用户名: 密码: 验证码:
Fe/SiO_2纳米复合材料的微结构与磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,铁磁性金属-氧化物纳米复合材料由于其特殊的磁性和在高效微波吸收剂方面的潜在应用价值而受到广泛的关注和研究。在本工作中,我们以铁磁性金属-氧化物纳米复合材料中具有代表性的Fe/SiO2纳米复合材料为研究对象,开展了对其微结构、磁性及微波性能的研究。研究内容包括:(1)铁磁性金属颗粒间偶极相互作用对体系磁性的影响;(2)铁磁性金属-氧化物纳米复合材料在高频段的微波吸收机制。主要研究结果如下:
     (1)本工作通过Fe203与Si粉末的机械化学反应制备了不同Fe含量的Fe/SiO2纳米复合材料。对Fe/SiO2纳米复合材料微结构的分析表明,Fe颗粒为单晶并随机分散在非晶SiO2基体中。在非晶SiO2基体中,Fe颗粒的形貌为等轴或准球形;Fe颗粒尺寸分布较窄,平均颗粒尺寸在11nm左右,并且在Fe含量为22~51wt%之间,颗粒尺寸基体保持不变。
     (2)在Fe/SiO2纳米复合材料中,Fe颗粒之间的偶极相互作用不仅对Fe颗粒的磁性状态有影响,而且对颗粒磁矩的排布产生影响。这种影响主要表现在,随着Fe含量的增加,Fe颗粒之间偶极相互作用强度随之加强,从而使超顺磁Fe颗粒的磁化强度反转的能量壁垒增加。这使得超顺磁Fe颗粒的磁化强度有可能克服热扰动,从超顺磁态转变为铁磁态。与此同时,Fe颗粒的磁矩从随机取向逐渐形成局部的链状结构,然后又形成闭合磁路结构。这种磁矩排布的变化导致Fe/SiO2纳米复合材料的矫顽力与剩磁比随Fe含量增加表现出先增加后减小的变化规律。
     (3)不同Fe含量的Fe/SiO2纳米复合材料与石蜡混合物的磁导率虚部μ″在1~16 GHz的频率范围内表现出一个宽的共振峰。理论计算和分析表明这个宽的共振峰来源于自然共振和交换共振的叠加。影响自然共振频率和交换共振频率的主要因素是Fe颗粒的表面各向异性。对于自然共振,由于表面各向异性的存在,共振频率向高频移动。对于交换共振,表面各向异性改变了共振频率与颗粒尺寸之间的指数关系,使颗粒尺寸的指数增加。(4)对不同Fe含量的Fe/SiO2纳米复合材料与石蜡混合物的反射损耗(RL)计
     算表明,当混合物的厚度不变时,随着Fe含量的增加,混合物的RL值逐渐减小,说明混合物的微波吸收性能随Fe含量的增加逐渐提高。对于Fe含量为51wt%的样品,当混合物的厚度在1.4~2.0 mm之间时,RL小于-20 dB(99%的吸收率)的频宽为9.6~17.1 GHz。当该样品的厚度为1.5 mm时,在14.9 GHz,RL出现最小值-33 dB。
Nanocomposites composed of ferromagnetic nanoparticles dispersed in oxide matrix have attracted much attentions because of their special magnetic properties and potential applications as microwave absorbers. In this work, the microstructure and magnetic properties of Fex(SiO2)1-x nanocomposties have been studied to understand the effect of interparticle dipolar interactions on the magnetic properties of system and the microwave absorption mechanism in ferromagnetic metal-oxide nanocomposites.
     The Fes(SiO2)1-x nanocomposites were synthesized by mechanochemical reduction reaction of Fe2O3 and Si powders. The Fex(SiO2)1-x nanocomposites of the single crystal Fe nanoparticles with equiaxed (or quasi-sphere) shape dispersed randomly in the amorphous SiO2 matrix were preprared. The Fe nanoparticles in the Fex(SiO2)1-x nanocomposites have a narrow particle size distribution; and the Fe average particle size of about 11 nm keeps almost unchanged for the Fe contents x between 22wt% and 51wt%.
     It has been shown that the interparticle dipolar interactions have an effect not only on the magnetic state of Fe particles but also on the moment arrangements of the Fe particles. With increasing x, the dipolar interaction strength among the Fe particles increases. The surperparamagnetic Fe particles in Fes(SiO2)1-x nanocomposites become blocked, which may be due to that the dipolar interaction increases the energy barrier for the magnetization reverse. The moment arrangements of the Fe particles change from the random orientation to the local "chain-like" arrangements and then to locally forming flux-closure arrangements, which leads to the first increase and then decrease of the coercivity and remanence ratio.
