用户名: 密码: 验证码:
超声与环流技术在水中灭菌作用及其生物效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据联合国环境和发展机构指出,人类约有80%的疾病与细菌感染有关,其中60%以上的疾病是通过饮用水传播的。由于氯消毒杀菌能力强,有持续灭菌作用,且消毒系统投资和运行费用价廉,所以水的氯化消毒成为饮用水消毒中使用最广泛、技术最成熟的方法。随着进一步的深入研究表明运用氯消毒对人体健康有一定的威胁。所以迫使人们开始寻求一种新的更安全、更可靠的饮用水消毒方法和技术。
     随着对超声的不断研究,人们开始把超声与饮用水灭菌联系起来,虽然与其它杀菌工艺联合,灭菌效果比较好,但对超声的灭菌机理也尚不清楚,且由于超声波是一种成本较高的能量,所以采用超声波灭菌的经济费用比较高,一般也不容易实现工程放大。因此探索超声灭菌机理并找到一种能利用超声,且耗能少,易于工程放大的灭菌方法很有必要。
     本文通过实验对超声-环流系统灭菌进行了初步探讨,做的主要工作有以下几个方面:
     (1)设计并加工超声-环流系统处理槽,不但能够单独进行超声实验,还可以超声-环流共同作用。
     (2)运用超声处理系统对大肠杆菌做频率、功率、时间的单因素实验,证实了前人的研究成果,并设计正交实验,根据设计进行实验,发现选用标称频率为20kHz的超声处理系统,功率为25W时处理45min灭菌效果最好。然后选择20kHz、33kHz两个系统分别通过控制进气量观测灭菌率随空气进气量的变化,实验结果表明:不同频率的超声-空气环流处理系统对应的最佳进气量不同。但超声-空气环流的灭菌效果要比单独超声效果好的多。加入进气量因素,再设计正交实验并进行实验,结果表明选用标称频率为33kHz的处理系统,功率为25W,空气进气量为0.4L/min时,处理30min以上灭菌率最好,通入空气对最大影响因素有影响。最后运用超声-臭氧环流处理系统来处理大肠杆菌,处理时间较短时,单独臭氧作用远远不及超声-臭氧环流的灭菌率,但在处理时间较长时,臭氧的灭菌效果略好。
     (3)运用超声-环流处理系统分别对金黄色葡萄球菌和枯草芽孢杆菌研究了频率、功率、处理时间等对这两种菌的灭菌率的影响,并且运用单独超声、超声-空气环流、超声-臭氧环流对两种菌的灭菌率作对比。发现相对于大肠杆菌来说,这两种菌不是太容易被杀死。
     (4)通过原子力显微镜观测超声处理前后的大肠杆菌的表面形态,对超声灭菌的机理做了初步的探讨,超声空化作用使大肠杆菌的细胞壁振碎、产生小孔有的甚至脱落,使细菌胞内物质外泄、失去自我保护能力,从而导致死亡;有一部分细胞壁脱落的细菌,超声空化直接作用于细菌细胞膜,使细菌死亡。
As the UN environment and development institution pointed out, the disease of eighty percent of human beings was involved with bacterium infection, over 60 percent of which was spread by drinking water. Chlorinating sterilization of water has becomed to be the most widely used and full grown technique among drinking water sterilization methods due to its strong antisepsis and sterilization ability and persistence sterilization function, as well as its low antisepsis system investment and run price. Further in-depth study shows that use of chlorine disinfection has a certain extent threat on human health. Therefore, people began to search for new, safer and more reliable methods and techniques in drinking water disinfection.
     With the developed of ultrasonics, people begin to concatenate ultrasound and drinking water sterilization. Although compared with other sterilization, ultrasound has better effection, but the sterilization of ultrasound also is not clear. However, ultrasonic is a kind of high cost enrage, so the expense of adopting ultrasonic for sterilization is high. And it is generally difficult to achieve project amplification. It is necessary to explore the mechanism of ultrasonic sterilization and find a kind of ultrasonic sterilization technique with low emerge consume and easy to achieve project amplification.
     In this experiment we initially discussed ultrasound-circulation sterilization system and the chief work we do was as follows:
     (1) The ultrasound-circulation sterilization system disposal bath we designed and manufactured, which not only carry through ultrasound experiment separately, but also ultrasound circulation take action at the same time.
