用户名: 密码: 验证码:
FeSiAl片状微粉的制备、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微波低频段,金属微粉的吸波能力优于铁氧体。棒状、片状、纤维状等形状各向异性的磁性微粉优于球形状微粉。具有大长径比的扁平状微粉,且厚度小于GHz时的趋肤深度,有利于微波吸收。将此微粉和聚合物混炼,制作成类似于交替叠层柱状结构的抗EMI材料,有极大的研究和使用价值。FeSiAl合金微粉便是使用这种工艺的金属合金微粉。本论文通过配制合金,熔炼试棒,快淬薄带,球磨微粉的工艺,得到扁平状微粉。主要研究了微粉的形貌;合金中的Si、Al含量对微粉的结构、电磁参数、吸波性能的影响;同时采用固体与分子经验电子理论对合金的电子结构进行计算,并分析了合金粉的吸波性能。
     在形貌特征和晶体结构方面,分析了球磨时间对微粉形貌的影响,以及纳米晶结构的形成。球磨70h前,内应力随球磨时间的延长而增大,但90h后降低,退火后更低。快淬薄带中有D0_3超点阵有序相。球磨后D0_3超点阵相消失但出现新的少量的Al原子。有序度随Si含量增大和退火处理温度的升高而增大。微粉在300℃以上无明显的吸放热峰出现。D0_3超点阵结构可通过合金快淬得到,球磨和退火后都消失。
     首次运用固体与分子经验电子理论,详细计算了FeSiAl系列合金中的理论键距(?)(n)、(111)和(100)方向上的键共价电子对数n_α(α=A、B)、两种键距偏差ΔD/(?)(n_A)%和玻尔磁子数。计算结果表明:微粉球磨引起晶格常数的变化,从而导致(111)方向上的键共价电子对数改变,最终导致微粉的磁特性的改变。Si含量增大,(111)和(100)的键共价电子对数都增大,Fe的杂化台阶也增大,合金的玻尔磁子数减小。微观固态反应导致Fe原子的原子状态改变。计算结果能对合金粉的电磁特性进行解释。
     在电磁参数方面,发现微粉球磨70h以前,饱和磁化强度随球磨时间的延长而增大,70h达到最大,但球磨时间延长到90h反而减小。在微波低端,Si含量对电磁参数的影响与Al的含量有关。复数磁导率在70h球磨后有较大的值。热处理后的介电常数减小很大。球磨时间越长,介电常数越大。
     在吸波方面,计算了微粉的反射率和衰减系数,并进行了优化,探讨了合金的吸波机理。球磨时间延长后,反射率向频率低端移动,但峰值减小。Si含量增大,峰值向高端移动。Al含量增大,向低端移动。微粉300℃退火处理后吸收频带变宽但峰值降低。材料厚度增加,峰值移向低端但吸收频带变窄。退火处理后的复数介电常数的模值减小,但其损耗角正切反而增加,介电损耗增加,磁损耗减小。合金粉为磁性损耗。随Si含量的增加,微粉的损耗趋于电损耗为主。
     本论文得到的主要结论如下:成分为Fe_(74)Si_(15)Al_(11)合金在70h球磨,在3.5GHz时磁导率虚部可4.2。反射率优化后在厚度为2.6mm时有小于-10dB的吸收峰值。Al含量增大到14at%,可使吸收频段移至4~8GHz,并且吸收峰小于-10dB的带宽可达2GHz左右。以磁损耗为主,衰减系数在4GHz时可达到10.25ω/C。300℃退火处理可使吸收频带展宽。球磨引起晶格常数的变化,从而导致(111)方向上的键共价电子对数改变,最终导致微粉的磁特性的改变。
In low frequency band of microwave, the ability to absorb electromagnetic wave ofmetal powders excels that of ferrite. The magnetization of magnetic powders, withanisotropic shape, such as stick, flake and fibre, is better than that of sphericity. Flakypowders, with large aspect ratios' and thicknesses less than shin depth in the frequencyrange of GHz, are beneficial to absorbing electromagnetic wave. Anti-EMI material,with alternate lays structure, prepared by mixing those powders and polymer, is worthinvestigating and using. FeSiAl powders are made by employing this technology. In thisthesis, flaky powders were prepared through designing composition, melting alloyssticks, quenching ribbons and milling powders. This thesis investigated powders'profiles, the effect of the content of Si and Al on the structures, electromagneticparameters and wave absorption ability. Simultaneously it calculated electron structuresemploying the empirical electron theory of solids and molecules, and analyzed thecapability of absorbing microwave.