     The study of microwave absorption mechanism in the Fex(SiO2)1-x nanocomposites indicates that a broad resonance band in the 1-16 GHz range observed in these nanocompsites results from the overlap of the natural resonance and exchange resonance. The natural resonance and exchange resonance frequencies depend on the surface anisotropy of the Fe nanoparticles. The enhanced surface anisotropy resulting from the reduced Fe particle size shifts the natural resonance to high frequency. For exchange resonance, the surface anisotropy weakens the dependence of exchange resonance frequency on the square of the reciprocal particle size.
     The reflection loss (RL) values calculated for the Fex(SiO2)1-x nanocomposites-paraffin mixtures reveal that their microwave absorption performance is improved with increasing x when the thickness of the mixtures keeps unchanged. For the mixture with thickness of 1.4-2.0 mm and x=51wt%, the frequency band of the RL values smaller than-20 dB, corresponding to a microwave absorption of 99%, is from 9.6 to 17.1 GHz. A minimum RL of-33 dB is reached at 14.9 GHz for this mixture with the thickness of 1.5 mm.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社,2002:6.
    [2]Kubo R. Electronic Properties of Metallic Fine particles. Ⅰ. [J]. J Phys Soc Jpn. 1962,17:975.
    [3]Kawabata A, Kubo R. Electronic Properties of Metallic Fine particles.Ⅱ. Plasma Resonance Absorption [J]. J Phys Soc Jpn 1966,21:1765.
    [4]Gleiter H and Marquardt P. Nanocrystalline-an Approach to New Materials [J]. Metallkd Z,1984,75:263.
    [5]徐国才,张立德.纳米材料和纳米结构[M].北京:科学出版社,2002:6.
    [6]Frenkel J and Dorfman J. Spontaneous and induced magnetisation in ferromagnetic bodies [J]. Nature,1930,126:274.
    [7]Kittel C. Theory of the structure of ferromagnetic domains in films and small particles [J]. Phys Rev.1946,70:965.
    [8]Gong W, Li H, Zhao Z and Chen J. Ultrafine particles of Fe, Co and Ni ferromagnetic metals [J]. J Appl Phys,1991,69:5119.
    [9]Bean C P, Livingston J D, and Rodbell D S. The anisotropy of very small cobalt particles [J]. J Phys-Paris,1959,20:298.
    [10]X. G. Li, T. Murai, A. Chiba, and S. Takahashi. Particle features, oxidation behaviors and magnetic properties of ultrafine particles of Ni-Co alloy prepared by hydrogen plasma metal reaction [J]. J Appl Phys,1999,86:1867.
    [11]Corner W D and P. A. Mundell. Properties of ferromagnetic micropowders [J]. J Magn Magn Mater,1980,20:148.
    [12]Gong W, Li H, Zhao Z, and Chen J. Ultrafine particles of Fe, Co, and Ni ferromagnetic metals [J]. J Appl Phys,1991,69:51 19.
    [13]Khanna S N. Magnetic behavior of cluster of ferromagnetic transition metals [J]. Phys Rev Lett,1991,67:742.
    [14]Billas I M L, Chatelain A, and de Heer W A. Magnetism From the Atom to the Bulk in Nickel, Cobalt and Iron Clusters [J]. Science,1994,265:1682.
    [15]Billas I M L, Chatelain A, and de Heer W A. Magnetism of Fe, Co and Ni Clusters in Molecular Beams [J]. J Magn Magn Mater,1997,168:64.
    [16]de Heer W A, Milani P, and Chtelain A. Spin relaxation in small free iron clusters [J]. Phys Rev Lett,1990,65:488.
    [17]Bucher J P, Douglass D C, and Bloomfield L A. Magnetic properties of free cobalt clusters [J]. Phys Rev Lett,1991,66:3052.
    [18]Douglass D C, Cox A J, Bucher J P, and Bloomfield L A. Magnetic properties of free cobalt and gadolinium clusters [J]. Phys Rev B,1993,47:12874.
    [19]Rao B K, Debiaggi S R, and Jena P. Structure and magnetic properties of Fe-Ni clusters [J]. Phys Rev B,2001,64:024418.
    [20]Chen J P, Sorensen C M, Klabunde K J, and Hadjipanayis G C. Enhanced magnetization of nanoscale colloidal cobalt particles [J]. Phys Rev B,1995,51: 11527.
    [21]Coey J M D. Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites [J]. Phys Rev Lett,1971,27:1140.
