用户名: 密码: 验证码:
Ni-Al-Fe与Er-Ni体系金属间化合物的高压合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属间化合物具有的特殊组织结构特征使其兼具金属合金与陶瓷的部分特性,做为高温结构材料、储氢材料、永磁材料、形状记忆材料等在现代工业上有着广泛的应用。金属间化合物高温结构材料具有较低的密度,优秀的高温力学性能,同时与传统合金材料相比熔点更高,抗高温氧化性和耐高温腐蚀性更好。NiAl等金属间化合物结构材料已经应用于航空航天、化工等领域。金属间化合物储氢材料作为最有潜力的固体化储氢方法也引起了人们的广泛重视。利用金属间化合物储氢在保持了较高的储氢密度的同时,安全性大大高于传统物理储氢方法。在未来新能源设备上有着广阔的应用前景。传统的金属间化合物合成方法采用熔炼,反应烧结,自蔓延高温合成等方法制备的材料,由于体积收缩、低沸点金属挥发等原因导致密度不佳,表面和内部有大量的孔隙。采用粉末冶金方法制备的材料,虽然可以通过后期热压成型获得致密部件,但由于获得的粉末流动性较差,因而后期加工设备比较复杂。在过去对于压力辅助的燃烧法合成手段已有报道,通过这种合成方法可以获得致密的金属间化合物结构材料。但其合成的压力条件较低,在制备具有复杂结构的拓扑密堆积稀土金属间化合物功能材料时无法获得相应的结构产物。这使得人们寻求更高压力反应条件下的样品合成手段。本文主要利用了Walker式多面顶砧高压反应装置与活塞-圆筒式高压反应装置进行了合成研究。在0.5~5GPa的范围内对多种金属间化合物进行了合成实验,并随后对其进行了表征和性质测试。
     本文中,在压力为0.5GPa,温度为700℃条件下制备了一系列的镍铝,铁铝金属间化合物。所制备的样品经过X射线粉末衍射(XRD)分析确定主要为B2结构产物。扫描电镜(SEM)测试发现其表面致密,无明显孔洞。密度测定表明其密度达到理论密度98%以上。改变起始原料配比后,在压力为0.5GPa,温度为700℃实验条件获得的样品与已有文献资料比较发现,在本文的实验中有一定量的γ相产物生成,而这种现象在传统合成方法中是没有出现的。导致这种现象的原因是高压反应条件有助于诱导高密度产物的生成,同时较低的保温时间和淬火的处理工艺使得γ相得以保留。随后对选定的样品进行了恒温氧化实验。结果表明,在1000℃氧化条件下,样品均表现了良好的抗高温氧化特性。经过分析发现,样品的抗氧化特性主要是靠表面生成的Al_2O_3提供的。一般含铁量高的样品由于铁的氧化物生成,使得表面Al_2O_3耐氧化层脱落,导致抗氧化性急剧下降。但本文在实验中发现AlNi_(0.4)Fe(0.6)样品生成了铁铝尖晶石。作为一种高温稳定性更好的产物,使得材料在实验条件下没有出现明显的抗氧化性失效现象。
     采用高压反应方法合成了具有立方莱弗斯相结构的ErNi_2金属间化合物,并对其结构和性质进行了研究。在常压下化学计量比为1:2的Er、Ni发生反应后,由于原子半径比偏离立方莱弗斯相结构理论半径相当大因而实际生成的是Er_(1-x)Ni_2化合物。本文通过高温高压反应,在压力为4GPa,温度为1300℃的条件下制备了纯相的ErNi_2金属间化合物,并对温度,压力对反应的影响进行了研究。最后通过单晶X射线衍射分析,对所得产物的结构进行了解析。分析结果确定其结构属于立方Fd-3m空间群,晶胞参数a=0.71373(10) nm,Z=8。同时,在单晶X射线衍射分析中发现了一枚新晶体Er_(64)Ni_(128),其结构属于立方F-43m空间群,晶胞参数a=1.42325(6) nm,Z=1。在过去的研究中,化学计量比为1:2的Re-Ni(稀土-镍)化合物由于稀土原子半径过大,会在立方莱弗斯相ReNi_2化合物中形成有序的稀土空位从而导致晶体对称性下降。而对本文所得到的Er_(64)Ni_(128)结构进行研究发现,这个晶体对称性的下降是ErNi_2晶胞的扭曲所导致。为了降低整个体系的弹性势能,在常压条件下在ReNi_2化合物中会产生有序的稀土空位,从而使得稀土之间共价键平均长度增加,而在高压下,原子被压缩变形,键长缩短,稀土原子移动到常压合成下的空位中,从而形成了立方莱弗斯相结构。为了释放体系的弹性势能,化合物中的镍原子与铒原子扭曲偏离了正常位置,但原子之间的相对位置依然保持了与ErNi_2相似的位置。随后,对ErNi_2金属间化合物的氢吸附性能进行了研究。在对样品进行预活化处理后,在室温条件下采用重量法进行了储氢性能测试。根据实验结果做压力-组成等温线,可以看出在130KPa下,样品即已达到饱和吸附。ErNi_2金属间化合物最大储氢能力为约为1.05w%。同时样品平台压较低,在未来有一定的应用潜力。
Intermetallics have special organizational structure which make it heritage theadvantage of alloys and ceramics. As high-temperature structural materials, hydrogenstorage materials, permanent magnet materials and shape memory materials,intermetalics have been widely applied in modern industry. Intermetallics hightemperature structural materials have low density, excellent high temperaturemechanical properties and high performance in temperature corrosion. NiAl and otherintemetallics have been used in the aerospace, chemical engineering and etc.Intermetalics hydrogen storage materials is a latent solid hydrogen storage materialsalso attracted many researcher. Intermetallics