     In the part of profiles and crystalline structures, the effect of milling time onprofiles and the formation of nanocrystalline were analyzed. The internal strainincreased with the time lasting before 70h, but it decreased when the time reached 90h,and it became lower after annealing. DO_3 superlattice ordered structure was found inas-quenched ribbons. After milling, it disappeared and a small quantity of novel Alatoms appeared. Ordering degrees increased with the increase of Si content andannealing temperature. There was no obvious exothermic or endothermic peak above300℃. DO_3 superlattice ordered structure can be obtained by melt-quenching, butdisappeared after ball milling and annealing.
     Firstly, based on the empirical electron theory of solids and molecules, theory bondlength D (n), pair number of bond covalent electrons in (111) and (100) planes n_α, bondlength differenceΔD/(?)(n_A)% of two planes and Bohr magnetons were particularlycalculated. The results indicate that the lattice constants changed during milling, andthen the pair number of bond covalent electrons in (111) plane changed, andmagnetization changed finally. With the increase of Si content, the pair number of bond covalent electrons in (111) and (100) planes, and hybridization level of Fe bothincreased, but Bohr magnetons decreased. Atom states of Fe atoms were changedbecause of micro solid state reaction. Results can explain electromagneticcharacteristics of powders.
     In the part of electromagnetic parameters, it was found that saturationmagnetizations increased with the time prolonged before 70h milling, and reachedmaximum at 70h, but decreased at 90h. In low microwave frequency range, the effect ofSi content on EM parameters was related to Al content. The values of complexpermeability were large after 70h milling. After annealing, complex permittivitydecreased greatly. The longer powders were milled, the lager complex permittivity was.
     In the part of microwave absorption, reflectivities and attenuation coefficients ofpowders were calculated respectively. Reflectivities were optimized, and microwaveabsorbing mechanism was discussed. After long time milling, reflectivities floatedtowards low frequency band, and the peak values decreased. Peak values ofreflectivities floated towards high frequency band with the increase of Si content. But itwas reverse to Al. The bandwidth of absorption was broadened after annealing at 300℃,but the peak value decreased. Thickness increased, peak value floated towards lowfrequency band but bandwidth decreased. Modules of complex permittivity decreasedafter annealing, but dielectric loss tangents increased. So, dielectric loss increased butmagnetic loss decreased. Alloys powders loss was magnetic. Dielectric loss becameprincipal with the increase of Si content.
     The following main conclusions can be drawn from this thesis: The composition ofalloy is Fe_(74)Si_(15)Al_(11)and milling time is 70h. Imaginary of complex permeability is 4.2 at3.5GHz. After optimizations, peak value of microwave absorption is below -10dB at2.6mm. When Al content reached 14at%, absorbing band floats to the range from 4 to 8GHz frequency. Bandwidth, whose peak value is below -10dB, can reach 2GHz. Theprimary loss is magnetic, and attenuation coefficient reaches 10.25ω/C at 4GHz.Bandwidth of microwave absorption can be broadened after annealing at 300℃. Latticeconstants changed, and then the pair number of bond covalent electrons in (111) planechanged, and magnetization changed finally.