    [22]Haneda K, Kojima H, Morrish A H, Picone P J, and Wakai K. Non-collinearity as size effect of CrO2 small particles [J]. J Appl Phys,1982,53:2686.
    [23]Kodama R H, Berkowitz A E, McNiff E J, and Foner S. Surface spin disorder inNiFe2O4 nanoparticles [J]. Phys Rev Lett,1996,77:394.
    [24]Lin D, Numes A C, Majkrzak C F, and Berkowitz A E. Polarized neutron study of themagnetization density distribution within a CoFe2O4 colloidal particle [J]. J MagnMagn Mater,1995,145:343.
    [25]Jiang J Z, Goya G F, and Rechenberg H R. Magnetic properties of nanostructured CuFe2O4 [J]. J Phys:Condens Matter,1999,11:4063.
    [26]Pankhurst Q A and Pollard R J. Origin of the spin-canting anomaly in small ferromagnetic particles [J]. Phys Rev Lett,1991,67:248.
    [27]Parker F T, Foster M W, Margulies D T, and Berkowitz A E. Spin canting, surface magnetization, and finite-size effects in gamma Fe2O3 particles [J]. Phys Rev B, 1993,47:7885.
    [28]Vanleeuwen D A, Vanruttenbeek J M, Dejongh L J, Ceriotti A, Pacchioni G, Haberlen O D, and Rosch N. Quenching of magnetic moments by ligand-metal interactions in nanosized magnetic metal clusters [J]. Phys Rev Lett,1994,73: 1432.
    [29]Feigerle C S, Seiler A, Pena J L, Celotta R J, and Pierce D T. CO chemisorption on Ni (110):effect on surface magnetism [J]. Phys Rev Lett,1986,56:2207.
    [30]Xiong C S, Yu K N, and Xiong Y H. The microstructure and magnetic properties of nanocomposite Fex(SiO2)1-x materials [J]. Nanostruct Mater,1999,11:477.
    [31]Dormann J L, Djega-Mariadassou C, and Jove J. Magnetic structure of fine Fe particles included in an alumina matrix [J]. J Magn Magn Mater,1992,104:1567.
    [32]Jiang B, Yang D S, Ulyanov A N, and Yu S C. Local structure and magnetic properties of mechanical alloyed Co-C compositions [J]. J Appl Phys,2004,95: 7115.
    [33]Neel L. Anisotropie magnetique superficielle et surstructures d'orientation [J]. J Phys Rad,1954,15:225.
    [34]Chen J P, Sorensen C M, Klabunde K J, and Hadjipanayis G C. Magnetic properties of nanophase cobalt particles synthesized in inversed micelles [J]. J Appl Phys,1994,76:6316.
    [35]Luis F, Torres J M, Garcia L M, Bartolome J, Stankiewicz J, Petroff F, Fettar F, Maurice J L, and Vaures A. Enhancement of the magnetic anisotropy of nanometer-sized Co clusters:Influence of the surface and of interparticle interactions [J]. Phys Rev B,2002,65:094409.
    [36]Hickey B J, Howson M A, Greig D, and Wiser N. Enhanced magnetic anisotropy energy density for superparamagnetic particles of cobalt [J]. Phys Rev B,1996, 53:32.
    [37]Neel L. Anisotropie magnetique superficielle et surstructures dorientation [J]. J Phys-Paris,1954,15:225.
    [38]Aharoni A. Magnetization buckling in elongated particles of coated iron-oxides [J]. J Appl Phys,1988,63:4605.
    [39]Bodker F, Morup S, and Linderoth S. Surface effects in metallic iron nanoparticles [J]. Phy Rev Lett,1994,72:282.
    [40]Kechrakos D and Trohidou K N. Effects of dipolar interactions on the magnetic properties of granular solids [J]. J Magn Magn Mater,1998,177:943.
    [41]Brandl A L, Socolovsky L M, Denardin J C, and Knobel M. Effects of dipolar interactions on magnetic properties of granular solids [J]. J Magn Magn Mater, 2005,294:127.
    [42]Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans Magn,1990,26:1397.
    [43]Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets [J]. IEEE Trans Magn,1989,25:3327.
    [44]Herzer G. Soft magnetic nanocrystalline materials [J]. Scripta Metall Mater,1995, 33:1741.
    [45]秦嵘,陈雷.国外新型隐身材料研究动态[J].宇航材料工艺,1997,27:17.
    [46]邱慧中,江辉.国外巡航导弹用材料及工艺[J].宇航材料工艺,1998,28:9.
    [47]刘列,于翘.吸波涂层材料技术的现状和发展[J].宇航材料工艺,1994,24:1.
