用户名: 密码: 验证码:
复合钢管高强混凝土柱抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在方钢管高强混凝土柱的截面中部设置圆钢管的柱,称为复合钢管高强混凝土柱(简称复合柱)。复合柱将方钢管、圆钢管与高强混凝土有效地组合在一起,充分发挥各自的优势,特别适用于抗震设防地区超高层建筑底部楼层的框架柱以及承受重载的框架柱。目前,国内外对复合柱的抗震性能缺乏试验研究。本论文通过拟静力试验与数值分析,研究复合柱的抗震性能,为复合柱的工程应用提供依据。论文主要工作及成果如下:
     (1)完成了12个复合柱试件的拟静力试验,研究并揭示了复合柱的抗震性能和累积损伤性能,包括复合柱的破坏形态、承载能力、变形能力、耗能能力、刚度退化等,以及累积损伤对复合柱抗震性能的影响。结果表明,复合柱滞回性能稳定,具有很好的抗震性能,但累积损伤使试件的破坏程度严重一些。
     (2)完成了5个复合柱试件和3个方钢管混凝土柱试件的拟静力试验,研究大震后复合柱快速修复的可能性。结果表明,位移角为1/100时,方钢管壁板宽厚比为24.7的方钢管混凝土柱及复合柱试件,方钢管没有出现鼓曲、外观无变化,即达到框架-核心筒结构的大震弹塑性层间位移角限值时,无需修复即可继续使用。
     (3)采用基于纤维模型的OpenSEES程序,计算得到的复合柱试件的水平力-位移滞回曲线与试验实测曲线符合良好。对复合柱滞回性能的参数影响分析表明:增大轴压比,复合柱的变形能力降低;减小方钢管壁板宽厚比,复合柱的变形能力增大;增大径宽比,能提高复合柱的水平承载力;提高钢材强度,能有效提高复合柱的水平承载力和变形能力。根据试验及数值分析结果,提出了复合柱截面参数取值的建议。
     (4)提出了复合柱弯矩-转角骨架线特征点的弯矩和转角的确定方法。包括:采用叠加法计算骨架线的峰值弯矩;采用试验实测的复合柱截面弯矩-曲率曲线及简化的曲率-转角关系计算式,确定特征点的转角;或采用由数值分析得到的复合柱截面弯矩-曲率关系曲线,或由试验实测的复合柱试件弯矩-转角曲线,分别建立的特征点转角的计算式,确定特征点的转角。同时,提出了确定复合柱弯矩-转角曲线性能点的建议。
Composite-sectioned high strength concrete filled steel tubular (CSCFT) column is a new novel type of column, which consists of a circular steel tube embedded at the core area of the high strength concrete filled square steel tube column. The CSCFT column effectively combines the external square steel tube, internal circular steel tube and high strength concrete. It is suitable for the low portion story columns of earthquake resistant high-rise buildings and for the columns that are exerted to significantly large gravity loads. Till now experimental study on the seismic behavior of the CSCFT column has not been performed yet. In this dissertation, quasi-static tests and numerical simulation are carried out to investigate the seismic behavior of the CSCFT column. The main works and outcomes are as follows:
     (1) Quasi-static tests on twelve specimens were conducted to study and to reveal the seismic behavior and cumulative damage performance of the CSCFT column, including the failure mode, load-carrying capacity, deformation capacity, energy dissipation capacity, stiffness degradation, as well as the influence of cumulative damage on the seismic behavior of CSCFT columns. The test results indicated that the hysteretic behavior of the CSCFT column was stable and the CSCFT column had excellent seismic behavior, but cumulative damage made the specimens much more severe damage.
     (2) Quasi-static tests on five CSCFT column specimens and three high strength concrete filled square steel tube (CFST) column specimens were conducted to study the seismic behavior of the earthquake-resilient CSCFT column. The test results indicated that at the drift ratio of1/100, buckling of the square steel tube did not occur for the CFST column specimen and the CSCFT column specimens, which the square steel tube had the width-to-thickness ratio of24.7. It means that if the frame-core tube structure reaches its elastic-plastic drift ratio under the severe earthquakes, the CFCST columns could be used continually without any repair work.
     (3) By using the fiber model-based OpesnSEES program, the calculated lateral force-displacement hysteretic curves of the CSCFT column specimens had a good agreement with the test curves. Parameter analysis of the hysteretic behavior of the CSCFT columns indicated that:increasing the axial force ratio led to a decrease of the deformation capacity, reducing the width-to-thickness ratio of square steel tube led to an increase of the deformation capacity, increasing the diameter to width ratio led to an increase of load-carrying capacity, increasing the yield strength of steel tubes led to an increase of load-carrying capacity and the deformation capacity. Based on the test and numerical analysis results, the sectional parameter values of the CSCFT columns were proposed.