     (2) By useing ultrasonic treatment system, we searched the regulation of kill rate of Escherichia coli with frequency, power, or processing time, confirmed the results accord with previous studies. It is found that the sterilization effectiveness is best when deal with 45min at the same time when the frequency of ultrasonic treatment system is 20kHz and the power is 25 W in the orthogonal experiment we designd. Owing to the frequency is the most significant influencing factor that we observe the sterilization rate changing with air input through controlling air input while the system is 20kHz, 33kHz. The results of the experiment indicate that the ultrasound-circulation system with different frequency has corresponding optimum air input. In addition, the sterilization effectiveness of the ultrasound air circulation is much better than the ultrasound alone. The factor of air input in designing orthogonal experiment was taken into account and the results of the experiment show that when the nominal frequency of the handing system is 33kHz, the power is 25W, the air input is 0.41/min and the dealing time is more than 30min, the sterilization rate is the best. The entering of air has influence on the significant factor. At last, when dealing Escherichia coli with ultrasound ozone circumfluence system, the sterilization rate of the ultrasound ozone circumfluence is much better than the ozone when the dealing time is short. However, when the time is long, the sterilization effectiveness is a little better.
     (3) We used ultrasound-circulation system, respectively study the regulation of killing rate of Staphylococcus aureus and killing rate of Bacillus subtilis with frequency, power, or processing time. We used ultrasound; ultrasound with air circulation, ultrasound with ozone circulation processing systems studied these two bacterias' difference respectively. The result found E.coli is not too easy to be killed than those two kinds of bacteria above.
     (4) We observed the surface morphology of the original E.coli and that was treated by ultrasound by atomic force microscopy and discussed primarily mechanism of ultrasound sterilization. The death of the E.coli was due to their broken even exfoliated cell wall and leakage of intracellular material. The E.coli lossed self-protection capacity due to the ultrasonic cavitation. Besides, because of the shedding of cell wall the ultrasonic cavitation directly acting on the bacterial cell membrane can also make them died.
引文
[1]金兆丰.21世纪的水处理[M].北京:化学工业出版社,2003.
    [2]张胜华,郭一飞,靳慧霞.水处理微生物学[M].北京:化学工业出版社,2005.
    [3]周云,何义亮.微污染水源净水技术及工程实例[M].北京:化学工业出版社,2003.
    [4]王琳,王宝贞.饮用水深度处理[M].北京:化学工业出版社,2002.
    [5]吴一,高乃云,乐林生.饮用水消毒技术[M].北京:化学工业出版社,2005.
    [6]李汴生,阮征.非热杀菌技术与应用[M].北京:化学工业出版社,2004.
    [7]张红印,葛菲.非加热杀菌的原理与应用[J].肉制品加工设备,1999,218(8):14-16.
    [8]E.N.Harvey,A.L.loomis.J.Bacteriol[J].1929,17:373-379.
    [9]D.E.Hughes,W.L Nyborg.Science[J].1962,138:108-114.
    [10]H.Alliger.Am.lab[J].1975,10:75-85.
    [11]张文福,刘育京.清洗用超声波对细菌杀灭作用的实验研究[J].中国消毒学杂志,1995,12(1):6-10.
    [12]朱绍华.超声波灭菌实验初探[J].食品工业科技,1998,1:12-14.
    [13]李儒荀.超声波--激光联合的研究[J].包装与食品机械,1998,16(3):6.
    [14]胡文容,王士芬.超声强化O_3杀菌能力的实验研究[J].中国给水排水,1999,15(4):58-60.
    [15]胡文容.超声强化O_3氧化能力的机理探讨[J].工业用水与废水,2001,5.
    [16]王君.纳米二氧化钛与超声协同杀菌效果的研究[J].中国消毒学志,2004,21(2):126-127.
    [17]周丽珍,李冰.超声非热处理因素对细菌杀菌效果的影响[J].食品科学,2006,27(12):54-57.
    [18]卢群,丘泰球.超声波辐照对大肠杆菌细胞膜的影响[J].华南理工大学学报,2006,34(12):51-54.
    [19]郭丽娟,丘泰球.超声波协同臭氧处理对梨汁菌落总数的影响[J].食品研究与开发,2007,28(2):1-3.
    [20]F.Munkacsi,M.Elhami.Effect of ultrasonic and ultraviolct irradiation on chemical and bacteriological quality of milk[J]. Egyptian Journal of Dairy Science, 1976, 4: 1-6.
    [21] Y. Utsunomiya, Y. Kosaka. Application of supersonic waves to foods [J]. Journal of the Faculty of Applied Biological Science, Hiroshima University, 1979, 18: 225-231.