    [48]邢丽英.隐身材料[M].北京:化学工业出版社,2004:78.
    [49]Benjamin J S. Mechanical alloying [J]. Sci Amer 1976,234:40.
    [50]Ermakov A E, Yurchikov E E, and Barinov V A. Amorphous transition in intermetallic compounds induced by high ball milling [J]. Phys Met Metallogr 1981,52:50.
    [51]Koch C C, Cavin O B, Mckamey C G, and Scarbrough J O. Preparation of amorphous Ni6oNb4o by mechanical alloying [J]. Appl Phys Lett 1983 43:1017
    [52]Eckert J, Schultz L, and Urban K. Formation of quasicrystals by mechanical alloying [J]. Appl Phys Lett 1989,55:117.
    [53]Ivanov E, Konstanchuk I F, Bokhonov B D, and Boldyre V V. Mechanochemical synthesis of icosahedral pahases in Mg-Zn-Al and Mg-Cu-Al [J]. Reactivity of solids 1989,7:167.
    [54]Oehring M, Yan Z H, Klassen T, and Bormannn R. Competition between stable and metastable phases during mechanical alloying [J]. Phys Stat Sol (a) 1992, 131:671.
    [55]Barinov V A, Tsruin V A, Elsukov E P, Ovechkin L V, Dorofeev G A, and Ermakov A E. Phase changes in deformed Fe2B powders [J]. Phys Metals and Metallgr 1992; 74:412.
    [56]Uenishi K, Kobayashi KF, Ishihara KN, and Shingu P H. Mechanical alloying in the Fe-Cu system [J]. Mater Sci and Engng,1991, A134:1342.
    [57]Najafabadi R, Srolovitz D J, Ma E, and Atzmon M. Thermodynamic properties of metastable Ag-Cu alloys [J]. J Appl Phys,1993,74:3144.
    [58]Thompson J R and Politis C. Formation of Amorphous Ti-Pd Alloys by Mechanical Alloying Methods [J]. C. Europhys Lett,1987,3:199.
    [59]Liou S H and Chen C. L. Granular metal as recording media [J]. Appl Phys Lett, 1981,52:512.
    [60]Luo C P and Sellmyer D J. Structural and magnetic properties of FePt:SiO2 granular thin films [J]. Appl Phys Lett,1999,75:3162.
    [61]Watanabe M, Masumoto T, Ping D H, and Hono K. Microstructure and magnetic properties of FePt-Al-O granular thin films [J]. Appl Phys Lett,2000,76:3971.
    [62]White C W, Withrow S P, Sorge K D, Meldrum A, and Budai J D. Oriented ferromagnetic Fe-Pt alloy nanoparticles produced in Al2O3 by ion-beam synthesis [J]. J Appl Phys,2003,93:5656.
    [63]Pakhomov A B, Yan X, and Xu Y. Observation of giant hall effect in granular magnetic films [J]. J Appl Phys,1996,79:6140.
    [64]Tang N J, Chen W, Zhong W, Jiang H Y, Huang S L, and Du Y W. Highly stable carbon-coated Fe/SiO2 composites:synthesis, structure and magnetic properties [J]. Carbon,2006,44:423.
    [65]Tang N J, Jiang H Y, Zhong W, Wu X L, Zou W Q, and Du Y W. Synthesis and magnetic properties of Fe/SiO2 nanocomposites prepared by a sol-gel method combined with hydrogen reduction [J]. J Alloys Compd,2006,419:145.
    [66]Tang N J, Zhong W, Liu W, Jiang H Y, Wu X L, and Du Y W. Synthesis and complex permeability of Ni/SiO2 nanocomposite [J]. Nanotechnology,2004,15: 1756.
    [67]Tang N J, Zhong W, Jiang H Y, Han Z D, Zou W Q, and Du Y W. Complex permeability of FeNi3/SiO2 core-shell nanoparticles [J]. Solid State Commun, 2004,132:71.
    [68]Wu M Z, Zhang Y D, Hui S, Xiao T D, Ge S H, Hines W A, Budnick J I, and Taylor G W. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles [J]. Appl Phys Lett,2002,80:4404.
    [69]Zhang Y D, Wang S H, Xiao D T, Budnick J I, and Hines W A. Nanocomposite Co/SiO2 Soft Magnetic Materials [J]. IEEE Trans Magn,2001,37:2275.
    [70]Liu W, Zhong W, Jiang H Y, Tang N J, Wu X L, and Du Y W. Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method [J]. Surf Coat Technol,2006,200:5170.
    [71]Liu J R, Itoh M, and Machida K. Electromagnetic wave absorption properties of a-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range [J]. Appl Phys Lett,2003,83: 4017.