     (4) The determination methods for the moment and the rotation angle corresponding to the characteristic points of the moment-rotation angle skeleton curve of the CSCFT column were proposed. The peak moment can be determined by superposition method. Two methods for determining the rotation angle were developed. One method is to use the measured moment-curvature curves of the CSCFT column specimens and a simplified curvature-rotation angle relationship, or to use the calculating formula of the rotation angle obtained from the numerical simulated moment-curvature curves. Another method is to use the calculating formula of the rotation angle obtained from the measured moment-rotation angle curves of the CSCFT column specimens. Determining of the performance points on the moment-rotation angle curve of the CSCFT column was proposed.
引文
[1]包世华,张铜生.高层建筑结构设计和计算[M].北京:清华大学出版社,2005.
    [2]http://www.prnasia.com/story/73148-1.shtml
    [3]徐德诗.我国地震减灾工作浅谈[J].世界地震工程,1992(4):6-7.
    [4]邬福肇,曹康泰,陈章立.中华人民共和国防震减灾法释义[M].法律出版社,1998.
    [5]蔡绍怀,焦占栓.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984,5(6):13-29.
    [6]赵鸿铁,潘泰华,等.型钢混凝土构件的强度计算[J].建筑结构学报,1991,12(5):12-25.
    [7]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(2):2-11.
    [8]陈周熠,赵国藩,易伟建,等.带圆钢管劲性高强混凝土轴压短柱试验研究[J].大连理工大学学报,2005,45(5):687-691.
    [9]孙建超,徐培福,肖从真,等.钢板-混凝土组合剪力墙受剪性能试验研究[J].建筑结构,2008,38(6):1-6.
    [10]钱稼茹,康洪震.钢管高强混凝土组合柱抗震性能试验研究[J].建筑结构学报,2009,30(4):85-93.
    [11]董宏英,蒋峰,曹万林.钢-混凝土组合剪力墙抗震研究与发展[J].地震工程与工程振动,2012,32(1):54-61.
    [12]Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns[J]. Journal of constructional steel Research,2004,60(7):1049-1068.
    [13]CECS159:2004,矩形钢管混凝土柱结构技术规程[S].北京:中国计划出版社,2004.
    [14]CECS28:99,钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [15]JGJ138-2001,型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002.
    [16]CECS188:2005钢管混凝土叠合柱结构技术规程[S].北京:中国计划出版社,2005.
    [17]钱稼茹,张扬,纪晓东,等.复合钢管高强混凝土短柱轴心受压性能试验与分析[J].建筑结构学报,2011,32(12):162-169.
    [18]张扬.复合钢管高强混凝土构件力学性能研究[D].北京:清华大学,2013.
    [19]裴万吉.复式钢管混凝土柱力学性能研究[D].西安:长安大学,2005.
    [20]吕天启,赵国藩.内(圆)钢管增强方钢管混凝土偏压柱极限承载力分析数值方法[J].大连理工大学学报,2001,41(5):612-616.
    [21]张志权,赵胜民,张玉芬,吴涛.外方内圆钢管混凝土轴压承载力计算方法[J].建筑科学与工程学报,2009,26(2):63-68.
    [22]张玉芬,赵均海,等.基于统一理论的复式钢管混凝土轴压承载力计算[J].西安建筑科技大学学报,2009,41(1):41-47.
    [23]周蓉,魏雪英,等.内圆外方实腹式钢管混凝土柱偏压承载力研究[J].工业建筑,2009,39(增刊):664-669.
    [24]张玉芬.复式钢管混凝土轴压性能及节点抗震试验研究[D].西安:长安大学,2010.
    [25]康洪震.钢管高强混凝土组合柱受力性能试验研究[D].清华大学土木工程系,2009.
    [26]Hanbin Ge, Tsutomu Usami. Cyclic tests of concrete-filled steel box columns [J]. Journal of Structural Engineering,1996,122(10):1169-1177.
    [27]Varma A H, Ricles J M, et al. Experimental behavior of high strength square concrete-filled steel tube beam-columns[J]. Journal of Structural Engineering,2002,128(3):309-318.
    [28]Varma A H, Ricles J M, et al. Seismic behavior and design of high strength square concrete-filled steel tube beam-columns[J]. Journal of Structural Engineering,2004,130(2):169-179.