引文
[1] ShengPing R, Baokun X, Hui S. Microwave absorptive behavior of ZnCo substituted W-type Ba hexaferrite nanocrystalline composite material. J. Magn. Magn. Mater., 2000, 212:175-177
    [2] 古映莹,邱小勇,胡启明,等.电磁屏蔽材料的研究进展.材料导报,2005,19(2):53-56
    [3] 刑丽英.隐身材料.北京:化学工业出版社,2004,41-46,207-208
    [4] 王定华,赵家升.电磁兼容原理与设计.成都:电子科技大学出版社,1995,1-2
    [5] 孙昌.低频微波吸收剂的优选、制备及性能研究.[博士学位论文].山东:山东大学,2007
    [6] 宛德福,马兴隆.磁性物理学.北京:电子工业出版社,1999
    [7] 步文博,徐洁,丘泰.吸波材料基础理论的探讨及展望.江苏陶瓷,2001,34(2):1-4
    [8] 陈利民,金成海,亓家钟,等.毫米波-厘米波双功能伪装材料的研究.高技术通讯,1999,8:35-38
    [9] 杨志民,毛昌辉,杨剑,等.低频(3GHz)微波吸收材料电磁参数匹配特性的研究.稀有金属,2004,28(6):1006-1009
    [10] 张政权,李铁虎,经德齐.雷达吸波材料的研究现状及其进展.材料导报,2007,21:307-309
    [11] 邓龙江,谢建良,梁迪飞,等.磁性材料在RAM中的应用及其进展.功能材料,1999,30(2):118-121
    [12] S.M. Abbas, A.K. Dixit, R. Chatterjee, et al. Complex permittivity, complex permeability and microwave absorption properties of ferrite-polyrner composite. J. Magn. Magn. Mater., 2007, 309: 20-24
    [13] Y. Nie, H.H. He, Z.K. Feng, et al. Microwave characterization of (Co,Zn)_2W barium hexagonal ferrite particles. J. Magn. Magn. Mater., 2006, 303:e423-427
    [14] Rastislav Dosoudil, Marianna U(?)kov(?), Jaroslav Franek, et al. RF electromagnetic wave absorbing properties of ferrite polymer composite materials. J. Magn. Magn. Mater., 2006, 304: e755-e757
    [15] M. R. Meshram, Nawal K. Agrawal, Bharoti Sinha, et al. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater., 2004, 271: 207-214
    [16] 赵灵智,胡社军,李伟善,等.吸波材料的吸波原理及其研究进展.现代防御技术,2007,35(1):27-31
    [17] 王丽熙,张其土.微波吸收剂的研究现状与发展趋势.材料导报,2005,19(9):26-29
    [18] 周廷栋,梁迪飞,李强,等.退火温度对FeCuNbSiB纤维的结构及磁特性的影响.稀有金属材料与工程,2006,35(12):2005-2007
    [19] 李强,梁迪飞,鄢波,等.铁基非晶及纳米晶合金纤维的研制.材料导报,2006,20(5):45-48
    [20] 邓龙江,周佩珩.磁性纳米晶颗粒磁化机制探索.电子科技大学学报,2006,35(4):607-611
    [21] 周佩珩,邓龙江.磁性纳米晶颗粒电磁特性研究进展.功能材料,2006,37(9):1366-1371
    [22] K. Yanagimoto, K. Majima, S. Sunada, Y.Aikawa. Effect of Si and Al Content on Core Loss in Fe-Si-Al Powder Cores. IEEE Trans. Magn., 2004, 40(3): 1691-1694
    [23] 黄永杰,李世堃,兰中文.磁性材料.成都:电子科技大学出版社,265-266
    [24] 张永刚,韩雅芳,陈国良.金属间化合物结构材料.北京:国防工业出版社,2001,140
    [25] Shigeyoshi Yoshida, Mitsuharu Sato, Eishu Sugawara, et al. Permeability and electromagnetic-interference characteristics of Fe-Si-Al alloy flakes-polymer composite. J. Appl. Phys., 1999, 85(8):4636-4638
    [26] Shigeyoshi Yoshida, Shinsuke Ando, Yutaka Shimada, et al. Crystal structure and microwave permeability of very then Fe-Si-Al flakes produced by microforging. J. Appl. Phys., 2003, 93(10):6659-6661
    [27] H. Ono, S. Yoshida, S. Ando. Improvement of the electromagnetic-noise suppressing features for Fe-Si-Al composite sheets by de magnetic field biasing. J. Appl. Phys., 2003, 93(10):6662-6664
    [28] K. Nomura, K. Suzuki, T. Sawada et al. CEMS Study on Fe-Si-Al Alloy Flakes-Polymer Composites. Hyp. Interact., 2003, 148-149:345-350
    [29] E. Api(?)aniz, E. Legarra, F. Plazaola, et al. Theoretical study of the magnetism of the FeAlSi system around the D03 stoiehiometric composition. J. Magn. Magn. Mater., 2007, 316: e470-e473