hydrides are much safer than traditionalhydrogen storage methods and still maintain the high hydrogen storage density.Intermetallics hydrogen storage materials have broad application in new energydevice in future. Intermetallics fabricated in traditional methods, such as melting,reaction sinter and self-propagating high temperature, have a high porosity ratio dueto the volume shrinkage and the vaporization of low melting point metals. Though wecan obtain a high density product through powder metallurgy method, themanufacturing facilities is an obstacle in molding process. Means forpressure-assisted combustion synthesis has been reported in the past, and the denserintermetallics structural materials can be produced in this method. However, therepressure they used is not high enough to synthesize some function materials withtopology close-packed which allows us to seek the methods at higher pressure. The new instruments in State Key Laboratory of Inorganic Synthesis and PreparativeChemistry, Jilin University provide good conditions for the high pressure synthesisexperiment. In my dissertation, the experiments were finished mainly using theWalker multi-anvil and Quickpress3.0piston-cylinder high pressure high temperatureinstrument. The synthesis experiments were carried out at the range from0.5to5GPawith different reactant, and then characterization and properties were also referred inmy research.
     In this paper, a piston-cylinder high pressure high temperature instrument is used toprepare a series nickel-aluminum, iron-aluminum intermetallics under the pressure of0.5GPa and the temperature of700℃. The XRD spectra showed that the majorproducts were in B2structure. We also saw non-obvious porus from the SEM image.The density is more than98%theoretical density. We changed the ratio of startmaterials, the samples we synthesized were composed with B2and γ phase products.There is no report in existing literature. We believe that the reason is the applicationof pressure. The high pressure induce the denser γ phase product generated. Thecooling method, quenching treatment, make the γ phase product retain in our sample.Then we did isothermal oxidation experiment at1000℃in air with selected samples.At this condition, all samples showed good high temperature oxidation resistance. Theantioxidant property of these samples derived from the Al_2O_3layer in the surface.Usually the antioxidant property of high iron content sample is decrease due to theferrite which is easy to fall from the matri. However in our sample which compositionis AlNi_(0.4)Fe(0.6), the hercynite was formed which is stable in high temperature and hasgood antioxidant ability.
