用户名: 密码: 验证码:
加筋钢管混凝土柱的耐火性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加筋钢管混凝土柱是在普通钢管混凝土柱的核心混凝土中配置考虑耐火因素的钢筋,从而不需施以防火保护就可以达到所要求的耐火极限的一种结构形式。它不仅具备普通钢管混凝土柱承载力高、塑性和韧性好、抗震性能好、施工方便以及经济效果好等优越的力学特性,还具有较好的耐火性能,是一种发展前景广阔的结构形式。国外对这种结构形式的钢管混凝土柱的研究较多,国内则鲜有研究。本文采用理论推导和非线性有限元模拟相结合的方法,分析火灾作用下加筋钢管混凝土柱的耐火性能,从而为确定复式钢管混凝土柱的抗火设计方法提供一些理论基础。基于本文所做的理论分析和数值模拟,可以得到以下结论:
     首先,依据双剪统一强度理论研究普通钢管混凝土柱的轴心受力问题,充分考虑紧箍力对钢管和核心混凝土的双向影响,从而得到钢管混凝土轴压短柱的承载力计算式,并与试验数据进行了对比分析,结果吻合良好。并对双剪统一强度理论中的参数进行讨论,确定各参数的取值。然后将其推广到加筋钢管混凝土柱,使得方形和圆形加筋钢管混凝土柱的承载力有了统一的表达式。
     其次,详细介绍了Rankine公式的由来和表达式的推导过程,并将本文得到的常温下的加筋钢管混凝土柱的承载力公式应用到Rankine公式中,用常温下柱子的塑性破坏能力和弹性屈曲能力来表示柱子的耐火能力,从而推导出钢柱和钢管混凝土柱耐火性能的理论公式。通过一个方形加筋钢管混凝土柱实例进行了验证和各影响因素分析,以及采用文献中的试验数据进行对比分析,结果显示,Rankine法可以提供正确而且安全的解。
     最后,采用ANSYS瞬态热应力分析的间接法分析加筋钢管混凝土柱的耐火性能,在确定钢材和混凝土的热工性能参数和本构关系的基础上,建立有限元模型,进行温度场分析和热一结构耦合分析。在热分析时,它的温度场可表示为柱内无热源的第一类边界条件的二维不稳定温度场,从而得到构件截面在不同时刻的温度场分布云图,从图中可以看到:构件截面外边缘等温线与截面形状近似,随着温度的升高,先从四个角开始退化,并逐渐向截面内部延伸,截面内部等温线逐渐趋于圆形。在热分析后,将模型中的热单元转换为相应的结构单元,并设置结构分析中的材料属性,将热分析结果作为体荷载施加到模型上进行热应力计算。
     本文通过对加筋钢管混凝土柱耐火性能的理论推导和有限元分析,了解了钢管混凝土柱在火灾下的耐火性能以及温度场变化情况,为钢管混凝土的进一步研究奠定了基础。
Reinforced concrete filled steel columns are concrete filled steel columns which have steels in the core concrete with high fire-resistance, They could reach the fire-resisting limit without any other measure of fireproof. These columns not only have superior performance like the normal concrete filled steel columns, such as higher bearing capacity, better plasticity and ductility, superior earthquake resistant capability etc, but also have better fire-resisting performance. Therefore the reinforced concrete filled steel columns are widely used overseas. In this paper, the performance of reinforced concrete filled steel columns when exposed to fire was analyzed using the combination of theoretical analysis and nonlinear finite element simulation. The obtained results can be used as basis for the fire-resistance design process of reinforced concrete filled steel columns. Several conclusions can be obtained from the results of this paper:
     At first, the bearing capability of concrete filled steel tube columns subjected to axial compressive loading was studied based on the Twin Shear Unified Strength Theory. The calculation formula was derived and the effect of the intermediate principal stress, the confinement effect between the strain-constrained concrete cylinders and the steel tube, was considered sufficiently. Good agreement can be observed from the comparison between the theoretical results and the experimental data in the literature. The values of the factors for the lateral pressure and for strength of material were discussed and verified. This formula was generalized to reinforced concrete filled steel tube columns. It is applicable for both the square and the circular reinforced concrete filled steel tube columns.
     Second, the formula of Rankine was introduced, and the formula of the bearing capacity of the reinforced concrete filled steel tube columns at normal temperature was used in the formula of Rankine. Then, the calculation formula of fire resistance of steel columns and reinforced concrete filled steel tube columns was derived. In this formula, the fire resistance was expressed by the capacity of plastic failure and elastic buckling of columns at normal temperature. An example of a square reinforced concrete filled steel tube column was illustrated. Comparison between the theoretical results and the experimental data in the literature was conducted and it can be concluded that the formula of Rankine could provide a true and safe answer.