    [30] Tianyu Ma, Mi Yan, Wei Wang. The evolution of microstrueture and magnetic properties of Fe-Si-Al powders prepared through melt-spinning. Scripta Mater., 2008, 58:243-246
    [31] Wei Wang, Tianyu Ma, Mi Yan. Microstructure and magnetic properties of nanocrystalline Co-doped Sendust alloys prepared by melt spinning. J. Alloys Compd., 2008, 459:447-451
    [32] Huang Aiping, Feng Zekun, Li Haihua, et al. A Study of Electromagnetic Characteristics of Fe-Si-Al Magnetic Alloy. 2002 3rd International Symposium on Electromagnetic Compatibility, Vol.2:413-416
    [33] 王鲜,龚荣洲,何燕飞,等.扁平化Fe-Si-Al合金粉末的磁特性.华中科技大学学报(自然科学版),2006,(5):77-79
    [34] 王鲜,龚荣洲,何燕飞,等.高能球磨对雾化磁粉结构与磁性能的影响.功能材料,2006,36(10):1545-1547
    [35] 曹琦,龚荣洲,冯则坤,等.Fe-Si-Al系合金粉微波吸收特性.中国有色金属学报,2006,16(3):524-529
    [36] 邓联文,熊惟皓,冯则坤,等.FeSi纳米晶片状微波吸收剂研究.电子元件与材料,2006(9):52-54
    [37] Xian Wang, Rongzhou Gong, Peigang Li, et al. Effects of aspect ratio and particle size on the microwave properties of Fe-Cr-Si-Al alloy flakes. Mater. Sci. Eng. A, 2007,466:178-182
    [38] 邓联文,冯则坤,江建军,等.纳米晶Fe_(85)Si_1Al_6Cr_8扁平状颗粒材料微波吸收特性.金属学报,2006,42(3):321-324
    [39] 王鲜,龚荣洲,胡昌吉,等.片状Fe-Cr-Si-Al磁粉/Co_2Z铁氧体粉末混合组分的电磁特性.无机材料学报,2007,22(6):1169-1172
    [40] B. Zuo, N. Saraswati, T. Sritharan, et al. Production and annealing of nanocrystalline Fe-Si and Fe-Si-Al alloy powders. Mater. Sci. Eng. A, 2004, 371:210-216
    [41] M.P.C. Kalita, A. Perumal, A. Srinivasan. Structural analysis of mechanically alloyed nanocrystalline Fe_(75)Si_(15)Al_(10) powders. Mater. Letters, 2007, 61:824-826
    [42] L.M. Kubalova, I.A. Sviridov, O.Ya. Vasilyeva. Structural transformation in mechanosynthesized bcc Fe-Al-Si(Ge) solid solutions during heating. J. Alloys Compd., 2007, 434-435:467-471
    [43] 邱翠榕,汪厚植,顾华志,等.机械合金化制备FeSiAl合金粉末的研究.中国粉体技术,2006,1:12-14
    [44] 冯则坤,李海华,黄爱萍,等.机械合金化制备的Fe-Si-Al合金的微结构及电磁特性研究.磁性材料及器件,2002,33(2):5-7,39
    [45] 张永清,丁耀根,阴生毅,等.FeSiAl微波衰减涂层电磁特性分析.真空电子技术,2006,6:39-40,44
    [46] G. A. P(?)rez Alc(?)zar, Ligia. E. Zamora, J.D. Betancur-Rios. Effect of Si on the magnetic properties of the Fe_(30)Al_(30) alloy. Physica B, 2006, 384: 313-315
    [47] E. Api(?)aniz, J.S. Garitaonandia, F. Plazaola, et al. Evolution of the magnetic properties of ordered Fe70A30 alloy with mechanical milling time. Sensors Actuators A, 2003, 106: 76-79
    [48] E. P. Yelsukov, G. A. Dorofeev. Mechanical alloying in binary Fe-M (M=C, B, Al, Si, Ge, Sn) systems. J. Mater. Sci., 2004, 39: 5071-5079
    [49] E. P. Yelsukov, G. A. Dorofeev. Nanostructure and Phases Formation under Mechanical Alloying of Bynary Powder Mixtures of Fe and sp-Element(M); M C, B, Al, Si, Ge, Sn. Hyperfine Interact., 2005, 164: 51-65
    [50] M. H. Enayati, M. Salehi. Formation mechanism of Fe_3Al and FeAl intermetallic compounds during mechanical alloying. J. Mater. Sci., 2005, 40:3933-3938
    [51] 周春华.纳米Fe3Al金属间化合物吸波性能的研究.[博士学位论文].山东:山东大学,2004
    [52] J. Ding, Y. Li, L.F.Chen. Mierostructure and soft magnetic properties of nanoerystalline Fe-Si powders. J. Alloys Compd., 2001, 314:262-267
