用户名: 密码: 验证码:
离子液体与表面活性剂相互作用及其在三次采油中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三次采油技术发展的关键是开发能够提高驱油效率的驱油液,通常情况下提高驱油效率最有效、可行的方法是降低驱油液与原油间的界面张力。偶联表面活性剂是一类新型表面活性剂,它由联接基团将两个相同或相近的双亲组分在极性基团处或距极性基团很近的烷烃链上相连接而成,与传统的单头基单尾链表面活性剂相比,偶联表面活性剂不但具有低得多的临界胶束浓度而且具有较高的表面活性。离子液体是由阴、阳离子组成,常温附近呈液态的盐类,其阳离子中大多含有咪唑环、吡啶环头基和一个相对较长的烷基链,这种结构决定了它具有一定的双亲性,长链的离子液体具有优于传统表面活性剂的表面活性。我们设想将二者结合形成复配溶液,利用复配体系的协同效应进一步提高溶液表面活性,以满足驱油液的性能要求。更重要的是,偶联表面活性剂和离子液体分子结构都具有可调性,能够通过适当调节二者结构控制其复配体系的界面及体相性能,因此,含有偶联表面活性剂及离子液体的复配系统有望成为一种新型、高效的驱油体系。然而,到目前为止尚未有这些方面研究的文献报道。
     本文探索偶联表面活性剂和离子液体新型复配体系在三次采油中的潜在应用,首先研究离子液体对表面活性剂溶液性质的影响。研究结果表明,少量离子液体的加入就可以大幅度提高表面活性剂的溶解性能,起到助溶剂的作用;离子液体可与表面活性剂之间产生明显的协同效应,少量离子液体的加入即可以使油水界面张力比不含离子液体的体系降低一个数量级以上;同时,离子液体可以改变表面活性剂溶液的胶束形貌,进而改变表面活性剂溶液的表观粘度。此外,本文也探讨了离子液体对含聚合物体系粘度的影响,系统研究了离子液体种类、浓度及传统的无机盐类对油水界面性质的影响,探索其影响规律,为开发新型、高效的驱油体系提供基础数据和理论指导。
The key of enhanced oil recovery (EOR) technology development is to explore the flooding which can improve the oil displacement efficiency, normally the most effective and feasible method to increase oil displacement efficiency is to reduce interfacial tension between the flooding and crude oil. The Gemini surfactants are a new type of surfactants, they are made up of two amphiphilic moieties connected at the level of the head groups or very close to the head groups by a spacer group, compared with single chain surfactants, Gemini surfactants possess much lower critical micelle concentration and higher surface activity. Ionic liquids are composed of anions and cations, they exist as salts near normal temperature, their cations mostly contain imidazole ring, pyridine ring head groups and relatively long alkyl chains, and the structures determine that they have certain amphiphilic properties, the surface activity of long chain ionic liquids is better than that of conventional surfactants. We assume to combine them to form a mixed solution, using the synergy effect to further improve the surface activity to meet the performance requirements of flooding. More importantly, the molecular structures of Gemini surfactants and ionic liquids are adjustable, the interfacial and bulk characters can be controlled through adjusting the structure of both surfactants, therefore, the mixed system of containing Gemini surfactants and ionic liquids is expected to become a new and efficient flooding system. However, so far, there is no corresponding research on this aspect.
     This paper explores the potential applications of the mixed system of Gemini surfactants and ionic liquids in EOR, firstly, the influence of ionic liquids on surfactant solutions is studied. The results show that the addition of a few of ionic liquids can improve the solubility of surfactants dramatically, acting as the co-solvent; ionic liquids can cooperate with the surfactants, the addition of a few of ionic liquids can reduce the water-oil interfacial tension above a magnitude than that of system without ionic liquids; At the same time, ionic liquids can alter the micelle morphology to change the apparent viscosity of mixed solutions. In addition, this paper also discusses the influence of ionic liquids on the system which contains polymer, studies the influence of the type and concentration of ionic liquids and conventional salts on water-oil interfacial properties, explores the influence rule to provide basic data and the theoretical guidance for the development of new type of oil displacement systems with high efficiency.