     Another part of this paper is synthesis of Cubic Laves ErNi_2intermetallics andanalysis its structure. Under atmospheric pressure, Er-Ni at a stoichiometric ratio forma Er_(1-x)Ni_2compound due to the departure of the radii ratio rEr/rNifrome the cubicLaves phase structure theoretical value. Through the high pressure high temperaturereaction, we prepared single phase ErNi_2intermetallics at the condition of4GPa,1300℃. The impact of temperature and pressure on the synthesis process were alsoargued. From the single crystal X-ray diffraction data, the structure was resolved. The ErNi_2belongs to the cubic Fd-3m space group, unit cell parameters a=0.71373(10)nm, Z=8. We also found a new single-crystal at the Er:Ni=1:2named Er_(64)Ni_(128)in mydissertation. It belongs to the cubic F-43m space group, unit cell parameters a=14.2325(6) nm, Z=1. The classic ReNi_2(Re=rare earth) intermetallics decrease theirsymmetry with the order Re vacancies in their unit cell, and the absence of the Reatoms extend the Re-Re bond length and release the elastic potential energy. Underhigh pressure, the Re atoms reoccupied the vacancies and form the cubic lavesstructure compound. In the Er_(64)Ni_(128)single crystal we found, the symmetry decreasedue to the deviation of the atoms. The nickel and erbium atoms depart from thenormal site, but the relative position of these atoms are maintain. The ErNi_2intermetallics hydrogen absorption performance was studied. After the preactivationtreatment, we use a gravimetric method measured the hydrogen absorbingperformance at room temperature. We draw the pressure–composition isotherms(PCI) curve according to the experimental results. We found in130KPa, the samplereached the saturation point. The ErNi_2intermetallic has a maximum hydrogenstorage capacity of approximately1.05w%. The test sample showed a low plateaupressure, which make a certain application potential in the future.
引文
[1] Macaluso R T, Greve B K. Challenges in intermetallics: synthesis, structuralcharacterization, and tansitions [J]. Dalton Transactions,2012,41(47):14225-14235.
    [2] Mendiratt M G, Ehlers S K, Dimiduk D M, et al. Areview of recent developmentsin iron aluminide [J]. Material Research Society,1987,18(4):393-399.
    [3] Phelan W A, Menard M C, Kangas M J, et al. Adventures in Crystal Growth:synthesis and characterization of Single crystals of complex intermetalliccompounds [J]. Chemistry of Materials,2012,24(3):409-420.
    [4] Justi E, Ewe H H, Kalberlan A W, et al. Electrocatalysis in the nickel-titaniumsystem[J]. Energy Conversion,1970,10:146-156.
    [5] Liao B, Lei Y Q, Chen L X, et al. A study on the structure and electrochemicalproperties of La2Mg(Ni0.95M0.05)(M=Co, Mn, Fe, Cu, Sn) hydrogen storageelectrode alloys [J]. Journal ofAlloys and Compounds,2006,413:186-195.
    [6] Gorbunov D I, Andreev A V. Magnetization study of single-crystalline ErFe5Al7[J]. Journal ofAlloys and Compounds,2013,556,109.
    [7]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000,14(9):1-5.
    [8] Enayati M H, Sadeghian Z, Salehi M, et al. The Effect of milling parameters onthe synthesis of Ni3Al intermetallic compounds by mechanical alloying [J].Material Science and Engineering A.2004,375(7):809-811.
    [9] Guo J T, Zhou L Z, Li G S. Mechanically synthesis and mechanical properties ofnanocrystalline intermetallics NiAl [J]. Acta Metallurgica Sinica,1999,35(8):846-850.
    [10]山口正治,马越佐吉.金属间化合物[M],北京:科学出版社,1991.
    [11] Kattner U R. The thermodynamic modeling of multicomponent phase equilibria[J]. Journal of the Minerals Metals and Materials Society,1997,49(12):14-19.
    [12]陶正兴.高技术结构材料(I):金属间化合物及其主要特性[J].上海冶金情报.1996(1):44-50.
