翟长海.模态pushover分析方法的研究和改进.地震工程与工程振动,2006,26(6):60-66
    [132]杨克家,梁兴文,李波.带加强层超高层结构受力性能研究及设计建议.建筑结构,2008,38(2):111-116
    [133]周旭,黄咏政,尹华钢等.罕遇地震作用下钢筋混凝土结构的静力弹塑性分析.建筑结构,2007,37(4):26-63
    [134]梁兴文,邓明科,李晓文等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究.建筑结构,2006,36(7):16-20
    [135]罗永峰,宋怀金,王朝波等.高宝大厦巨型框筒结构静力弹塑性(Pushover)分析.结构工程师,2007,23(6):6-9
    [136]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97
    [137]种迅,孟少平.钢筋混凝土框架结构全过程pushover分析.地震工程与工程振动,2006,26(1):38-42
    [138]程绍革,王理,张允顺.弹塑性时程分析方法及其应用.建筑结构学报,2000,21(1):62-66
    [139]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究.地震工程与工程振动,2006,26(1):58-66
    [140]F.X.Wang, J.P.Ou. Pushover Analysis Procedure for Systems Considering SSI Effects Based on Capacity Spectrum method. Earthquake Engineering and Engineering Vibration,2007,6(3):269-279
    [141]田颖,钱稼茹,刘凤阁.在用RC框架结构基于位移的抗震性能评估.建筑结构,2001,31(7):63-69
    [142]袁波.基于位移的结构弹塑性地震反应简化分析方法的研究:[华侨大学硕士学位论文].泉州:华侨大学,2004,68-76
    [144]龚思礼.建筑抗震设计守则(第二版).北京:中国建筑工业出版社,2002,245-249
    [145]Applied Technology Council(ATC). Seismic evaluation and retrofit of Concre-te Buildings. Rep. No. ATC-40, Redwood City,Calif,1996,78-90
    [146]Building Seismic Safety Council. NEHRP Guide- lines for the Seismic Re- habilitation of Buildings. FEMA 273, Federal Emergency Management Agency. Washington, D.C. 1997,1-8
    [147]Fajfar P. Capacity Spectrum method Based on inelastic demand Spectra. Earthquake Engineering and Structure Dynamics,1999,28:979-993
    [148]Fajfar P. A Nonlinear Analysis Method for Performance-Based Seismic Design. Earthquake Spectra,2000,16(3):573-592
    [149]Chopra A K, Goel R K. Capacity-demand-diagram methods based on inelastic design spectrum. Earthquake Spectra, 1999, 15(4):637–656
    [150]忻鼎康.超高层混凝土结构的层间变形限制.建筑结构学报,2000,6(3):10-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700