用户名: 密码: 验证码:
变形假单胞菌吸附镉的机制及其吸附条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文概述了水体重金属污染的危害及污染现状,描述了现阶段重金属废水的主要处理方法,并介绍了生物吸附剂的种类和来源、生物吸附的影响因素、生物吸附的机理及生物吸附剂的应用等方面的研究进展。
     由于长期的环境选择及适应进化,处在重金属污染环境中的微生物对重金属离子都具有一定的抗性。因此,利用这一特性,实现微生物对重金属废水的净化及对水体重金属污染的修复已成为环境保护领域的一个研究热点。本课题分离筛选到一株抗镉变形假单胞菌C-18,对该菌的抗镉机制及影响其吸附镉离子的各种理化因素,开展了系统的基础研究,主要包括以下工作:
     1.采用含Cd(Ⅱ)的选择性培养基成功地从16株抗汞菌株中分离筛选出一株具有较强抗镉能力的细菌,在含Cd(Ⅱ)浓度为900mg/L的液体培养基中和Cd(Ⅱ)浓度1600mg/L的平板上能够正常生长。从形态特征、生理生化特征及分子生物学方面对该菌进行了分类鉴定,初步鉴定为变形假单菌,并构建了系统发育树。
     2.通过对培养基的成分进行优化,采用糖蜜和酵母膏为主要营养,培养24h,变形假单胞菌C-18生物量OD600可达4.8左右。
     3.以该菌株做为生物吸附剂,研究了理化因素对该菌吸附Cd(Ⅱ)的影响,并通过正交实验优化确定了最佳吸附条件。在吸附剂浓度1.2g/L、Cd(II)初始浓度100mg/L、菌龄24h、pH7.0、温度30℃、转速200r/min的条件下,吸附12h,对Cd(Ⅱ)的吸附率和吸附量分别达到88.8%和74mg/g。
     4.吸附Cd(Ⅱ)的C-18菌体采用0.1mol/LHC1解吸30min,解吸率在80%以上
     5.变形假单胞菌C-18对Cd(Ⅱ)的吸附可分为快速吸附和缓慢吸附二个阶段,在吸附过程的前30min时,吸附率可达总吸附率的90%左右,吸附12h达到平衡。该菌对Cd(Ⅱ)的吸附模型符合Langmuir和Freundlich等温吸附模型。吸附Cd(Ⅱ)的动力学模型与假二级动力学模型吻合。
     6.SEM显示吸附Cd(Ⅱ)后的C-18菌体细胞表面粗糙有褶皱,可见沉积物。吸附Cd(Ⅱ)前后菌体的红外光谱(FTIR)分析表明,C-18菌体表面的活性基团参与Cd(Ⅱ)的络合反应。电感耦合等离子发射光谱仪分析C-18吸附Cd(Ⅱ)后的菌体消解液和上清液中Cd(Ⅱ)浓度,发现两者浓度之和接近于溶液初始Cd(Ⅱ)浓度。比较死菌吸附剂和活菌吸附剂对Cd(Ⅱ)的吸附效果,结果显示,二者的吸附率相当。均说明变形假单胞菌C-18对Cd(Ⅱ)的吸附机制属于被动吸附,是通过细胞壁上官能团的络合作用将Cd(Ⅱ)沉积在细胞表面。
This paper summarized the harmfulness and the present situation of water heavy metal pollution. The main technology for treatments of wastewater containing heavy metal at this stage was described. The types and sources of biosorbent, the factors of affecting on the heavy metal adsorption, the mechanism of adsorption, the biosorption mechanism and the application of biosorbent were aslo introduced.
     As the long-term environmental selection and adaptive evolution, microorganisms grown in the environment of heavy metal pollution are able to tolerate heavy metals. Therefore, It has become a hot research topic of environmental protection that to purify the heavy metal wastewater and to repair the heavy metal pollution by taking use of the remarkable property of microorganisms.One strain named Pseudomonas plecoglossicida C-18 with great efficiency of cadmium resistance was successfully screened in our study. The basic research was carried out systematically on the bacteria anti-cadmium mechanism and various physical and chemical factors affecting biosorption on Cd(Ⅱ).The main content of this study are as follows:
     1.A stain with strong ability to resistance cadmium was successfully isolated from 16 anti-mercury stains by the selected medium with Cd(Ⅱ).The strain could grow normally in the Cd (Ⅱ) concentration of 900mg/L of liquid medium and Cd(Ⅱ) concentration of 1600mg/L Cd(Ⅱ) of the plate respectively.Cell morphology and structure,physiology, biochemistry and molecular biology of the bacteria were classified. The strain C-18 was initially identified as Pseudomonas plecoglossicida and the phylogenetic tree was structured.