    [13]郭建亭,殷为民,金瓯.长城有序金属间化合物FeAl合金的研究现状与发展[J].材料科学与工程,1993,11(3):23-31.
    [14]夏冬生,郭建亭,李博,等. NiAl(Co)系列机械合金化的研究[J].金属学报,1999,35(3):320-324.
    [15] Wu J M, Zheng S L, Li Z Z. Thermal stability and its effects on the mechanicalproperties of rapidly solidified Al-Ti alloys [J]. Materials Science andEngineering A,2000, A289:246-254.
    [16] Koch C C, Liu C T, Stoloff N S, et al. High-Temperature ordered IntermetallicAlloy III [M]. Pittsburg, P.A. MRS,1989:633.
    [17]张永刚,韩亚芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [18] Nikitin S A, Ovchenkov E A, Tereshina I S, et al. Synthesis of ternary hydridesand nitrides of R2Fe17(R=Y, Tb, Dy, Ho, Er) and influence of the interstitialelement (H2and N2) on the magnetic anisotropy and magnetostriction [C].12thInternational Conference on Magnetic Constants, Suzdal, Russia: RussianMetallurgy,1999.
    [19] Li L Q, Akiyama T, Yagj J. Effect of hydrogen pressure on the combustionsynthesis of Mg2NiH4[J]. Intermetallics1999,7(2):201-205.
    [20] Otsuka, K; Ren X B. Recent developments in the research of shape memoryalloys [J]. Intermetallics1999,7(5):511-528.
    [21] Galvis J A, Crespo M, Guillamón I, et al. Magnetic and superconductingphasediagrams in ErNi2B2C [J]. Solid State Communications,2012,15(12).
    [22] Szczudlo. Z, Ciszewski A, Losovyj Y B. Field electron emission study of Ti andHf adsorption layers on W [J]. Applied Surface Science,2001,174(2):138-147.
    [23] Grabke H J. Oxidation of NiAl and FeAl [J]. Intermetallics,1999,7(10):1153-1158.
    [24] Mishin Y, Mehl M J. Papaconstantopoulos D A. Embedded-atom potential forB2-NiAl [J]. Physical Review B,2002,65(22):224114.
    [25] Ma Z Y. Friction stir processing technology: A review [J]. Metallurgical andMaterials Transactions A-Physical Metalurgy and Materials Science.2008,39A(3):642-658.
    [26] Bei H, Pharr G M, George E P. A review of directionally solidified intermetalliccomposites for high-temperature structural applications [J]. Journal of MaterialsScience,2004,39(12):3975-3984.
    [27] Fidler J. Coercivity of Precipitation hardened cobalt rare earth17:2Permanentmagnets [J]. Journal of Magnetism and Magnetic Materials,1982,30:58-70.
    [26] Leetard E, Allibert H, Ballou R. Saturation magnetization and anisotropy fieldsin the Sm(Co1-xCux) phase [J]. Journal of Applied Physics,1994,75(10):6277-6279.
    [29] Liu S, Kuhl G E. Temperature coefficients of rare earth Permanent magnets [J].Journal ofApplied Physics,1999,35(5):3271-3273.
    [30] Zhang W Y, Shen B G, Cheng Z H, et al. Benefieial effect of Gd substitution onmagnetic properties of magnetically anisotropic SmCo5ribbons [J]. AppliedPhysics Letters.2001,79(12):1843-1845.
    [31] Liu J F, Walmer M H. Thermal stability and Performance data for SmCo2:17high-temperature magnets on PPM focusing structures [J]. IEEE Trans. Magn,2005,52(5):899-902.
    [32] Sagawa M, Fujimura S, Togawa N, et al. New materials for permanent magnetson a based of Nd and Fe [J]. Journal ofApplied physics,1984,55(6):2078-2082.
    [33] Drak M, Dobrzanski L A. Corrosion of Nd-Fe-B permanent magnets [J]. Journalof Achievements in Materials and Manufacturing Engineering,2007,20(1-2):239-242.