    [29]Eiichi Inai, Akiyoshi Mukai, et al. Behavior of concrete-filled steel tube beam columns [J]. Journal of Structural Engineering,2004,130(2):189-202.
    [30]韩林海,游经团,等.往复荷载作用下矩形钢管混凝土构件力学性能的研究[J].土木工程学报,2004,37(11):11-22.
    [31]李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能I:试验研究[J].地震工程与工程振动,2005,25(5):95-103.
    [32]马恺泽,梁兴文,李斌.高轴压比下方钢管高强混凝土柱抗震性能研究[J].工程力学,2010,27(3):155-162.
    [33]韩林海.钢管混凝土结构—理论与实践(第二版)[M].科学出版社,2007.
    [34]蔡绍怀.现代钢管混凝土结构(修订版)[M].人民交通出版社,2007.
    [35]Elremaily A, Azizinamini A. Behavior and strength of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research,2002,58:1567-1591.
    [36]王力尚,钱稼茹.钢管高强混凝土柱轴向受压承载力试验研究[J].建筑结构,2003,33(7):46-49.
    [37]王力尚,钱稼茹.钢管高强混凝土应力-应变全曲线试验研究[J].建筑结构,2004,34(1):11-13.
    [38]Sakino k, Nakahara H, et al. Behavior of centrally loaded concrete filled steel tube short columns[J].Journal of Structural Engineering,2004,130(2):180-188.
    [39]Fujimoto T, Mukai A, Nishiyama I, Sakino K. Behavior of eccentrically loaded concrete filled steel tubular columns [J]. Journal of Structural Engineering,2004,130(2):203-212.
    [40]Fam A, Qie F S, Rizkalla S. Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads[J].Journal of Structural Engineering,2004,130(4):631-640.
    [41]韩林海,杨有福,等.圆钢管混凝土压弯构件滞回性能的试验研究与理论分析[J].中国公路学报,2004,17(3):51-57.
    [42]JGJ3-2010高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [43]GB50010-2010混凝土结构设计规范[S].北京,中国建筑工业出版社,2010.
    [44]牟星之,姜维山,赵鸿铁.型钢混凝土短柱抗震性能的试验研究[J].西安冶金建筑学院学报,1991,23(3):266-276.
    [45]Ricles J M, Paboojian S D. Seismic performance of steel-encased composite columns[J]. Journal of Structural Engineering,1994,120(8):2474-2494.
    [46]叶列平,方鄂华,等.钢骨混凝土柱的轴压比限值[J].建筑结构学报,1997,18(5):43-50.
    [47]El-Tawil S, Deierlein G G. Strength and ductility of conerete encased composite columns[J].Journal of Structural Engineering,1999,125(9):1009-1019.
    [48]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报,2000,33(5):1-12.
    [49]Shanmugam N E, Lakshmi B. State of the art report on steel-concrete composite columns[J]. Journal of Constructional Steel Research,2001,57(10):1041-1080.
    [50]陈才华,王翠坤,孙慧中.型钢混凝土压弯构件抗震性能试验研究[J].工程抗震与加固改造,2007,29(4):68-73.
    [51]郭子雄,张志伟,刘阳.SRC柱抗震性能和抗震性态水平指标试验研究[J].西安建筑科技大学学报(自然科学版),2009,41(5):593-598.
    [52]刘阳,郭子雄,等.核心型钢混凝土柱抗震性能及轴压比限值试验研究[J].土木工程学报,2010,43(6):57-66.
    [53]郭子雄,林煌,刘阳.不同配箍形式型钢混凝土柱抗震性能试验研究[J].建筑结构学报,2010,31(4):110-115.
    [54]殷小溦,吕西林,卢文胜.大比尺高含钢率型钢混凝土柱滞回性能试验[J].土木工程学报,2012,45(12):91-98.
    [55]赵国藩,张德娟,黄承逵.钢管砼增强高强砼柱的抗震性能研究[J].大连理工大学学报,1996,36(6):759-766.
    [56]李惠,吴波,林立岩.钢管高强混凝土叠合柱的抗震性能研究[J].地震工程与工程振动,1998,18(1):45-53.
    [57]李惠,王震宇,吴波.钢管高强混凝土叠合柱抗震性能与受力机理的试验研究[J].地震工程与工程振动,1999,19(3):27-33.
    [58]林拥军,程文瀼,等.配有圆钢管的钢骨混凝土柱轴压比限值的试验研究[J].土木工程学报,2001,34(6):23-28.
    [59]康洪震,钱稼茹.钢管混凝土叠合柱轴压强度试验研究[J].建筑结构,2006,36(增刊):22-25.