    [72]Linderoth S and Pedersen M S. Fe-Al2O3 nanocomposites prepared by high-energy ball milling [J]. J App Phys,1994,75:5867.
    [73]Sort J, Nogues J, Amils X, Surinach S, Munoz J S, and BaroM D. Room-temperature coercivity enhancement in mechanically alloyed antiferromagnetic-ferromagnetic powders [J]. Appl Phys Lett,1999,75:3177.
    [74]Alonso-Sanudo M, Blackwell J J, O'Grady K, Gonzalez J M, Cebollada F, and Morales M P. Magnetic behaviour and percolation in mechanically alloyed Fe-SiO2 granular solids [J]. J Magn Magn Mater,2000,221:207.
    [75]Ambrose T, Gavrin A, and Chien C L. Formation and magnetic properties of nanocomposite Fe-Al2O3 using high-energy ball milling [J]. J Magn Magn Mater, 1992,116:L311.
    [76]Giri A K. Magnetic properties of Fe-Al2O3 gel granular solids prepared by ball milling [J]. Mater Res Bull,1997,32:523.
    [77]Pardavi-Horvath M, and Takacs L. Iron-Alumina Nanocomposites Prepared by Ball Milling [J]. IEEE Trans Magn,1992,28:3186.
    [78]Corrias A, Ennas G, Musinu A, Paschina G, and Zedda D. Iron-silica and nickel-silica nanocomposites prepared by high energy ball milling [J]. J Mater Res,1997,12:2767.
    [79]Takacs L and Pardavi-Horvath M. Nanocomposite formation in the Fe2O3-Zn system by reaction milling [J]. J Appl Phys,1994,75:5864.
    [80]Li J, Ni X, and Wang G. Microstructure and magnetic properties of Co/Al2O3 nanocomposite powders [J]. Alloys Compd,2007,440:349.
    [81]Cuadrado-Laborde C, Damonte L C, Mendoza-Zelis L, Socolovsky L M, and Torriani I L. Magnetic characterization of the mechanically induced thermite reaction between Fe2O3 and Al [J]. Physica B,2004,354:125.
    [82]Sugimoto S, Maeda T, Book D, Kagotani T, Inomata K, Homma M, Ota H, Houjou Y, and Sato R. GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen [J]. J Alloys Compd, 2002,330:301.
    [83]Geng D Y, Zhang Z D, Zhang W S, Si P Z, Zhao X G, Liu W, Hu K Y, Jin Z X, and Song X P. Al2O3 coated a-Fe solid solution nanocapsules prepared by arc discharge [J]. Scripta Materialia,2003,48:593.
    [84]Turgut Z, Nuhfer N T, Piehler H R, and McHenry M E. Magnetic properties and microstructural observations of oxide coated FeCo nanocrystals before and after compaction [J]. J Appl Phys,1999,85:4406.
    [85]Wu M Z, Zhang Y D, Hui S, Xiao T D, Ge S H, Hines W A, and Budnick J I. Structure and magnetic properties of SiO2-coated Co nanoparticles [J]. J Appl Phys,2002,92:491.
    [86]Giri A K, de Julian C, and Gonzalez J M. Coercivity of Fe-SiO2 nanocomposite materials prepared by ball milling [J]. J Appl Phys,1994,76:6573.
    [87]de Julian C, Perez Alcazar G A, Cebollada F, Montero M I, Gonzalez J M, and Marco J F. Mossbauer analysis of the phase distribution present in nanoparticulate Fe/SiO2 samples [J]. J Magn Magn Mater,1999,203:175.
    [88]Axtell S C and Schalek R. Magnetic properties and grain growth stability of nanocomposite Fe-ZrO2 granular solids prepared by mechanical milling [J]. J Appl Phys,1996,79:5263.
    [89]Montero M I, Emura M, Cebollada F, Gonzalez J M, Gonzalez E M, and Vicent J L. Coercivity analysis in the Cox/(SiO2)1-x nanoparticulate system [J]. J Magn Magn Mater,1999,203:205.
    [90]Sort J, Nogues J, Amils X, Surinach S, and Baro M D. Room temperature magnetic hardening in mechanically milled ferromagnetic/antiferromagnetic composites [J]. J Magn Magn Mater,2000,219:53.
    [91]Liu J R, Itoh M, and Machida K. GHz Range Absorption Properties of α-Fe/Y2O3 Nanocomposites Prepared by Melt-spun Technique [J]. Chem Lett,2003,32:394.