    [34] Varin, Robert A, Zbroniec, Leszek, et al. A review of recent advances on theeffects of microstructural refinement and nano-catalytic additives on thehydrogen storage properties of metal and complex hydrides energies [J]. Energies,2011,4(1):1-25.
    [35] Silvain J F, Chazelas J, Lahaye M, et al. The use of shape memory alloy NiTiparticles in SnPbAg matrix: interfacial chemical analysis and mechanicalcharacterisation [J]. Materials Science and Engineering A,1999,273:818-823.
    [36] Mazumdar C, Nagarajan R. Quaternary borocarbides-A new class ofsuperconductors and materials [J]. Current Science,2005,88(1):83-95.
    [37] Goodrich R G, Harrison N, Teklu A, et al. Development of the high-fieldheavy-fermion ground state in CexLa1-xB6intermetallics [J]. Physcical ReviewLetters,1999,82(18):3669-3672.
    [38] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying [J].Metallurgical Tansactions,1970(1):2943-2951.
    [39]王勇,王本庭,云志.金属间化合物的制备及其在化工中的应用[J].材料导报.2006,20(12):32-34.
    [40]范润华,孙康宁,尹衍升,等. Fe3Al金属间化合物的合金化[J].机械工程学报,2000,08:55-58.
    [41]艾桃桃,王芬,陈平.金属间化合物的制备方法及应用[J].稀有金属快报.2006,25(1):5-12.
    [42]杨君友,张同俊,李星国,等.机械合金化研究的新进展[J].功能材料.1995,26(5):477-480.
    [43] Verin AS,Verin M A. Intermetallids Ni3Al and Fe3Al with Directional Structureas Future Materials [J]. Anti-Corrosion Methods and Materials,2001,48(5):298-303.
    [44] Dunand D C. Reactive synthesis of aluminide intermetallics [J]. Journal of theAmerican Ceramic Society,1995,10(3):373–403.
    [45] Rice R W, McDonough W J. Intrinsic volume changes of self-propagatingsynthesis [J]. Journal of theAmerican Ceramic Society,1985,68:122.
    [46] Misiolek W, German R M. Reactive sintering and reactive hot isostaticcompaction of aluminide matrix composites [J]. Material Science andEngineering A,1991,144(1-2):1-10.
    [47] Philpot K A, Munir Z A, Holt J B. An investigation of the synthesis of nickelaluminides through gasless combustion [J]. Journal of Materials Chemistry,1987,22(1):159-169.
    [48] Miura S, Ohashi T, Mishima Y. Amount of liquid phase during reaction synthesisof nickel aluminides [J]. Intermetallics,1997,5(1):45-59.
    [49] Alman D E. Reaction synthesis of Ni-36.8at%Al [J]. Journal of MaterialsScience Letters,1994,13(7):483-486.
    [50] German R M. Liquid Phase Sintering, Plenum [M], Troy, New York,1985, p.172.
    [51]赵金龙.几种自蔓延高温合成新技术及其应用基础研究[D].大连:大连理工大学,2002.
    [52] Ozdemir O, Zeytin S, Bindal C. A study on NiAl produced by pressure-assistedcombustion synthesis [J]. Vacuum,2010,84:430-437.
    [53] Rocha R D, Santos D B. Characterization of Ni-Al system intermetallics obtainedby hot pressing reaction synthesis [J]. Advanced Powder Technology II BookSeries2001,189(1):425-430.
    [54] Gobran H A, Ilic N, Mucklich F. Effects of particle size and pressure on thereactive sintering of RuAl intermetallic compound [J]. Intermetallics,2004,12:555-562.
    [55] Gao N F, Miyamoto Y, Zhang D. Dense Ti3SiC2prepared by reactive HIP [J].Journal of material science,1999,34:4385-4392
    [56] Gao Lian,宫本大树.放电等离子烧结技术[J]. Journal of InorganicMaterials,1997,12(2):129-133.