    [60]钱稼茹,江枣.钢管混凝土组合柱轴心受压承载力计算方法[J].工程力学,2011,28(4):49-57.
    [61]Wei S, Mau S T, et al. Performance of new sandwich under axial loading:experiment[J]. Journal of Structural Engineering,1995,121(12):1806-1814.
    [62]Wei S, Mau S T, et al. Performance of new sandwich under axial loading:analysis [J]. Journal of Structural Engineering,1995,121(12):1815-1821.
    [63]Zhao XL, Grzebieta R. Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes[J].Thin-Walled Structures.2002,40(2):199-213.
    [64]陶忠,韩林海,黄宏.方中空夹层钢管混凝土偏心受压柱力学性能的研究[J].土木工程学报,2003,36(2):33-41.
    [65]陶忠,韩林海,黄宏.圆中空夹层钢管混凝土柱力学性能研究[J].土木工程学报,2004,37(10):42-52.
    [66]赵均海,郭红香,魏雪英.圆中空夹层钢管混凝土柱承载力研究[J].建筑科学与工程学报,2005,22(1):50-54.
    [67]黄宏,韩林海,陶忠.方中空夹层钢管混凝土柱滞回性能研究[J].建筑结构学报,2006,27(2):64-74.
    [68]聂建国,廖彦波.双圆夹层钢管混凝土柱轴压承载力计算[J].清华大学学报(自然科学版),2008,48(3):312-315.
    [69]徐汉勇,于志武.中空夹层钢管混凝土柱轴压力学性能分析[J].华中科技大学学报(自然科学版),2011,39(12):123-127.
    [70]蔡绍怀,焦占拴.复式钢管混凝土的基本性能和承载力计算柱[J].建筑结构学报,1997,18(6):20-25.
    [71]张春梅,阴毅,周云.双钢管高强混凝土柱轴压承载力的试验研究[J].广州大学学报(自然科学版),2004,3(1):61-65.
    [72]张春梅,阴毅,周云.影响钢管混凝土柱轴压承载力的因素分析[J[.工业建筑,2004,34(10):66-68.
    [73]江韩,左江,程文瀼.轴心受压双钢管混凝土短柱正截面承载力的试验研究[J].工程抗震与加固改造,2008,30(1):28-36.
    [74]江韩,储良成,等.轴心受压双钢管混凝土短柱正截面承载力理论分析与试验研究[J].建筑结构学报,2008,29(4):96-105.
    [75]周云,张春梅,阴毅.双钢管高强混凝土柱抗震性的试验研究[J].广州大学学报(自然科学版),2009,8(4):65-69.
    [76]王清湘,赵大洲,关萍.轴心受压钢骨-钢管高强混凝土组合柱力学性能的研究[J].东南大学学报(自然科学版),2002,32(5):710-714.
    [77]王清湘,赵大洲,关萍.钢骨-钢管高强混凝土组合柱承载力研究[J].大连理工大学学报,2003,43(6):787-792.
    [78]赵大洲.钢骨-钢管高强混凝土组合柱力学性能的研究[D].大连理工大学,2003.
    [79]关萍,王清湘,赵大洲.钢骨-钢管混凝土组合柱延性的试验研究[J].地震工程与工程振动,2003,23(1):84-89.
    [80]关萍,王清湘,赵大洲.钢骨-钢管混凝土受弯组合柱受力性能的试验研究[J].地震工程与工程振动,2003,23(2):57-60.
    [81]朱美春.钢骨-方钢管自密实高强混凝土柱力学性能研究[D].大连理工大学,2005.
    [82]王清湘,朱美春,刘秀峰.型钢-方钢管自密实高强混凝土轴压短柱受力性能的试验研究[J].建筑结构学报,2005,26(4):27-31.
    [83]朱美春,王清湘,刘秀峰.轴心受压钢骨-方钢管自密实高强混凝土短柱的力学性能研究[J].土木工程学报,2006,39(6):35-41.
    [84]何益斌,张铁成,等.极限平衡法分析钢骨-钢管混凝土短柱承载力的简化方法[J].铁道科学与工程学报,2006,3(5):46-49.
    [85]赵同峰,王连广.方钢管-钢骨高强混凝土压弯承载力计算[J].工程力学,2008,25(10):122-126.
    [86]徐亚丰,赵敬义,等.钢骨-钢管混凝土柱滞回性能试验研究[J].工业建筑,2009,39(7):107-110.
    [87]何益斌,肖阿林,等.钢骨-钢管自密实高强混凝土轴压短柱承载力-试验研究[J].自然灾害学报,2010,19(4):29-33.