     2.By optimizing the medium composition, using the molasses and yeast extract as the main nutrition, under training of 24h, the value of OD600 stands for the biomass of strain C-18 reached to about 4.8.
     3.The strain C-18 served as biosorbent to study the impact of the physical and chemical factors on bacteria adsorbed Cd (Ⅱ) and verify the optimum adsorption conditions by optimizing orthogonal experiments.Nurturing by the condition of Concentration in the adsorbent 1.2g/L, Cd (Ⅱ) the initial concentration of 100mg/L, strain age 24h, pH7.0, temperature 30℃, speed 200r/min conditions, the adsorption 12h, the Cd (Ⅱ) adsorption rate and adsorption capacity achieved respectively 88.8%,and 74mg/g.
     4.By Adsorption of Cd (Ⅱ) in the C-18 cell with O.lmol/LHC1 desorption 30min, The desorption rate exceeded 80%.
     5.Pseudomonas C-18 with Cd (Ⅱ) adsorpted can be divided into fast adsorption and slow adsorption stage, in the first 30min of the adsorption process, the adsorption rate could reach 90%of the total absorption rate, and the adsorption achieved balance within 12h.Pseudomonas C-18 on the Cd (Ⅱ) Langmuir adsorption model and Freundlich isotherm consistent with adsorption model. The dynamic model of adsorption of Cd (Ⅱ) consistent with the pseudo-second order kinetic model.
     6. Bacterial cells of Pseudomonas C-18 with adsorpted Cd (Ⅱ) appeared rough surface with folds mixed up with sediment can be showed by SEM. Adsorption of Cd (Ⅱ) bacteria before and after FTIR analysis showed that, hydroxyl, amide, carboxyl on C-18 cell surface and other active groups involved in Cd (Ⅱ) in the complex reaction. Inductively coupled plasma emission spectrometry (ICP) analysed the concentration in the digestion solution and the supernatant cell after Pseudomonas C-18 adsorbed Cd (Ⅱ), which was found the total concentration is equal to the solution concentration of Cd (Ⅱ). The results of Comparing dead cells and viable adsorbent adsorbent Cd (Ⅱ) adsorption effects shows that both the adsorption rate is equivalent. Which indicates the adsorption of Cd (Ⅱ) by Pseudomonas C-18 belongs to passive adsorption, as a result of Cd (Ⅱ) deposited on the cell surface through the complexation of functional groups on the cell surface.
引文
[1]季学李.大气污染控制工程[M].同济大学出版社,1992.
    [2]马少健,李长平,等.重金属废水处理技术进展[J].云南环境科学,2004,23(3):54-57.
    [3]鲁栋梁,夏璐,等.重金属废水处理方法与进展[J].化工技术与开发,2008,37(12):32-36.
    [4]蒲瑞丰,康尔泗,等.黑河流域农业土壤重金属人为污染的富集因子分析[J].干旱区资源与环境,2007,21(5):108-111.
    [5]安媛,王林,等.铅污染及其防治措施[J].内蒙古水利,2008,(4):12-12.
    [6]雷兆武,孙颖,等.含铜废水处理技术现状[J].中国环境管理干部学院学报,2009,19(1):61-62.
    [7]杨振宁.三峡库区重庆段汞污染现状分析[J].重庆师范大学学报自然科学版,2008,25(3):13-16.
    [8]陈荷生,宋祥甫,等.太湖流域水环境综合整治与生态修复[J].水利水电科技进展,2008,28(3):76-79.
    [9].吕文英,汪玉娟.北江底泥中重金属污染特征及生态危害评价[J].中国环境监测,2009,3:69-72.
    [10]滑丽萍,华珞,等.中国湖泊底泥的重金属污染评价研究[J].土壤,2006,38(4):366-373.