    [57] Oginuma H, Kondoh K, Yamaguchi T, et al. Fabrication of Mg-Si systemintermetallic compounds by spark plasma sintering [J]. Journal of the JapanSociety of Powder and Powder Metallurgy,2005,52(2):79-83.
    [58] Tae-Young Um, Toshihiko Abe, Shinichi Sumi. Fabrication of intermetalliccompounds by spark plasma sintering [J]. Journal of Materials Synthesis andProcessing,1999,7(5):303-309.
    [59]经福谦.动高压原理与技术[M].北京:国防工业出版社,2006.
    [60]经福谦.实验物态方程导引[M].北京:科学出版社,1986.
    [61] CANTON J. Experiments to Prove That Water is Not Incompressible [J/OL].Philosophical Transactions,1761-1762,52:640-643,http://www.jstor.org/stable/105681.
    [62] CANTON J. Experiments and Observations on the Compressibility of Water andSome Other Fluids [J/OL], Philosophical Transactions,1764,54:261-262,http://www.jstor.org/stable/105560.
    [63] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds [J]. Nature,1955,176(4471):51-55.
    [64]刘晓旸,高压化学[J].化学进展,2009,21(7):1373-1387.
    [65] Loubeyre P, Jean-Louis M, Letoullec R, et al. High pressure measurements of theHe-Ne binary phase diagram at296K: Evidence for the stability of astoichiometric Ne(He)2solid [J]. Physical Review Letters,1993,70(2):178-181.
    [66]Abelson P H Experimental technology [J]. Science,1999,283(5406):1263-1263.
    [67] Walker D, Carpenter M A, Hitch C M. Some simplifications to multianvildevices for high pressure experiments [J]. American Mineralogist,1990,75:1020-1035.
    [68] Walker D. Lubrication, gasketing, and precision in multianvil experiments [J].Amer. Miner.1991,76:1092-1100.
    [69] Ohtani E, Irifune T, Hibberson W O, et al. Modified split-sphere guide block forpractical operation of a multipleanvil apparatus [J]. High Temp.-High Pressures198719:523-529.
    [70] Ohtani E, Kagawa N, Shimomura O, et al. High-pressure generation by amultiple anvil system with sintered diamond anvils [J]. Review of ScientificInstruments,1989,60:922-925.
    [71] Ito E. Sintered diamond multi anvil apparatus and its application to mineralphysics [J]. J Miner Petrol Sci,2006,101(3):118.
    [72] Tangea Y, Irifune T, Funakoshi K. Pressure generation to80GPa usingmultianvil apparatus with sintered diamond anvils [J]. High Pressure Research,2008,28:245-254.
    [73] Kunimoto T, Irifune T, Sumiya H. Pressure generation in a6-8-2type multi-anvilsystem: a performance test for third-stage anvils with various diamonds [J]. HighPressure Research,2008,28:237-244.
    [74] King J H. Choice of materials for use in compressible-gasket high-pressureapparatus [J]. J Sci Instrum,1965,42:374-380.
    [75]徐惠刚,谢鸿森,张月明.静态超高压大腔体实验技术研究简述[J].地质地球化学,1990,(01):68-72.
    [76] Onodera A. Octahedral-anvil high-pressure devices [J]. High Temp High Press,1987,19:579-609.
    [77] Walter M J, Thibault Y, Wei K, et al. Characterizing experimental pressure andtemperature conditions in multi-anvil apparatus [J]. Canadian Journal of Physics,1995,73:273.
    [78] Ohtani E, Kumazawa M, Kato T, et al. High-pressure research in geophysics [M].Edited by Akimoto S, Manghnani M H.1982:259.
    [79] Ohtani E. Melting relation of iron silicon oxide (Fe2SiO4) up to about200kbar[J]. J. Phys. Earth,1979,27(3):189.
    [80]刘强,金振民. Piston-Cylinder高温高压实验装置及在壳幔动力学研究中的应用[J].地质科技情报,2006,25:8.