     Third, the fire performance of reinforced concrete filled steel tube columns were analyzed in term of instantaneous thermal analysis of ANSYS 8.0. On the base of the thermal performance parameters and the constitutive relationship of the material, the finite-element models were set up using 3D thermal conduction element. Then, the temperature field and the thermal-structure coupling analysis were simulated. The temperature field could express that planar precarious temperature field which has the first boundary condition and does not have heat fountainhead in the columns. The distributing of the temperature field at different time was derived. It shows that the equal thermal line of section fringe is close to the figure, the isotherm of the section inside is approximately circular along with the temperature. Finally, the thermal stress was calculated using the finite element model. In this process, the thermal elements are turned to be structure elements accordingly. The proper material attributes were selected and the result of thermal analysis was loaded as body load on the model.
     The fire resistance and the temperature field of the reinforced concrete filled steel tube columns when exposed to fire were investigated based on theoretical analysis and numerical simulation. The results are useful for the further development of the concrete filled steel tube columns.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [2]韩林海.钢管混凝土结构[M].北京:科学出版社,2004
    [3]钟善桐.钢管混凝土结构[M].北京:清华大学出版社,2003
    [4]霍静思.火灾作用后钢管混凝土柱-钢梁节点力学性能研究[D].福州:福州大学博士学位论文,2005
    [5]徐蕾.方钢管混凝土柱耐火性能及抗火设计方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2002
    [6]蒋首超.钢-混凝土组合楼盖抗火性能理论与试验研究[D].上海:同济大学博士学位论文,2001
    [7]杨华,恒高温作用后钢管混凝土轴压力学性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2000
    [8]冯九斌,钢管高强混凝土柱耐火性能及抗火设计方法研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2001
    [9]宋晓勇,钢筋混凝土柱抗火性能分析与研究[D].长沙:湖南大学硕士学位论文,2006
    [10]Lie T.T,Irwin R.J.Fire Resistance of Rectangular Steel Columns Filled with Bar-reinforced Concrete[J].J.Struct.Engrg,ASCE,121(5):797-805
    [11]Toh W.S,Tan K.H.,Fung T.C.Compressive Resistance of Steel Columns in Fire:Rankine Approach[J].J.Struct.Engrg,ASCE,2000,126(3):398-405
    [12]Toh W.S.,Tan K.H.,Fung T.C.Strength and Stability of Steel Frames in Fire:The Rankine Approach[J].J.Struct.Engrg,ASCE,2001,127(4):461-469
    [13]Tang C.Y.Behavior of Steel Structures in Fire Conditions[J].Final Year Proj.School of Civ.and Struct.Engrg,Singapore,2000
    [14]Tang C.Y,Tan K.H,Ting S.K.Basis and Application of a Simple Interaction Formula for Steel Columns under Fire Conditions[J].J.Struct.Engrg,ASCE,2001,127(10):1206-1213
    [15]Tang C.Y,Tan K.H.Basic and Application of Simple Interaction Formula for Steel Frames under Fire Conditions[J].J.Struct.Engrg,ASCE,127(10):1214-1220
    [16]Tan K.H,Tang C.Y.Interaction Formula for Reinforced Concrete Columns under Fire Conditions.ACI Struct.J.2002
    [17]Tan K.H,Tang C.Y.Interaction Model for Unprotected Concrete Filled Steel columns Under Standard Fire Conditions[J].J.Struct.Engrg,ASCE,130(9):1405-1413