引文
[1]陈淦.发展三次采油的战略意义及政策要求.油气采收率技术.1997,4(4):2-4
    [2]崔正刚.重烷基苯磺酸盐的合成及在提高采收率中的应用.华东理工大学学报.1999,04:339-346
    [3]W. Gerbacia, T. J. Mcmillen. Oil-Recovery Surfactant Formulation Development Using Sruface Design Experiment. SPE J.1982:237-243
    [4]H. S. Al-Hashim. Alkaline Surfactant Polymer Formulation for Saudi Arabian Carbonate Reservoirs. SPE/DOE 35353.1996 SPE/DPE 10th IOR Symps:79-96
    [5]A. M.Micheis. Enhanced Waterflooding Design with Dilute Surfactant Concentrations for North Sea Conditions. SPE J.1996,11(3):189-195
    [6]程杰成,廖广志,杨振宇,李群,姚玉明,徐典平.大庆油田三元复合驱矿场试验综述.大庆石油地质与开发.2001,20(2):46
    [7]陈劫,杨勇,单存龙,王海峰,张国印,伍晓林,姜兆华.三次采油用表面活性剂原料的生产和技术进展.现代化工.2008,28(5):17-21
    [8]张宗源,谢志勤.胜利油田火烧油层先导性试验研究.石油钻采工艺.1996,18(3):88-92
    [9]李献民.单家寺油田蒸汽驱先导试验驱油机理研究.特种油气藏.1996,3(4):13-16
    [10]王雅茹,高树生.C02驱油技术在大庆油田的应用.试采技术.1996,17(1):42-45
    [11]刘恒.大庆油田聚合物驱油方法研究现状及展望.石油勘探与开发.1995,22(2):64-67
    [12]M. S. Alm,张建(编译).碱驱对原油采收率的影响.国外油田工程.1998,14(3):10-11
    [13]J. B. Hayes, G. W. Haws, W. B. Gogarty. Water-in-Oil Microemulsion Drilling Fluids: US, Patent No.4012329,1977-3-15
    [14]郭东红,李森.表面活性剂驱油的驱油机理与应用.精细石油化工进展.2002,3(7):36-41
    [15]王景良,孙岩.ASP复合驱机理的研究与展望.国外油田工程.2001,17(8):15-19
    [16]J. Reisberg, T. M. Doscher. Interfacial Phenomena in Crude Oil-Water Systems. Producers Monthly.21:43-50
    [17]R. F. Burdyn, H. L. Chang, E. L. Cook. U.S.Patent, No.4004638,1977,15-18
    [18]R. C. Nelson, J. B. Lawson, D. R. Thigpen, G. L. Stegemeier. Measurement of Short-Term Low Dynamic Interfacial Tensions:Application to Surfactant Enhanced Alkaline Flooding in Enhanced Oil Recovery SPE/DOE Paper 12672.1984,11-16
    [19]P. J. Schuler, R. M. Lerner, D. L.Kuehne. Improving Chemical Flood Efficiency with Micellar/Alailne/Polymer Process. SPE/DOE Paper 14934.1986:25-27
    [20]K. C. Taylor, B. F. Hawkins, M. R. Islam. Studies of Synergism/Antagonism for Lowering Dynamic Interfacial Tensions in Surfactant/Alkali/Acidic Oil Systems. J. Can. Pet. Technol..1990,29-50
    [21]康万利,胡靖邦等.二元复合体系/大庆原油间的动态低界面张力研究.化学与粘合.1997,(4):202
    [22]K. C. Taylor, B. F. Hawkins, M. Rafiq Islam. Dynamic Interfacial Tension in Surfactant Enhanced Alkaline Flooding. JCPT.1990,29(1):6-7
    [23]M. J. Pitts. Alkaline-Surfactant-Polymer Flooding Prepared for Daqing Petroleum Institute. June 1999,45-51