    [11]曹斌,何松洁,等.重金属污染现状分析及其对策研究[J].中央民族大学学报自然科学版,2009,1:29-33.
    [12]覃志英,唐振柱,等.广西5城市农产品铅镉污染分析[J].中国公共卫生,2007,23(1):124-125.
    [13]王立,于笑宇,等.宁波市2005年菜篮子食品中铅镉污染调查[J].上海预防医学,2006,18(10):495-496.
    [14]陈华,吴德军,等.工业园区重金属废水污染控制分析[J].污染防治技术,2009,22(1):12-14.
    [15]帅俊松,王琳,等.浅论重金属污染对人体健康的影响及对策[J].环境与开发, 2001,16(4):62-62.
    [16]周舒.有害金属元素之三——汞[J].中老年保健,2000,(3):12-13.
    [17]徐蕴,程欣,等.环境汞污染对人体健康的影响[J].江苏预防医学,2006,17(3):85-86.
    [18]张燕萍,颜崇淮,等.环境中汞污染来源,人体暴露途径及其检测方法[J].广东微量元素科学,2004,11(6):11-15.
    [19]王云彩.汞污染对人体健康的危害[J].生活与健康,2004(3):21-23.
    [20]叶寒青,杨祥良,等.环境污染物镉毒性作用机理研究进展[J].广东微量元素科学,2001,8(3):9-12.
    [21]Chi en HF., Kao CH., Accumulation of ammonium in rice leaves in response to excess cadmium[J]. Plant science(Limerick),2000,156(1):111-115.
    [22]张铣,薛彬,等.镉免疫毒性机理的初步探讨[M].中国环境科学,1999,19(6):530-535.
    [23]徐培娟,古桂雄,等.环境镉对健康及生殖的危害[M].国外医学:妇幼保健分册,2004,15(1):35-37.
    [24]Leborans G.., Novillo A., Toxicity and bioaccumulation of cadmium in Olisthodiscus luteus (Raphidophyceae)[J]. Water Research,1996,30(1):57-62.
    [25]Nomiyama K., Nomiyama H., Cadmium-induced renal dysfunction:new mechanism, treatment and prevention[J]. The Journal of Trace Elements in Experimental Medicine,1998,11(2-3):275-288.
    [26]陈静生,周家义.中国水环境重金属研究[M].中国环境科学出版社,1992,
    [27]邱廷省,成先雄,等.含镉废水处理技术现状及发展[J].四川有色金属,2002,(4):38-41.
    [28]李伟,张建新,等.黄石市罗桥地区土壤镉污染的环境地球化学特征[J].地质与资源,2006,15(3):222-226.
    [29]Srinivasa Gowd S., Govil P., Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu, India[J]. Environmental Monitoring and Assessment,2008,136(1):197-207.
    [30]Kashem M., Singh B., Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh[J]. Water, Air,& Soil Pollution,1999,115(1): 347-361.
    [31]Cabala J., Teper L., Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in Southern Poland[J]. Water, Air,& Soil Pollution,2007,178(1): 351-362.
    [32]Raj S., Jayaprakash M., Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India[J]. Environmental Geology,2008,56(1):207-217.
    [33]McGee C., et al., Cd, Ni, Pb, and Zn concentrations in forest vegetation and soils in Maine[J]. Water, Air,& Soil Pollution,2007,180(1):141-153.
    [34]陈旭耀.氢氧化镁在重金属离子废水中的应用探析[J].科技资讯,2009,6:115-115.
    [35]姜述芹,周保学,等.氢氧化镁处理含镉废水的研究[J].环境化学,2003,22(6):601-604.
    [36]李军.铁氧化沉淀法处理重金属废水[J].电镀与环保,1999,19(1):30-31.
    [37]孙英,杨建男,等.铁氧体法处理含铬和隔废水及其含量测定[J].实验技术与管理,2000,17(4):75-79.
    [38]鲁栋梁,夏璐,等.铁氧体法处理含铜,锌,镉重金属废水的实验研究.金属矿山,2009,2:154-156.
    [39]曾祥峰,王祖伟,等.乙酸-铁氧体共沉法处理城市污泥中的重金属[J].环境科学与技术,2009,32(1):143-146.
    [40]周定.新型螯合树脂—木梢柠檬酸酯的合成及其应用[J].环境化学,1984,3(6):30-35.