    [53] 常红彬,黄润生,蒋正生,等.Fe-Si纳米晶颗粒在2-18GHz频段的电磁性质.磁性材料及器件,2006,36(3):24-27
    [54] 周铁军,王敦辉,章建荣,等.机械合金化Fe-Si合金的微结构与磁性.物理学报,1997,46(11):2250-2257
    [55] Sang Woo Kim, Y.W. Yoon, S.J. Lee, et al. Electromagnetic shielding properties of soft magnetic powder-polymer composite films for the application to suppress noise in the radio frequency range. J. Magn. Magn. Mater., 2007, 316:472-474
    [56] Ken Hirota, Yoshihiko Takano, Masaru Yoshinaka, et al. A new composite material with high saturation magnetization density and high electrical resistivity. Mater. Research Bulletin, 2000, 35: 1137-1141
    [57] R. Machado, A.H. Kasama, A.M. Jorge Jr., et al. Evolution of the texture of spray-formed Fe-6.5wt.%Si-1.0wt.%Al alloy during warm-rolling. Mater. Sci. Eng. A, 2007, 449-451:854-857
    [58] S.J. Lee, J.E. Snyder, C.C.H. Lo, et al. Influence of nanostructure and nitrogen content on the optical and electrical properties of reactively sputtered FeSiAl(N) films. J. Appl. Phys., 2003, 94(4):2607-2611
    [59] Yingjian Chen, Patrick J. Ryan, James F. Dolejsi, et al. Microstructural origin of soft magnetic properties of sendust films prepared by N_2 reactive sputtering. J. Appl. Phys., 1998, 84(2): 945-952
    [60] M. Hiramoto, N. Matsukawa, H. Sakakima, et al. Microstructure and soft magnetic properties of FeSiAl(Ti/Ta)(O)N. J. Appl. Phys., 1998, 83(11):6655-6657
    [61] P.M. Dodd, R. Atldnson, I.W. Salter, et al. Preparation of soft, anisotropic sendust films in the as-deposited state. J. Appl. Phys., 1999, 85(8):4559-4561
    [62] O. Thoumire, H. Atmani, J. Teillet, et al. Structural, mechanical and magnetic properties of nitrided FeSi and FeSiAl sheets. J. Magn. Magn. Mater., 1999, 196-197:346-348
    [63] G.K. Williamson, W.H. Hall. X-ray line broadening from filed aluminium and wolfram. Acta Met. 1953, 1(1):22-31
    [64] A.H. Sihvola, I.V. Lindell. Polarizability modeling of heterogeneous media and effective permeability of mixtures in A. Priou ed. Properties of Heterogeneous Mixtures. New York: Elsevier Science Publishing Co, Inc1991. 101-153
    [65] 葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响.宇航材料工艺,1996,5:42-49
    [66] P. H. Zhou, L.J. Deng, J.L. Xie, et al. Effects of particle morphology and crystal structure on the microwave properties of flake-like nanocrystalline Fe3Co2 particles, J. Alloys Compd., 2008, 448(303-307)
    [67] R.M. Walser, W. Win, P.M. Valanju. Shape-Optimized Ferromagnetic Particles with Maximum Theoretical Microwave Susceptibility. IEEE Trans. Magn., 1998, 34(4): 1390-1392
    [68] L.Z. Wu, J. Ding, H.B. Jiang, et al. Particle size influence to the microwave properties of iron based magnetic particulate composites. J. Magn. Magn. Mater., 2005, 285:233-239
    [69] D. S. Weile, E. Michielssen, D. E. Goldberg. Genetic Algorithm Design of Pareto Optimal Broadband Microwave Absorbers. IEEE Trans. On Electromagnetic Compatibility, 1996, 38(3): 518-525