    [22] M. L. Garcia, J. Burgos, B. Sanz, J. A.Ordonez. Effect otheat and ultraso nic waves on the survival of two strains of Bacillus subtilis[J]. Journal of Applied Bacteriology, 1989, 67: 619-628.
    [23] G Scherba, R. M. Weigel, W. D. O'Brien. Quantitative assessmentof the germicidal efficacy of ultrasonic energy[J]. Applied and Environmental Microbiology, 1991, 57(7): 2079-2084.
    [24] D. M. Wrigley, N. G Llorca, Decrease of Salmonella Typhimurium in skim milk and egg by heat and ultrasonic wave treatment[J], Journal of Food Protection, 1992, 55(9): 678- 680.
    [25] M. S. Limaye, W. T. Coakley. Clarification of small volume microbial suspensions in an ultrasonic standing wave[J]. Journal of Applied Microbiology, 1998, 84: 1035-1042.
    [26] J. Raso, A. Palo, R. Pagan, S. Condon. In activation ofBacillus subtilis spores by combining ultrasonic waves underpressure and mild heat treatment[J], Journal of Applied Microbiology, 1998a, 85: 849-854.
    [27] L. L. Johnson, R. V. Peterson, W. G Pitt. Treatment of bacterialbiofilms on polymeric biomaterials using antibiotics and ultrasound[J]. Journal of Biomaterials Science. Polymer Ed. 1998, 9(11): 1177-1185.
    [28] A. M. Rediske, N. Rapoport, W.G Pitt. Reducing bacterial resistance to antibiotics with ultrasound[J]. Letters in Applied Microbiology, 1999,28(1): 81-84.
    [29] U. Hulsen. Alternative heat treatment processes[J]. European Dairy Magazine, 1999,3:20-24.
    [30] M. Villamiel, P. de Jong. Inactivation of Pseudomonas fluorescensand streptococcus thermophilus in trypticase soy broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating[J]. Journal of Food Engineering, 2000, 45: 171-179.
    [31] P. Manas, R. Pagan, J. Raso, F. J. Sala, S. Condon. Inactivation of Salmonella Typhimurium, and Salmonella Senftenberg by ultrasonic waves under pressure[J]. Journal of Food Protection,2000x,63(4):451-456.
    [32]N.H.Ince,R.Belen.Aqueous phase disinfection with powerful trasound:process kinetics and effect of solid catalysts[J].Environmental Science and Technology,2001,35(9):1885-1888.
    [33]S.Guerrero,A.Lopez,S.M.Alzamora.Effect of ultrasound on the survival of Saccharomyces cerevisiae influence of temperature,PH and amplitude[J].Innovative Food Science and Emerging Technologies,2001,2:31-39.
    [34]E.Joyee,S.S.Phull,J.P.Lorimer,T.J.Mason.The development and evaluation of ultrasound for the treatment of bacteria suspensions a study of frequency power and sonicatin time on cultured bacillus species[J].Ultrasonics Sonochemistry,2003,10:315-318.
    [35]E.Joyce,T.J.Mason,S.S.Phull,J.P Lorimer.The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions[J].Ultrasonic Sonochemistry,2003,10:231-234.
    [36]H.Duckhouse,T.J.Mason,S.S.Phull,J.PLorimer.The effect of sonieation on microbial disinfection using hypoehlorite[J],Ultrasonic Sonochemistry,2004,11:173-176.
    [37]何祚镛,赵玉芳.声学理论基础[M].国防工业出版社,1981.
    [38]应崇福.超声学[M].北京:科学出版社,1993.
    [39]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1991.
    [40]冯若.超声手册[M].南京:南京大学出版社,1999.
    [41]B.E.Nolthingk,E.A.Neppiras.Proc.Soc.p(London)63B,1967,674.
    [42]H.G.Flynn.Physical Acoustics[J],1964,1B:57-172.
    [43]E.A.Neppiras.Phys.Rep,1980,61:160-165.
    [44]M.E.Fitzgrald,V.Griffing,J.Sallivan,J.Chem.Phys,1956,25:926.
    [45]莫喜平,冯若,周辉,王双维.超声空化的电化学检侧及混响场空化效应的研究[J].化学物理学报,1994,7(3):287-290.
    [46]C.PZhu,R.Feng et al.Study on the cavitation effect of low frequency ultrasound by electrical method[J].J.of Nanjing University,1995,31:180.