    [24]M. J. Rosen, H. Z. Wang, P. P. Shen, Y. Y. Zhu. Ultralow Interfacial Tension for Enhanced Oil Recovery at Very Low Surfactant Concentrations. Langmuir.2005, 21(9):3749-3756
    [25]K. S. Chan, D. O. Shah著,杨承志译.在油-盐水界面上产生超低界面张力所需的物化条件.化学驱提高石油采收率.石油工程出版社.1998:43-47
    [26]J. Rudin, C. Bernard, D. T. Wasan. Effect of Added Surfactant on Interfacial Tension and Spontaneous Emulsification in Alkali/Acidic Oil Systems. Industrial and Engineering Chemistry Research.1994,33(5):1150-1158
    [27]J. Rudin, D. T. Wasan. Mechanisms for Lowering of Interfacial Tension in Alkali/Acidic Oil Systems. I:Experimental Studies. Colloids and Surfaces.1992, 68(1-2):67-69
    [28]J. Rudin, D. T. Wasan. Mechanisms for Lowering of Interfacial Tension in Alkali/Acidic Oil Systems. I:Theoretical Studies. Colloids and Surfaces.1992, 68(1-2):81-94
    [29]杨金华,曹亚,李惠林..高分子表面活性剂与原油形成超低界面张力的研究.精细化工.1999,2:3-6
    [30]杨振宇.三元复合驱驱油机理研究取得了重要突破.大庆石油地质与开发.2001,20(2):9
    [31]Y. C. Chiu, P. R. Kuo. An Empirical Correlation between Low Interfacial Tension and Micellar Size and Solubilization for Petroleum Sulfonates in Enhanced Oil Recovery. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1999,152(3): 235-244
    [32]水玲玲,郑利强,刘少杰,陈华,李干佐.双子表面活性剂的研究进展.日用化学工业.2001,2:28
    [33]唐世华,黄建滨,李子臣,王传忠,李锰.Gemini(孪联)表面活性剂的界面性质与 应用.日用化学工业.2001,6:26
    [34]R. Zana, Y. Talmon. Dependence of Aggregate Morphology on Structure of Dimeric Surfactants. Nature.1993,362:228-23
    [35]M. J. Rosen. Geminis:A New Generation of Surfactants. Chem. Tech..1993,30-33
    [36]付冀峰,杨建新,徐宝财.二聚表面活性剂的制备、性质和应用.精细化工.2001,18(1):14-17
    [37]赵剑曦.新一代表面活性剂:Geminis.化学进展.1999,11(4):348-357
    [38]R. Zana. Dimeric and Oligomeric Surfactants:Behavior at Interface and In Aqueous Solution:A Review. Advances in Colloid and Interface Science.2002,97:205-253
    [39]唐世华,黄建滨,李子臣等.Gemini表面活性剂研究的新进展.自然科学进展.2001,11(12):1240-1251
    [40]Y. P. Zhu, A. Masuyama, M. Okahara. Preparation and Surface Active Properties of Amphipathic Compounds with Two Sulfate Groups and Two Lipophilic Alkyl Chains. J. Am. Oil Chem. Soc.1990,67:459-463
    [41]Y. P. Zhu. Double-Chain Surfactants with Two carboxylate Groups and Their Relation to Similar Double-Chain Compouds. J. Colloid Interf. Sci..1993,158:40-45
    [42]朱森.Gemini阴离子表面活性剂结构与性能研究.硕士论文.2003.