    [70] Eric Michielssen, Jean-Michel Sajer, S. Ranjithan, et al. Design of Lightweight, Broad-Band Microwave Absorbers Using Genetic Algorithms. IEEE Trans. On Microwave Therory and Techniques, 1993, 41(6/7): 1024-1031
    [71] 冯则坤,李海华,何华辉.扁平金属磁性微粉的工艺与抗电磁干扰特性.磁性材料及器件,2001,32(4):41-44
    [72] Morihiko Matsumoto, Yoshimori Miyata. Thin Electromagnetic Wave Absorber for Quasi-Microwave Band Containing Aligned Thin Magnetic Metal Particles. IEEE Trans. Magn., 1997, 33(6): 4459-4464
    [73] K. Yanagimoto, K. Majima, S. Sunada. Effect of Si and Al Content on Core Loss in Fe-Si-Al Powder Cores. IEEE Trans. Magn., 2004, 40(3): 1691-1694
    [74] A.H. Kasama, A. Moreira J.J., W.J. Botta F, et al. Influence of the atomization gas on the microstructure and magnetic properties of spray-formed Fe-3%Si-3.5%Al alloys. Mater. Sci. Eng. A, 2008, 477:9-14
    [75] D.S. Schmool, E. Ara(?)jo, M.M. Amado, et al. Magnetic properties of the Fe-rich Fe_xAl_(1-x) alloy system. J. Magn. Magn. Mater., 2004, 272-276:1342-1344
    [76] J.W. Cable, L. David, R. Parra. Neutron study of local environment effects and magnetic clustering in Fe_(0.7)Al_(0.3). Phys. Rev. B, 1977, 16(3): 1132-1137
    [77] E. Api(?)aniz, J.S. Garitaonandia, F. Plazaola. Influence of disorder on the magnetic properties of FeAl alloys: theory. J. Non-Cryst. Solids., 2001,287:302-0-307
    [78] D. Mart(?)n Rodr(?)guez, E. Api(?)aniz, J.S. Garitaonandia, et al. Studies on the influence of the order-disorder transition on the magnetic properties of Fe-Al alloys. J. Magn. Magn. Mater., 2004, 272-276: 1510-1511
    [79] E. Api(?)aniz, J.S. Garitaonandia, F. Plazaola, et al. Study of the structure inquence on the magnetism of Fe_(70)Al_(30) alloy. J. Magn. Magn. Mater., 2003, 254-255: 136-139
    [80] J S. Benjamin. Dispersion strengthened superalloys by mechanical alloying. Metall Trans., 1970, 1: 2943-2951
    [81] H.-J. Fecht. Nanostructure Formation by Mechanical Attrition. NanoStru. Mater., 1995, 6:3-42
    [82] Hans J. Fecht. Nanostructure Formation and Properties of Metals and Composites Processed Mechanically in the Solid State. Scripta mater., 2001, 44: 1719-1723
    [83] A. Taylor, R. M. Jones. Constitution and magnetic properties of iron-rich iron-aluminum alloys. J. Phys. Chem. Solids, 1958, 6(1):16-37
    [84] 张建民,张瑞林,郑伟涛,等.Al含量对Fe-Al无序固溶体性能的影响.材料科学与工 艺,1995,3(3):20-24
    [85] H. Bakker, G.F. Zhou, H. Yang. Mechanically driven disorder and phase transformation in alloys. Progress Mater. Sci., 1995, 39:159-241
    [86] 范润华,孙康宁,尹衍升,等.Fe_3Al金属间化合物的机械合金化.机械工程学报,2000,36(8):55-58
    [87] P. H. Shingu, K. N. Ishihara. Non-equilibrium materials by mechanical alloying. Mater. Trans. JIM, 1995, 36(2):96-101
    [88] 齐民,朱敏,杨大智.Fe-Cu超饱和固溶体的机械合金化合成.材料科学进展,1993,7(1):31-34
    [89] G. Kresse, J. Furthmiiller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci., 1996, 6:15-50
    [90] 余瑞璜.固体与分子经验电子理论.科学通报,1978,23:217-224
    [91] 苏文勇,张瑞林.TiB_2等C_(32)型化合物价电子结构分析.北京理工大学学报,2000,20(5):550-554
    [92] 王焕荣,滕新营,石志强,等.Fe-Si合金相图中α_2相的结构及其电子理论分析.中国有色金属学报,2001,11(2):253-256
    [93] 孙志平,沈保罗,王均,等.利用EET理论预测Fe-C-Cr系高铬铸铁的淬硬性.四川大学学报(工程科学版),2004,36(6):70-73