    [47]R.Feng,S.W.Wang et al.Study on the cavitation effect of the sine-modulation ultrasound by sonoelectrochemical method[J],Annual Science Report-Supplement of JNU,1994,30(2):9.
    [48]S.W.Wang,R.Feng et al.Effect of ultrasound pulse width on cavitation in a small-size reverberation field[J],Ultrasonics,1993,31(1):39.
    [49]钱祖文.非线性声学[M].北京:科学出版社,1992.
    [50]吴嘉,李冰航.驻波管中的颗粒悬浮现象及其分析[J].实验力学,2001,16(2):180-187.
    [51]P.Vainshtein,M.Fichman et al.On the drift of aerosol particles in sonic field[J].J.Aerosol Sci.,1992,23:631-637.
    [52]A.Eller.Force on a bubble in a standing acoustic wave[J].J.Acoust.Soc.Am,1968,43:170-171.
    [53]L.A.Crum,A.Properetti.Nolinear oscillations of gas bubble in liquids:An interpretation of some experimental results[J].J.Acoust.Soc.Am.,1983,73:121-127.
    [54]T.J.Asaki,PL.Marston.Acoustic radiation force on a bubble driven above resonance[J].1994,96(5):3096-3099.
    [55]钱盛友,王鸿樟,孙福成.声流现象的研究及其应用[J].应用声学,1996,16(6):38-42.
    [56]S.B.Barnett,M.C.Ziskim et al.Ultrasound Med[J].Biol.,1994,20(3):206-217.
    [57]Miller.Ultrasound Med[J].Biol.,1987,13(5):443-470.
    [58]A.R.Williams,D.A.Stafford et al.J.Appl[J].Bacteriol,1970,33:656.
    [59]W.L.Nyborg.J.Cancer,1982,45:156.
    [60]张永利,刘永民.环流反应器研究进展[J].辽宁化工,2002,31(9):410-414.
    [61]丁富新,李飞.环流反应器的发展和应用[J].石油化工,2004,33(9):801-807.
    [62]王玉凤,刘杰.环流反应器在生物技术中的应用[J].辽宁化工,2002,31(2):80-81.
    [63]杜建新.气升式环流反应器流体力学、传质特性研究及应用[D].北京:清华大学,1995.
    [64]姜信真.内环流反应器的实验研究[J].化工机械,1984,4:25.
    [65]汤立新,吕效平.气升式反应器的优化[J].化学工业于工程技术,2002,23(4):35-37.
    [66]刘永强,李稳宏.气升式外环流反应器结构特性对传质的影响[J].西北大学学报,2001,31(2):139-142.
    [67]欧阳平凯,陆永明.气升式反应器中三相体系进行半连续操作的气含率和传质特性研究[J].化学反应工程与工艺,1991,7(1).
    [68]汤立新,韩萍芳.超声波气升式内环流反应器传质性能的实验研究[J].高校 化学工程学报,2003,17(3):243-247.
    [69]孔黎明,谷和平,吕效平.超声波内环流气升式反应器去除水中苯酚的研究[J].化工环保,2004,24(6):462-466.
    [70]张萍,杨梅,吕效平.在超声波气升式内环流反应器中合成ε-己内酯[J].石油化工,2006,35(1):19-23.
    [71]汤立新,韩萍芳,吕效平.超声波气升式内循环反应器流体力学性能研究[J].南京工业大学学报,2003,25(1):41-45.
    [72]汤立新,吕效平.超声波气升式反应器内声压的测定[J].化学工业与工程技术,2002,23(6):24-26.
    [73]翟中和,王喜忠.细胞生物学[M].北京:高等教育出版社,2000.
    [74]顾声,李献文.水处理微生物学[M].北京:中国建筑工业出版社,1998.
    [75]周德庆.微生物学教程[M].北京:高等教育出版社,2002.
    [76]钱存柔.微生物学实验教程[M].北京:北京大学出版社,1999.
    [77]陈绍铭,郑福寿.水生微生物学实验法[M].北京:海洋出版社,1985.
    [78]沈萍,范秀荣.微生物学实验[M].北京高等教育出版社,2005.
    [79]周德庆.微生物学实验教程[M].北京:高等教育出版社,2006.
    [80]唐丽杰.微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [81]周凤梅.饮用水处理过程中超声灭菌的实验研究[D].西安:陕西师范大学,2006.
    [82]孙荣恒,伊亨云.概率论和数理统计[M].重庆:重庆大学出版社,2000.
    [83]王钦德,杨坚主.食品实验设计与统计分析[M].北京:中国农业大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700