    [41]蒋建国,王伟,等.重金属废水处理药剂的开发与应用实验研究[J].大连铁道学院学报,1998,19(2):10-13.
    [42]朱霞萍,汪模辉,等.阴离子交换树脂分离富集水中痕量镉[J].离子交换与吸附,2006,22(3):268-272.
    [43]Wang F., Wang LJ., Adsorption behavior and mechanism of cadmium on strong-acid cation exchange resin[J]. Transactions of Nonferrous Metals Society of China,2009. 19(3):740-744.
    [44]吴冬梅,胡城翠,等.新型螯合树脂在线预富集测定海水中痕量Cd[J].分析试 验室,2008,27(9):18-21.
    [45]杨胜科,费晓华,等.海泡石处理含镉废水技术研究[J].化工矿物与加工,2004,33(9):16-17.
    [46]张延安,杨欢,等.用壳聚糖絮凝剂处理含镉(Ⅱ)废水[J].东北大学学报自然科学版,2001,22(5):547-549.
    [47]张延霖,张秋云,等.改性淀粉在低浓度含镉废水处理中的应用实验[J].化工学报,2009,2:460-464.
    [48]罗太安,刘晓东,等.改性膨润土对Cd(Ⅱ)的吸附性能研究[J].环境工程,2005.23(001):80-81.
    [49]王璞,闵小波,等.含镉废水处理现状及其生物处理技术的进展[J].工业安全与环保,2006,32(8):14-17.
    [50]许柯,曾光明.胶团强化超滤处理含镉废水[J].膜科学与技术,2006,26(5):76-80.
    [51]柳畅先,简华丹,等.乳状液膜法分离水中镉[J].分析科学学报,2006,22(5):579-581.
    [52]王岩,王玉军,等.中空纤维膜萃取镉离子的研究[J].化学工程,2002,30(5):62-65.
    [53]Sadaoui Z., Azoug C., et al., Surfactants for separation processes:enhanced ultrafiltration[J]. Journal of environmental engineering,1998,124(8):695-700.
    [54]刘新芳,张晓宇,等.醋酸纤维素组合液膜迁移Cd2+的研究[J].河南师范大学学报自然科学版,2008,36(2):88-91.
    [55]王骋,姚秉华,等.重金属镉离子的支撑液膜分离研究[J].水处理技术,2004,30(5):266-269.
    [56]张建梅,韩志萍,等.重金属废水的治理和回收综述[J].湖州师范学院学报,2002,24(3):48-52.
    [57]呼庆,齐鸿雁,等.强抗镉蜡状芽孢杆菌的分离鉴定及其抗性机理[J].环境科学,2007,28(2):427-430.
    [58]刘爱民,黄为一.耐镉菌株的分离及其对Cd2+的吸附富集[J].应用与环境生物学报,2006,26(1):91-95.
    [59]杨晶.柠檬酸杆菌吸附重金属镉的研究[J].水处理技术,2009,5:64-66.
    [60]夏彬彬,魏德州,等.胶质芽孢杆菌对Zn2+,Cd2+的生物吸附[J].生物技术,2008,18(3):80-84.
    [61]丁建南,朱若林,等.喜温嗜酸硫杆菌YN12菌株的鉴定及其镉抗性能[J].中国有色金属学报,2008,18(2):342-348.
    [62]Rehman A., Sohail Anjum M., Cadmium Uptake by Yeast, Candida tropicalis, Isolated from Industrial Effluents and Its Potential Use in Wastewater Clean-Up Operations[J]. Water, Air,& Soil Pollution,2010,4(205):149-159.
    [63]苗晨,邓书平,等.正交方法研究改性啤酒酵母吸附处理含镉废水[J].科学技术与工程,2009,7:2001-2004.
    [64]徐惠娟,龙敏南,等.啤酒酵母生物吸附镉的研究[J].工业微生物,2004,34(2):10-14.
    [65]李清彪,刘刚,等.黄孢展齿革菌对镉离子的吸附[J].离子交换与吸附,2001,17(6):501-506.
    [66]应娇妍,袁红莉,等.一株茎点霉菌的抗镉机制[J].中国环境科学,2003,23(6):575-578.