    [94] 余瑞璜.α-Fe,γ-Fe和Fe_4N的价电子和磁矩结构分析.金属学报,1982,18(3):336-349
    [95] 杨洪才,左秀忠,刘国禄.Fe-Si合金的价电子结构及磁性、范性的微观机制.东北工学院学报,1981,3:67-77
    [96] R. Nathans, M. T. Pigott, C. G. Shull. The Magnetic Structures of Fe_3Al. J. Phys. Chem. Solids, 1958, 6(1): 38-42
    [97] 张建民,张瑞林,郑伟涛,等.B2型Fe-Al合金键结构及脆性的电子理论研究.材料科学与工艺,1994,2(4):11-16
    [98] 张建民,张瑞林,余瑞璜,等.Fe-Al合金有序无序相变的电子理论研究.金属学报,1994,30(5):A204-A209
    [99] 张瑞林.固体与分子经验电子理论.长春:吉林科学技术出版社,1993,239-342
    [100] 陈舜麟,王天民.金属间化合物Ni3Al和NiAl晶体中电子杂化态结构和结合能的计算及其脆性.兰州大学学报(自然科学版),1997,33(1):58-63
    [101] E. Legarra, E. Apifianiz, F.Plazaola, et al. Al versus Si competition in FeSiAl alloys. J. Magn. Magn. Mater., 2008, 320:e688-e691
    [102] E. Api(?)aniz, E. Legarra, F. Plazaola, et al. Influence of addition of Si in FeAl alloys: Theory. 2008, 320:e692-e695
    [103] Giselher Herzer. Soft magnetic nanocrystalline materials. Scripta Metal. et Mater., 1995, 33: 1741-1756
    [104] Giselher Herzer. Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater., 1996, 157-158:133-136
    [105] 范润华,尹文宗,孙康宁,等.无序化对有序铁铝金属间化合物磁性的影响.人工晶体学报,2005,34(4):606-609
    [106] 周克省,黄可龙,孔德明,等.吸波材料的物理机制及其设计.中南工业大学学报,2001,32(6):617-621
    [107] 陈利民,亓家钟,朱雪琴,等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.微波学报,1999,15(4):312-316
    [108] 娄霞,朱冬梅,张玲,等.Al掺杂含量对纳米ZAO粉体性能的影响,功能材料,2008,39(4):667-669
    [109] 袁承勋,周忠祥,秦汝虎,等.实现轻、薄、宽涂层吸波材料的技术途径.哈尔滨工业大学学报,2007,39(6):956-959
    [110] 梁沂,彭刚,薛明华.便携式吸波涂料吸波性能测试系统的研究.微波学报,2005,21(2):60-62
    [111] 郭晋红.微波吸收材料性能评价方法.电子材料与电子技术,2007,1:10-16
    [112] 刘学观,郭辉萍,殷红成,等.任意吸波材料层反射传输特性与媒质参数关系的研究.微波学报,2003(19)4:5-11
    [113] 甘治平,官建国,王维.单层均匀吸波材料电磁参数的匹配研究.航空材料学报,2002(22)2:37-40
    [114] L. Q. Wang, D. S. Yu, J. He et al. Calculation and Design for Electromagnetic Parameter of Microwave Absorber. Journal of Tianjin Normal University(Natural Science Edition), 2005, 25(2):54-57
    [115] Hiroshi Ono, Yasuharu Takase, Shigeyoshi Yoshida, et al. Analysis on Noise Suppression Effect of the Composite Magnetic Sheet for the Use in Near Field. Electromagnetic Compatibility, 2003. EMC '03. 2003 IEEE International Symposium on, Vol.2:938-941
    [116] Hiroshi Ono, Tetsuo Ito, Shigeyoshi Yoshida, et al. Noble Magnetic Films for Effective Electromagnetic Noise Absorption in the Gigahertz Frequency Range. IEEE Trans. Magn., 2004, 40(4): 2853-2857
    [117] Shigeyoshi Yosbida, Hiroshi Ono, Shinsuke Ando, et al. Control of Magnetic Loss Profile for RF Noise Suppression Sheets. Electromagnetic Compatibility, 2003. EMC '03. 2003 IEEE International Symposium on, Vol.2:962-965
    [118] 张克立,从长杰,郭光辉,等.纳米吸波材料的研究现状与展望.武汉大学学报,2003,49(6):680-684
    [119] 步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨.材料报,2001,15(5):14-17
    [120] Topaeli C. Magnetieally Modulated Microwave Absorption Studies on High Tc Powdered Materials. PHYSICA C, 1998, 301:92-98
    [121] 邓联文,周克省,江建军,等.电导率对纳米磁性金属膜微波吸收性能的影响.中南大学学报(自然科学版),2008,39(1):59-63
    [122] 于晓凌,林钢,何华辉,等.单层吸波材料的逆向优化方法.磁性材料及器件,2002,33(3):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700