    [43]M. J. Rosen, L. Liu. Surface Active and Premicellar Aggregation of Some Novel Diquaternary Gemini Surfactants. J. Am. Oil Chem. Soc..1996,73(7):885-890
    [44]M. J. Rosen, Z. H. Zhu, T. Gao. Dynamic Surface Tension of Aqueous Surfactant Solutions. J. Colloid Interface Sci..1993,157:254
    [45]刘庆旺,许琳.一种新型驱油剂的合成及评价.科学技术与工程.2009,9(12):3237-3239
    [46]H. Chen, L. J. Han, P. Y. Luo, Z. B. Ye. The Interfacial Tension between Oil and Gemini Surfactant Solution. Surface Science.2004,552(1-3):L53-L57
    [47]杨光,叶仲斌,韩明,张健.阳离子双子表面活性剂降低油水动态界面张力的实验研究.中国海上油气.2007,19(4):244-246
    [48]赵田红,胡星琪,王忠信,赵法军.磺酸盐系列孪连表面活性剂的合成与驱油性能.油田化学.2008,25(3):268-271
    [49]何更生.油层物理.北京:石油工业出版社.1994:179-180
    [50]李豪,褚奇,闫书一,房祥华,曹杰,梁渠.双子(Gemini)表面活性剂合成及性能评价.断块油气田.2009,16(5):110-112
    [51]张永明,朱红,夏建华,孙正贵,张健,王芳辉.磺酸盐型Gemini表面活性剂的合成及在三次采油中的应用研究.北京交通大学学报.2007,31(3):100-103
    [52]P. M. D. Wilson, C. F. Brandner. Aqueous Surfactant Solutions Which Exhibit Ultra-Low Tensions at the Oil-Water Interface. J. Coll. Int. Sci..1977,60(3): 473-479
    [53]陈咏梅,焦丽梅,李之平.石油磺酸盐中极性组分的协同效应.石油学报.1999,20(2):73-78
    [54]张路,罗澜,赵濉,俞稼镛.油相性质对水相中混合表面活性剂协同效应的影响.油田化学.2000,17(3):268-271
    [55]吴江勇,于芳,吴巍.氨基磺酸两性Gemini的制备及驱油性能.研发前沿.2009,17(21):25-27
    [56]于丽等.羧酸盐类Gemini表面活性剂二元复合驱配方的研究.油气地质与采收率.2008,15(6):59-62
    [57]岳泉,唐善法,朱洲,郝明耀.油气开采用新型硫酸盐型Gemini表面活性剂.断块油气田.2008,15(2):52-53
    [58]朱森,程发,郑宝红,于九皋.Gemini阴离子表面活性剂水溶液的界面活性.应用化学.2005,22(7):792-795
    [59]T. Welton. Room Temperature Ionic Liquids:Solvents for Synthesis and Catalysis. Chemical Reviews.1999,99(8):2071-2083
    [60]K. N. Marsh, J. A. Boxall, R. Lichtenthaler. Room Temperature Ionic Liquids and Their Mixtures-a Review. Fluid Phase Equilibria.2004,219:93-98
    [61]P. Wasserseheid, W. Keim. Ionic Liquids-New "Solutions" for Transition Metal Catalysis. Angew. Chem. Int. Ed..2000,39:3772-3778
    [62]C. E. Song, W. H. Shim, E. J. Roh. Chem. Comm..2001,5(12):1112-1113
    [63]C. M. Gordon, A. M. Cluskey, Chem. Comm..1999,1(5):1431-1433
    [64]G. Wytze Meindelsma, Andre B. de Haan. Fluid Processing Technology.2005,87(1): 59-79
    [65]赵国玺.表面活性剂物理化学.北京:北京大学出版社.1991
    [66]C. Jork, M. Seiler, Y.-A. Beste, W. Arlt. Influence of Ionic Liquids on the Phase Behavior of Aqueous Azeotropic Systems. J. Chem. Eng. Data.2004,49(4):852-857
    [67]郭文希,高鹏,张妹妍,毛微.室温离子液体的理化性能.辽宁化工.2003,32(6):256-259
    [68]J. E. L. Dullius, P. A. Z. Suarez, S. Einloft, R. F. de Souza, J. D. J. Fischer, A. de Cian. Selective Catalytic Hydrodimerization of 1,3-Butadiene by Palladium Compounds Dissolved in Ionic Liquids. Organometallics.1998,17:815-819
    [69]T. Lu, J. B. Huang, Z. H. Li, S. K. Jia, H. L. Fu. Effect of Hydrotropic Salt on the Assembly Transitions and Rheological Responses of Cationic Gemini Surfactant Solutions. J. Phys. Chem. B.2008,112(10):2909-2914
    [70]B. Sohrabi, H. Gharibi, B. Tajik, S. Javadian, M. Hashemianzadeh. Molecular Interactions of Cationic and Anionic Surfactants in Mixed Monolayers and Aggregates. J. Phys. Chem. B.2008,112(47):14869-14876