    [67]郭银松.论废水生化处理可行性评价[J].电力环境保护,1995,11(3):29-35.
    [68]Gardea-Torresdey JL., Becker-Hapak MK., et al., Effect of chemical modification of algal carboxyl groups on metal ion binding[J]. Environmental Science & Technology,1990,24(9):1372-1378.
    [69]Wright P., Weber J., Biosorption of inorganic tin and methyltin compounds by estuarine macroalgae[J]. Name:Environmental Science and Technology,1991, 4(25):287-294.
    [70]李志勇,郭祀远.利用藻类去除与回收工业废水中的金属[J].重庆环境科学,1997,19(6):27-32.
    [71]Chu KH., Hashim MA., et al., Biosorption of cadmium by algal biomass:adsorption and desorption characteristics [J]. Water Science and Technology,1997,35(7): 115-122.
    [72]Ofer R., Yerachmiel A., and Y. Shmuel, Marine macroalgae as biosorbents for cadmium and nickel in water[J]. Water Environment Research,2003,75(3): 246-253.
    [73]Vinoj kumar V., Kaladharan P., Biosorption of metals from contaminated water using seaweed[J]. Current science(Bangalore),2006,90(9):1263-1267.
    [74]Doshi H., Ray A., et al., Biosorption of cadmium by live and dead Spirulina:IR spectroscopic, kinetics, and SEM studies[J]. Current Microbiology,2007,54(3): 213-218.
    [75]Jalali R., Ghafourian H., et al., Removal and recovery of lead using nonliving biomass of marine algae[J]. Journal of Hazardous Materials,2002,92(3):253-262.
    [76]黄灵芝,黄国和.黑藻对镉离子的生物吸附研究[J].水处理技术,2009,35(2):62-64.
    [77]邓旭,魏斌,等.转基因衣藻对重金属的抗性及对镉离子的富集[J].生物技术,2007,17(6):66-68.
    [78]李春娣,马福俊,等.Cd胁迫对受驯杜氏盐藻生长影响的研究[J].海洋环境科学,2007,26(006):557-560.
    [79]Yoshida N., Ikeda R., et al. Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation[J]. Bioresource Technology,2006,97(15):1843-1849.
    [80]Herrero R., Cordero B., et al., Interactions of cadmium (II) and protons with dead biomass of marine algae Fucus sp[J]. Marine Chemistry,2006,99(1-4F):106-116.
    [81]Leusch A., Volesky B., The influence of film diffusion on cadmium biosorption by marine biomass[J]. Journal of Biotechnology,1995,43(1):1-10.
    [82]Pietrobelli J., Modenes A., et al., Cadmium, Copper and Zinc Biosorption Study by Non-Living Egeria densa Biomass[J]. Water, Air,& Soil Pollution,2009,202(1): 385-392.
    [83]张玉玲,张兰英,等.霉菌吸附水体中Cr (Ⅵ) Cd (Ⅱ)离子研究[J].环境科学与技术,2006,29(1):21-22.
    [84]牛慧,许学书,等.非生长产黄青霉吸附铅的研究[J].微生物学报,1993,33(6):459-463.
    [85]代淑娟,高太,等.共存离子对水洗废啤酒酵母吸附水相中Cd2+的影响[J].有色矿冶,2008,24(3):79-80.
    [86]魏德洲,代淑娟,等.枯草芽孢杆菌吸附电镀废水中镉前后的浮选性能研究[J]. 安全与环境学报,2008,8(4):27-31.
    [87]Zhang J., Min H., Characterization of a multimetal resistant Burkholderia fungorum isolated from an e-waste recycling area for its potential in Cd sequestration [J]. World Journal of Microbiology and Biotechnology,2010,2(26):371-374.
    [88]刘红娟,张慧,等.一株耐镉细菌的分离及其富集Cd的机理[J].环境工程学报,2009,3(2):367-371.
    [89]刘爱民,黄为一,等.耐Cd2+假单胞菌富集Cd2+的研究[J].环境污染与防治,2009,31(8):20-22.
    [90]Jarosz-Wilko azka A., Braha B., et al., Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor[J]. Biometals, 2006,19(1):39-49.
    [91]常秀莲,王文华,等.海黍子吸附重金属镉离子的研究[J].海洋通报,2003,22(4):26-31.