    [81] Subrahmanyam J, Vijayakumar M. Self-propagating high-temperature synthesis[J]. Journal of Materials Science,1992,27(23):6249–6273.
    [82] Yi H C, Moore J J. Self-propagating high-temperature (combustion) synthesis(SHS) of powder-compacted materials [J]. Journal of Materials Science,1990,25(2):1159–1168.
    [83] Munir Z. Reaction synthesis processes: mechanisms and characteristics Metal [J].Transactions of the Institution of Mining and Metallurgy Section A,1992,23(1):7–13.
    [84] Dunand D C. Reactive synthesis of aluminide intermetallics [J]. Materials andManufacturing Processes,1995,10(3):373–403.
    [85] Moore J J, Feng H J. Combustion synthesis of advanced materials: Part I.Reaction parameters [J]. Progress in Materials Science,1995,39(4):243–273.
    [86] Moore J J, Feng H J. Combustion synthesis of advanced materials: Part II.Classification, applications and modeling [J]. Progress in Materials Science,1995,39(4):275-316.
    [87] Yang J C, Schumann E, Müllejans H, et al. Chemistry and bonding investigationsof NiAl/γ-Al2O3interfaces [J]. Journal of Physics D: Applied Physics,1996,29:1716-1724.
    [88] Doty H, Abbaschian R. Reactive hot compaction of NiAl with in situ aluminareinforcement [J]. Material Science and Engineering A,1995,195:101–111.
    [89] Farber L, Gotman I, Gutmanas E. A. Lawley. Solid state synthesis of NiAl-Nbcomposites from fine elemental powders [J]. Material Science and Engineering A,1998,244(1):97-102.
    [90] Hsin-Ning S, Philip N, Zi-Kui L. Enthalpies of formation in the Al-Ni-Fe systemby direct reaction synthesis calorimetry [M], High Temperature Corrosion andMaterials Chemistry, IV Pennington, NJ: Electrochemical Society,2003.
    [91] Hu R, Nash P. Review: experimental enthalpies of formation of compounds inAl-Ni-X systems [J]. Journal of materials science,2006,41:631-641.
    [92] Huntz A M. The role of active elements in the oxidation behaviour of hightemperature metals and alloys [J]. Elsevier Applied Sci.,1989:81.
    [93]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001
    [94] Lubbers R, Wortmann G, Grunsteudel H F. High-pressure studies with nuclearscattering of synchrotron radiation [J]. Hyperfine Interactions,1999,123(1-8):529-559.
    [95] Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I.Critical assessment of factors controlling Laves phase stability [J]. Intermetallics,2003,12(7):713-720.
    [96] Goncharenko I N, Mirebeau I, Irodova A V, et al. Magnetic and hydrogen,ordering in the frustrated Laves hydrides RMn2H4.5(R=Y, Gd, Tb, Dy, Ho): Aneutron-diffraction study [J]. Physical Review B,1999,59(14):9324-9331.
    [97] Akiba E, Okada M. Metallic hydrides III: Body-centered-cubic solid-solutionalloys [J]. Materials Research Bulletin,2002,27(9):699-703.
    [98] Stein F, Palm A, Sauthoff G. Structure and stability of Laves phases part II-structure type variations in binary and ternary systems [J]. Intermetallics,2005,13(10):1056-1074.
    [99] Gratzy E, Kottary A, Lindbaumy A, et al. Temperature-and pressure-inducedstructural transitions in rare-earth-deficient (R=Y, Sm, Gd, Tb) Laves phases[J]. Journal of Physics:Condens Matter,1996,8:8351-8361.
    [100] Paul-Boncour V, Lindbaum A, Latroche M, et al. Homogeneity range andorder-disorder transitions in R1-xNi2Laves phase compounds [J]. Intermetallics,2006,14:483-490.
    [101] Liang J, Ma X, Tang J, et al. Formation and structure of LaNi2intermetalliccompound under high pressure [J]. Intermetallics,2003,11:875-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700