    [18]韩林海.钢管混凝土在高温作用下的温度场的非线性有限元分析[J].哈尔滨建筑大学学报,1997a,30(4):15-22
    [19]韩林海.恒(高)温下的钢管混凝土的轴压力学性能[J].哈尔滨建筑大学学报,1997b,30(5):64-70
    [20]韩林海,徐蕾,冯九斌,等.钢管混凝土柱耐火极限和防火设计实用方法研究[J].土木工程学报,2002,35(6):6-14
    [21]韩林海,贺军利,吴海江,等.钢管混凝土柱耐火性的试验研究[J].土木工程学报,2000,33(3):31-37
    [22]林小康,韩林海.ISO-834标准火灾作用后方钢管混凝土构件滞回性能试验研究[J].地震工程与工程振动,2003,23(4):188-195
    [23]霍静思,韩林海.ISO-834标准火灾作用后钢管混凝土的轴压刚度和抗弯刚度[J].地震工程与工程振动,2002,22(5):143-152
    [24]霍静思,韩林海.ISO-834标准火灾作用后钢管混凝土的轴压刚度和抗弯刚度的研究[J].工业建筑,2004,34(1):21-27
    [25]韩林海.钢管混凝土柱耐火性能和抗火设计的特点[J].安全与环境学报,2001,1(1):86-91
    [26]韩林海,霍静思.火灾作用后钢管混凝土柱的承载力研究[J].土木工程学报,2002,35(4):25-35
    [27]Han L H,Huo J S,Wang Y C.Compressive and Flexural Behaviour of Concrete Filled Steel Tubes after Exposure to Standard Fire[J].Journal of Constructional Steel Research,61(2005):882-901
    [28]Han L H.Fire Performance of Concrete Filled Steel Tubular Beam-Columns[J].Journal of Constructional Steel Research.2001,57:695-709
    [29]李国强,贺军利.火灾下钢管混凝土构件温度内力分析与实用计算[J].建筑钢结构进展,2002,4(3):36-40
    [30]栾波,刘明,姜绍飞.恒高温作用后钢管混凝土短柱轴压试验[J].沈阳建筑工程学 院学报(自然科学版),2003,19(4):254-257
    [31]栾波,刘明,尹晓明.钢管混凝土在火灾作用下(后)的性能-理论与发展[J].混凝土,2003,12:12-16
    [32]邱建伟,赵军.火灾时方钢管混凝土柱的温度场分析[J].河南大学学报(自然科学版),2003,33(3):79-81
    [33]凌光荣,邱建伟,张锡治.火灾时有防火保护层的钢管混凝土柱温度场分析及实用计算方法研究[J].天津建设科技,2002,4:12-14
    [34]P.Schaumann.基于普通计算模型的组合结构抗火设计方法的发展[J].建筑钢结构进展,2004,6(3):31-36
    [35]杨有福,韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法[J].建筑结构学报,2004,25(1):25-35
    [36]王柯斯.基于瞬态传热的钢结构构件抗火分析[D].北京:北京工业大学工学硕士学位论文,2005
    [37]赵均海.强度理论及工程应用[M].北京:科学出版社,2003
    [38]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002
    [39]Mao-Hong Yu.Unified Strength Theory and Its Applications[M].Spring,2004
    [40]赵均海,顾强,马淑芳.基于双剪统一强度理论的轴心受压钢管混凝土承载力的研究[J].工程力学,2002.19(2):32-35
    [41]翟越,魏雪英,计琳,等.薄壁圆筒在双剪统一强度理论下的统一解[J].长安大学学报(建筑与环境科学版),2004,21(3):1-3
    [42]赵均海,顾强,马淑芳.钢管混凝土承载力的研究[J].西北建筑工程学院学报(自然科学版),2001,18(2):1-4
    [43]王仁,熊驻华,黄文彬.塑性力学基础[M].北京:科学出版社,1982
    [44]徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981
    [45]郭红香,赵均海,魏雪英.圆中空夹层钢管混凝土柱承载力的同一解[A].见:崔京浩主编.第14届全国结构工程学术会议论文集[C].北京:工程力学杂志社,Ⅰ:252-255
    [46]魏锦,赵均海,田宏伟,等.钢管混凝土柱极限承载力影响因素分析[J].建筑结构学报,2006,27(1):452-455
    [47]赵均海,魏锦,张兆强.圆中空夹层钢管混凝土极限承载力研究[J].建筑技术(增 刊).2006,10:175-176
    [48]Kenji Sakino,Hiroyuki Nakahara,Shosuke Morino et al.Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns[J].Journal of Structural Engineering,2004,130(0):180-188
    [49]Wei S,Mau S T,Vipulananadan C,Mantrala S K.Performance of new sandwich tube under axial loading:Experiment[J].Journal of Structural Engineering,1995,121(12):1806-1814
    [50]ANSYS8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005
    [51]孙粤林,张燎军,冉懋鸽.矩形钢管混凝土柱温度场及温度应力的有限元分析[J].水利水电科技进展,2005,25(5):33-36
    [52]郑永乾,杨有福,韩林海.用ANSYS分析钢-混凝土组合柱的温度场[J].工业建筑,2006,36[8]:74-77
    [53]朱上.高温下钢管混凝土柱温度场分析[J].建筑结构与设计,2006,36(5):36-38
    [54]王海华 丁永君,于德湖,等.ANSYS在钢管混凝土温度场分布研究中的应用[J].青岛建筑工程学报,2005,26(2):39-41
    [55]刘于,温海林.高温下钢管混凝土柱耐火性能分析[J].建筑结构与设计,2006,3:28-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700