    [92]Fujieda T, Ikeda S, Suzuki S, Abe T, and Aono Y. Microwave Absorption Properties of Fe-SiO2 Nanocomposite Powder [J]. J Jpn Inst Metals,2002,66: 135.
    [93]Liu X G, Geng D Y, Meng H, Shang P J, and Zhang D Z. Microwave absorption properties of ZnO-coated iron nanoparticles [J]. Appl Phys Lett,2008,92:173117.
    [94]Gangopadhyay S, Hadjipanayis G C, Sorensen C M, and Klabunde K J. Magentic properties of nanostructured material [J]. IEEE Trans Magn,1993,29:2619.
    [95]Blanco-Mantecon M and O'Grady K. Interaction and size effects in magnetic nanopartices [J]. J Magn Magn Mater,2006,296:124.
    [96]Dormann J L, Bessais L, and Fiorani D. A dynamic study of small interacting particles:superparamagnetic model and spin-glass laws [J]. J Phy C,1988,21: 2015.
    [97]Mφorup S and E Tronc. Superparamagnetic Relaxation of Weakly Interaction particles [J]. Phys Rev Lett,1994,72:3278.
    [98]Aharoni A. Exchange Resonance modes in a ferromagnetic sphere [J]. J Appl Phys,1997,81:830.
    [1]宛德福,马兴隆.磁学物理学[M].北京:电子工业出版社,1999.
    [2]廖绍彬.铁磁学(下册)[M].北京:科学出版社,2000.
    [1]Alonso T, Liu Y, Dallimore M P, and McCormick P G. Low temperature reduction of SmCl3 during mechanical milling [J]. Scripta Metall Mater,1993, 29:55.
    [2]Matteazzi P and Le Caer G. Mechanically activated room temperature resuction of sulphides [J]. Mater Sci and Engng,1992, A156:229.
    [3]Scaffer G B and McComick P G. Mechanical alloying [J]. Materials Forum, 1992,16:91.
    [4]Feng D. Metal physics [M]. Beijing:Science press,1987:46.
    [5]席生岐,屈小艳,刘心宽,马明亮,周敬慧,王笑天.高能球磨固态扩散反应研究[J].材料科学与工艺,2000,8:87.
    [6]Xi S, Zhou J, Wang X, and Zhang D. J Mater Sci Lett,1996,15:634.
    [7]Yang H and McCormick P G Reduction of tantalum chloride by magnesium during reaction milling [J]. J Mater Sci Lett,1993,12:1088.
    [8]H. P. Kung and L. E. Alexander. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials [M]. New York:Wiley,1974.
    [9]Warren B E. X-Ray diffraction methods [J]. J Appl Phys,1941,12:375.
    [10]Γ·Η·别洛则尔斯基.表面层穆斯堡尔研究[M].原子能出版社,1996.
    [11]马如璋,徐英庭.穆斯堡尔谱学[M].科学出版社,1996.
    [12]A. M. Nicolson and G. F. Ross. Measurement of intrinsic properties of materials by time domain techniques [J]. IEEE Trans. on IM,1970,19:377.
    [13]J. Baker-Jarvis. Transmission/Reflection and Short-Circuit Line Permittivity Measurements, NIST Technical Note 1341,1990.
    [1]Suryanaryana C. Mechanical alloying and milling [J]. Prog Mater Sci,2001,46:1.
    [2]Granquist C G and Buhrman R A. Ultrafine metal particles [J]. J Appl Phys,1976, 47:2200.
    [3]Host J J, Block J A, Parvin K, Dravid V P, Alpers J L, Sezen T, and La Duca R. Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals [J]. J Appl Phys,1998,82:793.
    [1]Gong W, Li H, Zhao Z, and Chen J. Ultrafine particles of Fe, Co and Ni ferromagnetic metals [J]. J Appl Phys,1991,69:5119.
    [2]Gangopadhyay S, Hadjipanayis G C, Dale B, Sorensen C M, Klabunde K J, Papaefthymiou V, and Kostikas A. Magnetic properties of untrafine iron particles [J]. Phys Rev B,1992,45:9778.
    [3]Stoner E C and Wohlfarth E P.A mechanis of magnetic hysteresis in heterogeneous alloy [J]. Philos Trans R Soc London, Ser. A 1948,599:240A.
    [4]Yuen S, Chen Y, Kubsh J E, Dumesic J A, Topsoe N, and Topsoe H. Metallic oxide-support interactions in silica-supported iron oxide catalyst probed by nitric oxide adsorption [J]. J Phys Chem,1982,86:3022.
    [5]Xiong C S, Yu K N, and Xiong Y H. The microstructure and magnetic properties of nanocomposite Fex(SiO2)1-x materials [J]. Nanostructured Materials,1999,11: 477.