    [92]Pakshirajan K., Swaminathan T., Biosorption of Lead, Copper, and Cadmium by Phanerochaete chrysosporium in Ternary Metal Mixtures:Statistical Analysis of Individual and Interaction Effects[J]. Applied Biochemistry and Biotechnology, 2009,158(2):457-469.
    [93]花修艺,董德明,等.自然水体生物膜各组分吸附铅和镉时共存铅,镉的相互影响[J].环境化学,2005,24(6):669-674.
    [94]Brady J., Tobin J., Binding of hard and soft metal ions to Rhizopus arrhizus biomass[J]. Enzyme and Microbial Technology,1995,17(9):791-796.
    [95]Bang S., Clark D., et al., Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli[J]. Applied and Environmental Microbiology,2000,66(9):3939-3944.
    [96]Allan V., Callow ME., et al., Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp[J]. Microbiology,2002,148(1):277-288.
    [97]Sharma PK., Balkwill DL., et al., A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide[J]. Applied and Environmental Microbiology,2000,66(7):3083-3087.
    [98]白红娟,张肇铭,等.球形红细菌转化去除重金属镉及其机理研究[J].环境科学学报,2006,26(11):1809-1814.
    [99]Wang CL., Lum AM., et al., Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene[J]. Applied microbiology and biotechnology,2001,56(3):425-430.
    [100]Wang CL., Michels PC., et al., Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture[J]. Applied and Environmental Microbiology,1997, 63(10):4075-4078.
    [101]Wang C., Maratukulam PD., et al., Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface[J]. Applied and Environmental Microbiology,2000,66(10):4497-4502.
    [102]White C., Gadd GM., Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms[J]. Microbiology,1998,144(5):1407-1415.
    [103]White C., Gadd GM., Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals:factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration[J]. Microbiology, 1996,142(8):2197.
    [104]Volesky B., Biosorption process simulation tools[J]. Hydrometallurgy,2003.71(1-2): 179-190.
    [105]张宏,张敬华.生物吸附的热力学平衡模型和动力学模型综述[J].天中学刊,2009,24(5):19-22.
    [106]刘兰泉.啤酒酵母对镉的吸附特性研究[J].微量元素与健康研究,2008,25(5):66-67.
    [107]蔡俊雄,周俊伟,等.废啤酒酵母吸附水溶液中Ni(Ⅱ)和Cd(Ⅱ)的性能[J].环境科学与技术,2009,32(4):149-152.
    [108]康春莉,郭晶,等.自然水体生物膜有机组分对Cd2+的吸附特征[J].生态环境,2005,14(5):636-639.
    [109]雷超,孙小梅,等.戊二醛交联酵母菌对Zn2+,Cd2+和Hg2+的吸附行为[J].环境科学研究,2008,21(6):206-210.
    [110]Hassan S., Kim SJ., Biosorptive capacity of Cd (Ⅱ) and Cu (Ⅱ) by lyophilized cells of Pseudomonas stutzeri[J]. The Journal of General and Applied Microbiology,2009, 55(1):27-34.
    [111]Hasan SH., Bhattacharjee BN., et al., Biosorption of Cd (Ⅱ) from Water Using Citrobacter koseri[J]. IFMBE Proceedings,2008,4(21):833-837.
    [112]叶锦韶,重金属生物吸附剂的开发[D].应用与机理研究,暨南大学,2003.
    [113]刘振扬,刘超.啤酒酵母在处理含镉工业废水中的应用研究[J].酿酒科技,2006,7:86-88.
    [114]周少奇.环境生物技术[M].科学出版社,2003.
    [115]沈雪贤.球衣菌吸附重金属离子工艺条件及其机理的研究[D].福建师范大学,2005.
    [116]田建民.生物吸附法在含重金属废水处理中的应用[J].太原理工大学学报,2000,31(1):74-78.
    [117]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [118]张纪忠,微生物分类学[M].复旦大学出版社.1990.
    [119]Buchanan, R., N. Gibbons,伯杰氏细菌鉴定手册[M].1984..
    [120]刘爱民,黄为一.耐镉菌株的分离及其对Cd2+的吸附富集[J].中国环境科学,2006,26(1):91-95.