    [71]Yan An Gao, Z. N. Wang, J. Zhang, W. G. Hou, G. Z. Li, B. X. Han, F. F. Lii, G. Y. Zhang. Study on the Surface Property of Surfactant Ionic Liquids Solutions. Chinese Chemical Letters.2005,16(7):963-966
    [72]J. Eastoe, S. Gold S. E. Rogers, A. Paul, T. Welton, R. K. Heenan, I. Grillo. Ionic Liquid-in-Oil Microemulsions. J. Am. Chem. Soc.2005,127(20):7302-7303
    [73]K. Behera, P. Dahiya, S. Pandey. Effect of Added Ionic Liquid on Aqueous Triton X-100 Micelles. Journal of Colloid and Interface Science.2007,307:235-245
    [74]K. Behera, S. Pandey. Interaction between Ionic Liquid and Zwitterionic Surfactant:A Comparative Study of Two Ionic Liquids with Different Anions. Journal of Colloid and Interface Science.2009,331:196-205
    [75]雷声,张晶,黄建滨.离子液体[BMim]BF4对SDS水溶液表面活性和聚集能力的促进.物理化学学报.2007,23(11):1657-1661
    [76]D. Varade, P. Bahadur. Effect of Hydrotropes on the Aqueous Solution Behavior of Surfactants. J. Surfact. Deterg..2004,7(3):257
    [77]J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares. D. W. Arstrong. Surfactant Solvation Effects and Micelle Formation in Ionic Liquids. Chem. Comm..2003: 2444-2445
    [78]L. Zheng, C. Guo, J. Wang, X. F. Liang, S. Chen, J. H. Ma, B. Yang, Y. Y. Jiang, H.Z. Liu. Effect of Ionic Liquids in Aqueous Solution. J. Phys. Chem. B.2007, 111:1327-1333
    [79]A. Adhikari, S. Dey, D. K. Das, U. Mandal, S. Ghosh, K. Bhattacharyya. Solvation Dynamics in Ionic Liquid Swollen P123 Triblock Copolymer Micelle:A Femtosecond Excitation Wavelength Dependence Study. J. Phys. Chem. B.2008,112:6350-6357
    [80]K. Behera, S, Pandey. Concentration-Dependent Dual Behavior of Hydrophilic Ionic Liquid in Changing Properties of Aqueous Sodium Dodecyl Sulfate. J. Phys. Chem. B. 2007,111:13307-13315
    [81]Ping Guo, Rong Guo. Ionic Liquid Induced Transition from Worklike to Rod or Spherical Micelles in Mixes Nonionic Surfactant Systems. J. Chem. Eng. Data.2010, ⅹⅹⅹⅹ,ⅹⅹⅹ
    [82]K. A. Fletcher, S. Pandey. Surfactant Aggregation within Room-Temperature Ionic Liquid 1-Ethyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide. Langmuir. 2004,20:33-36
    [83]H. Sifaoui, K. Lugowska, U. Domanska, A. Modaressi, M. Rogalski. Ammonium Ionic Liquid as Modulator of the Critical Micelle Concentration of Ammonium Surfactant at Aqueous Solution:Conductimetric and Dynamic Light Scattering(DLS) Studies. Journal of Colloid and Interface Science.2007,314:643-650
    [84]A. Bernheim-Groswasser, R. Zana, Y. Talmon. Sphere-to-Cylinder Transition in Aqueous Micellar Solution of a Dimeric (Gemini) Surfactant. J. Phys. Chem. B.2000, 104:4005-4009
    [85]S. J. Ryhanen, A. L. Pakkanen, M. J. Saily, C. Bello, G. Mancini, P. K. J. Kinnunen. Impact of the Stereochemical Structure on the Thermal Phase Behavior of a Cationic Gemini Surfactant. J. Phys. Chem. B.2002,106:11694-11697
    [86]X. Y. Wang, J. B. Wang, Y. L. Wang, J. P. Ye, H. Y. K. Thomas. Micellization of a Series of Dissymmetric Gemini Surfactants in Aqueous Solution. J. Phys. Chem. B. 2003,107:11428-11432