    [6]Dormann J L, Fiorani D, and Tron E. Magnetic relaxtion in fine-particle systems [J]. Adv Chem Phys,1997,98:283.
    [7]Morup S. Superferromagnetic nanostructures [J]. Hyperfine Interact,1994,90: 171.
    [8]Luo W, Nagel S R, Rosenbaum T F, and Rosensweig R E. Dipole interactions with random anisotropy in a frozen ferrofluid [J]. Phys Rev Lett,1991,67:2721.
    [9]Garcia-Otero J, Porto M, Rivas J, and Bunde A. Influence of Dipolar Interaction on Magnetic Properties of Ultrafine Ferromagnetic particles [J]. Phys Rev Lett, 2000,84:167.
    [10]Verdes C, Ruiz-Diaz B, Thompson S M, Chantrell R W, and Stancu A. Computational model of the magnetic and transport properties of interacting fine particles [J]. Phys Rev B,2002,65:174417.
    [11]Kechrakos D and Trohidou K N. Magnetic properties of dipolar interacting single-domain particles [J]. Phys Rev B,1998,58:12169.
    [12]Cowburn R P, Adeyeye A O, and Welland M E. Controlling magnetic ordering in coupled nanomagnet arrays [J]. New J Phys,1999,16:1.
    [13]Sinnecner E H C P, de Menezes F S, Sampaio L C, and Knobel M. Tailoring coercivity in an array of glass-coated microwires [J]. J Magn Magn Mater,2001, 226:1467.
    [14]Kneller E F and Luborsky F E. Particle Size Dependence of Coercivity and Remanence of Single-Domain Particles [J]. J Apply Phys,1963,34:656.
    [15]Jamet M, Wernsdorfer, Thirion C, Mailly D, Dupuis V, Melinon P, and Perez A. Magnetic anisotropy of a Single cobalt nanocluster [J]. Phys Rev Lett,2001,86: 4676.
    [16]Jamet M, Wernsdorfer, Thirion C, Dupuis V, Melinon P, Perez A, and Mailly D. Magnetic anisotropy in single clulster [J]. Phy Rev B,2004,69:024401.
    [17]B(?)ker F, Morup S, and Linderoth S. Surface effects in metallic iron nanoparticles [J]. Phys Rev Lett,1994,72:282.
    [18]Luis F, Torres J M, Garcia L M, Bartolome J, Stankiewicz J, Petroff F, Fettar F, Maurice J L, and Vaures A. Enhancment of the magnetic anisotropy of nano-sized Co cluster:Influence of the surface and of the interparticle interaction [J]. Phys Rev B,2002,65:094409.
    [19]Gangopadhyay S, Hadjipanayis G C, Sorensen C M, and Klabunde K J. Effect of particle size and surface chemistry on the interactions among fine metallic particles [J]. IEEE Trans Magn 1993,29:2619.
    [20]Liou S H and Chien C L. Particle size dependence of the magnetic propetis of ultrafine granular particles [J]. J Appl Phys 1988,63:4240.
    [21]Chen C, Kitakami O, and Shimada Y. Particle size effects and surface anisotropy in Fe-based granular films [J]. J Appl Phys 1998,84:2184.
    [22]Hadjipanayis G, Sellmyer D J, and Brandt B. Rare-earth-rich metallic glasses. I. Magnetic hysteresis [J]. Phys Rev B,1981,23:3349.
    [23]Zhu J G and Bertram H N. Micromagnetic studies of thin metallic films [J]. J Appl Phys,1998,63:3248.
    [1]廖绍斌.铁磁学(下册)[M].北京:科学出版社,1998.86.
    [2]Bowler N. Designing Dielectric loss at Microwave Frequencies using Multi-Layered Filled particles in a Composite [J]. IEEE Trans Dielectr Insul, 2006,13:703.
    [3]Bowler N. Effect of lossy, layered filler particles on the bulk permittivity of a composite material [J]. J Phys D:Appl Phys,2004,37:326.
    [4]Youngs I J, Bowler N, Lymer K P, and Hussain S. Dielectric relaxation in metal-coated particles:the dramatic role of nano-scale coatings [J]. J phys D:Appl Phys,2005,38:188.
    [5]Mingzhong Wu, Zhang Y D, Hui S, Xiao T D, Ge S, Hines W A, Budnick J I, and Taylor G W. Microwave magnetic properties of Co50/(SiO2) nanoparticles [J]. Appl Phys Lett,2002,80:4404.