    [121]高芬芳,赵中艳,等.洋葱假单胞菌抗汞质粒的研究[J].环境科学与技术,2005,28(6):35-36.
    [122]负妮,袁凤英.沼泽红假单胞菌去除镉的实验研究[J].工业安全与环保,2007,33(5):11-13.
    [123]胡南,一株耐镉恶臭假单胞菌的分离鉴定及其重要的镉抗性相关基因的克隆[D].华中农业大学.2006.
    [124]潘园园,陈雯莉,等.一株抗重金属铜镉细菌的分离,鉴定及其16S rDNA的序列分析[J].微生物学通报,2005,32(3):68-72.
    [125]周凤霞,白京生.环境微生物[M].北京:化学工业出版社,2003.
    [126]吴涓,李清彪.重金属生物吸附的研究进展[J].离子交换与吸附,1998,14(2):180-187.
    [127]Kapoor A., Viraraghavan T. Removal of heavy metals using the fungus Aspergillus niger[J]. Bioresource Technology,1999,70(1):95-104.
    [128]汪大翚,徐新华,等.工业废水中专项污染物处理手册[M].北京:化学工业出 版社,2000.
    [129]Genc O.,Denizli A.,et al.Uranium recovery by immobilized and dried powdered biomass:characterization and comparison[J].International Journal of Mineral Processing,2003,68(1-4):93-107.
    [130]Hamilton-Taylor.J,Davison.W,et a1.The biogeochemical cycling of Zn,Cu,Fe, Mn,and dissolved organic C in a seasonally anoxic lake[J].Limnology and Oceanography,1996,41(3):408-418.
    [131]Marcus.Y,SenGupta.A.Ion exchange and solvent extraction[M].New York,USA, 2002,17:474-2002.
    [132]王英娟,李多伟,等.蛹虫草中虫草素,虫草多糖综合提取工艺研究[J].西北植物学报,2005,25(9):1863-1867.
    [133]Brierley,J.Recovery of precious metals by microbial biomass[M].1988.
    [134]邱廷省,成先雄.啤酒酵母吸附镉离子的试验研究[J].环境污染与防治,2004,26(2):95-97.
    [135]于颖,周启星.重金属铜在黑土和棕壤中解吸行为的比较[J].环境科学,2004,25(1):128-132.
    [136]郭观林,周启星.重金属镉在黑土和棕壤中的解吸行为比较[J].环境科学,2006,27(5):1013-1019.
    [137]Sar A.,Tuzen M.Biosorption of cadmium(Ⅱ)from aqueous solution by red algae (Ceramium virgatum):equilibrium,kinetic and thermodynamic studies[J].Journal of Hazardous Materials,2008,157(2-3):448-454.
    [138]Boyd G,Myers Jr.,et al.The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. III. Performance of Deep Adsorbent Beds under Non-equilibrium Conditions1.Joumal of the American Chemical Society,1947, 69(11):2849-2859.
    [139]卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版杜,1989.
    [140]Yee,N.,et al.,Characterization of metal-cyanobacteria sorption reaction:a combined macroscopic and infrared spectroscopic investigation[J].Environmental Science & Technology,2004,38(3):775-782.
    [141]Tucker, S., et al., A fungal metallothionein is required for pathogenicity of Magnaporthe grisea[J]. The Plant Cell Online,2004,16(6):1575.
    [142]Wu C., Lin L.. Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance[J]. Biosensors and Bioelectronics,2004,20(4):864-871.
    [143]Kamnev, A., et al., Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense[J]. Journal of Molecular Structure,1999,480:387-393.
    [144]刘爱民,黄为一.应用红外方法探讨耐镉菌株高积累Cd2+的机理[J].环境科学学报,2005,25(11):1502-1506.
    [145]王海雷,孔凡晶,等.不同钾浓度培养条件对栖热菌TibetanG6菌株吸附铯的影响[J].中国科学C辑,2005,35(6):513-518.
    [146]Kamnev, A., et al., Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense[J]. Journal of Molecular. Structure,1997,408:201-205.
    [147]陈玉成.污染环境生物修复工程[M].北京:化学工业出版社,2003.
    [148]梁莎,冯宁川,等.生物吸附法处理重金属废水研究进展[J].水处理技术,2009,35(003):13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700