    [87]T. Lu, F. Han, G. R. Mao, G. F. Lin, J. B. Huang, X. Huang, Y. L. Wang, H. L. Fu. Effect of Hydrocarbon Parts of the Polar Headgroup on Surfactant Aggregates in Gemini and Bola Surfactant Solutions. Langmuir.2007,23:2932-2936
    [88]L. D. Song, M. J. Rosen. Surface Properties, Micellization, and Premicellar Aggregation of Gemini Surfactants with Rigid and Flexible Spacers. Langmuir.1996, 12:1149-1153
    [89]E. Junquera, L. Pena, E. Aicart. Micellar Behavior of the Aqueous Solutions of Dodecylethyldimethylammonium Bromide. A Characterization Study in the Presence and Absence of Hydroxypropyl-β-cyclodextrin. Langmuir.1997,13:219-224
    [90]R. Oda, Laurent BourdieuMarc Schmutz. Micelle to Vesicle Transition Induced by Cosurfactant:Rheological Study and Direct Observations. J. Phys. Chem. B.1997, 101:5913-5916
    [91]D. Varade, C. Rodriguez-Abreu, L. K. Shrestha, K. Aramaki. Wormlike Micelles in Mixed Surfactant Systems:Effect of Cosolvents. J. Phys. Chem. B.2007,111: 10438-10447
    [92]V. Weber, T. Narayanan, E. Mendes, F. Schosseler. Micellar Growth in Salt-Free Aqueous Solutions of a Gemini Cationic Surfactant:Evidence for a Multimodal Population of Aggregates. Langmuir.2003,19:992-1000
    [93]L. Wattebled, A. Laschewsky. Effects of Organic Salt Additives on the Behavior of Dimeric ("Gemini") Surfactants in Aqueous Solution. Langmuir.2007,23: 10044-10052
    [94]J. E. Klijn, M. C. A. Stuart, M. Scarzello, A. Wagenaar, J. B. F. N. Engberts. pH-Dependent Phase Behavior of Carbohydrate-Based Gemini Surfactants. Effect of the Length of the Hydrophobic Spacer. J. Phys. Chem. B.2006,110:21694-21700
    [95]D. Grabner, L. Zhai, Y. Talmon, J. Schmidt, N. Freiberger, O. Glatter, B. Herzog, H. Hoffmann. Phase Behavior of Aqueous Mixtures of 2-Phenylbenzimidazole-5-sulfonic Acid and Cetyltrimethylammonium Bromide:Hydrogels, Vesicles, Tubules, and Ribbons. J. Phys. Chem. B.2008,112:2901-2908
    [96]T. Lu, J. B. Huang, D. H. Liang. Salt Effect on Microstructures in Cationic Gemini Surfactant Solutions as Studied by Dynamic Light Scattering. Langmuir.2008,24: 1740-1744
    [97]Z. Gu, J. F. Brennecke. Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-Based Ionic Liquids. J. Chem. Eng. Data.2002,47(2): 339-345
    [98]H. J. Gong, X. Xin, G. Y. Xu, Y. J. Wang. The dynamic interfacial tension between HPAM/C17H33COONa mixed solution and crude oil in the presence of sodium halide. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,317(1-3): 522-527
    [99]B. Vonnegut. Rotating Bubble Method for the Determination of Surface and Interfacial Tensions. Review of Scientific Instruments.1942,13:6-9
    [100]蒲燕,李红英,张祥良,吴一慧,何涛,黄宏度.不同链长石油羧酸盐和不同碳数纯烃之间的界面张力.油田化学.2003,20(2):160-162
    [101]Z. K. Zhao, C. G. Bi, Z. S. Li, W. H. Qiao, L. B. Cheng. Interfacial Tension Between Crude Oil and Decylmethylnaphthalene Sulfonate Surfactant Alkali-Free Flooding Systems. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006, 276(1-3):186-191
    [102]管红霞,蒋生祥,赵亮,刘霞,翁蕊,杨普华.大庆原油中界面活性组分研究.油田化学.2002,19(4):358-361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700