    [6]Gangopadhyay S, Hadjipanayis G C, Dale B, Sorensen C M, Klabunde K J, Papaefthymiou V, and Kostikas A. Magnetic properties of ultrafine iron particles [J]. Phys Rev B,1992,45:9778.
    [7]廖绍斌.铁磁学(下册)[M].北京:科学出版社,1998:17.
    [8]Liu J R, Itoh M, Horikawa T, and Machida K I. Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites [J]. Appl Phys,2005,98:054305.
    [9]Liu X G, Geng Y, Meng H, Shang P J, and Zhang Z D. Microwave-absorption properties of ZnO-coated iron nanocapsules [J]. Appl Phys Lett,2008,92:173117.
    [10]Liu J R, Itoh M, and Machida K I. Eelectromagnetic wave absorption properties of a-Fe/Fe3B/Y2O3 nanocomposite in gigahertz range [J]. Appl Phys Lett,2003,83: 4017.
    [11]C. Kittle. On the theoy of ferromagnetic resonance absorption [J]. Phys. Rev, 1948,73:155.
    [12]Zhang X F, Dong X L, Huang H, Lv B, Lei J P, and Choi C J. Microstructure and microwave absorption properties of carbon-coated irom nanocomposite [J]. J Phys D:Appl Phys,2007,40:5383.
    [13]Aharoni A. Exchange resonance modes in a ferromagnetic sphere [J]. J Appl Phy, 1991,83:830.
    [14]A. Aharoni. Introduction to the Theory of Ferromagnetism [M]. Clarendon, Oxford,1996:181.
    [15]Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Melinon P, and Perez A. Magnetic anisotropy of a Single cobalt nanocluster [J]. Phys Rev Lett,2001,86: 4676.
    [16]Jamet M, Wernsdorfer W, Thirion C, Dupuis V, Melinon P, Perez A, and Mailly D. Magnetic anisotropy in single clulster [J]. Phy Rev B 2004,69:024401.
    [17]B(?)ker F, Morup S, and Linderoth S. Surface effects in metallic iron nanoparticles [J]. Phys Rev Lett,1994,72:282.
    [18]Luis F, Torres J M, Garcia L M, Bartolome J, Stankiewicz J, Petroff F, Fettar F, Maurice J L, and Vaures A. Enhancment of the magnetic anisotropy of nano-sized Co cluster:Influence of the surface and of the interparticle interaction [J]. Phys Rev B,2002,65:094409.
    [19]Dimitrov D A and Wysin G M. Magnetic properties of spherical fcc cluster with radial surface anisotropy [J]. Phys Rev B,1995,51:11947.
    [20]Pfeiffer H. Determination of Anisotropy Field Distribution in Particles Assemblies Taking into Account Thermal Fluctuation [J]. Phys Stat Sol,1990, A118:295.
    [21]Alonso-Saftudo M, Blackwell J J, O'Grady K, Gonzalez J M, and Cebollada F. Magnetic behavior and percolation in mechanically alloyed Fe-SiO2 granular soilds [J]. J Magn Magn Mater,2000,221:207.
    [22]Dormann J L, Bessais L, and Fiorani D. A dynamic study of small interacting particles:superparamagnetic model and spin-glass laws [J]. J Phys C,1988,21: 2015.
    [23]M(?)rup S. Superferromagnetic nanostructures [J]. Hyperfine Interact,1994,90: 171.
    [24]Chien C L. Granular magnetic solids [J]. J Appl Phys,1991,69:5267.
    [25]T. Tsutaoka. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials [J]. J Appl Phys,2003.93:2789.
    [26]Aharoni A. Effect of surface anisotropy on the exchange resonance modes [J]. J Appl Phys,1997,81:830.
    [27]G. Viau, F. Fievet-Vincent, F. Fievet, and P. Toneguzzo, F. Ravel, and O. Acher. Size dependence of microwave permeability of spherical ferromagnetic particles [J]. J Appl Phys,1997,81:2749.
    [28]Bakuzis A F and Morais P C. Surface and exchange anisotropy fields in MnFe2O4 nanoparticles:Size and temperature effects [J]. J Appl Phys,1999,85:7480.
    [29]Heinrich B, Celinski Z, Cochran, Attott A S, and Myrtle. Magnetic anisotropies in single and multilayered structures [J].1991,70:5769.
    [30]Zhang X F, Dong X L, Huang H, Liu Y Y, Wang W N, Zhu X G, Lv B, and Lei J P. Microwave absorption properties of the carbon-coated nickel nanoparticles [J]. Appl Phys Lett,2006,89:053115.
    [31]Matsumoto M and Miyata Y. Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles [J]. IEEE Trans Magn,1997,22:4459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700