    [88]肖阿林,何益斌,等.型钢-钢管混凝土短柱轴压承载力可靠度分析[J].建筑结构学报,2010,31(8):29-35.
    [89]朱美春,刘建新,王清湘.钢骨-方钢管高强混凝土柱抗震性能试验研究[J].土木工程学报,2011,44(7):55-63.
    [90]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力[J].建筑结构,2003,33(6):22-24.
    [91]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [92]叶列平,陆新征,等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学,2006,23(增刊):131-140.
    [93]聂建国,陶慕轩.多高层钢-混凝土组合框架结构体系弹塑性分析模型[J].建筑结构学报,2010,31(7):1-12.
    [94]黄远,聂建国,陶慕轩,李法雄.考虑楼板组合作用的方钢管混凝土组合框架受力性能有限元分析[J].建筑结构学报,2011,32(3):109-116.
    [95]聂建国,李法雄,樊健生.波形钢腹板梁变形计算的有效刚度发[J].工程力学,2012,29(8):71-79.
    [96]黄远,聂建国,易伟建.考虑滑移效应的钢-混凝土组合框架梁的刚度研究[J].工程力学,2012,29(11):88-92.
    [97]陶慕轩,聂建国.考虑楼板空间组合作用的组合框架体系设计方法(1)-极限承载能力[J].土木工程学报,2012,45(11):39-50.
    [98]聂建国,王宇航,樊健生.考虑扭转作用的钢管混凝土纤维梁模型[J].工程力学,2012,29(10):82-90.
    [99]聂建国,王宇航.基于ABAQUS的钢-混凝土组合结构纤维梁模型的开发及应用[J].工程力学,2012,29(1):70-80.
    [100]聂建国,王宇航ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学,2013,30(4):59-68.
    [101]Goto Y, Wang QY, Obata M. FEM analysis for hysteretic of thin-walled columns[J]. Journal of Structural Engineering,1998,124(11):1290-1301.
    [102]Goto Y, Jiang KS, Obata M. Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading[J]. Journal of Structural Engineering,2006,132(10):1621-1631.
    [103]Goto Y, Muraki M, Obata M. Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations [J]. Journal of Structural Engineering,2009,135(12):1481-1490.
    [104]Goto Y, Kumar GP, kawanishi N. Nonlinear finite element analysis for hysteretic behavior of thin-walled circular steel columns with in-filled concrete [J]. Journal of Structural Engineering.2010,136(11):1413-1422.
    [105]Goto Y, Kumar GP, Seki K. Finite element analysis for hysteretic behavior of thin-walled CFT columns with large cross sections[J]. Procedia Engineering,2011,14:2021-2030.
    [106]Goto Y, Mizuno K, Kumar GP. Nonlinear finite element analysis for cyclic behavior of thin-walled stiffened rectangular steel columns with in-filled concrete [J]. Journal of Structural Engineering,12,138(5):571-5.
    [107]陆新征,缪志伟,江见鲸,叶列平.静力和动力荷载作用下混凝土高层结构的倒塌模拟[J].山西建筑,2006,2:7-12.
    [108]汪训流,陆新征,叶列平.往复荷载下钢筋混凝土柱受力性能的数值模拟[J].工程力学,2007,24(12):76-81.
    [109]曲哲.摇摆墙-框架结构抗震损伤机制控制机设计方法研究[D].北京:清华大学,2010.
    [110]Spacone E, Filippou FC, Taucer FF. Fiber beam-column model for nonlinear analysis of R/C frames:part1formulation[J]. Earthquake Engineering and Structural Dynamics,1996,25(7):711-725.
    [111]Ambrisi AD, Filippou FC. Modeling of cyclic shear behavior in RC members[J]. Journal of Structural Engineering,1999,125(10):1143-1150.
    [112]Open System for Earthquake Engineering Simulation(OpenSEES). OpenSEES Examples Primer[M]. Printed on14June,2006.
    [113]Open System for Earthquake Engineering Simulation(OpenSEES). OpenSEES Command Language manual[M]. Printed on1July,2007.
    [114]凌炯.面向对象开放程序OpenSEES在钢筋混凝土结构非线性分析中的应用与初步开发[D].重庆:重庆大学,2004.
    [115]Kiureghian A D, Haukaas T, Fujimura K. Structural reliability software at the university of California,Berkely[J]. Structural Safety,2006,28(1):44-67.
    [116]齐虎,孙景江,林淋OpenSEES中纤维模型的研究[J].世界地震工程,2007,23(4):48-54.
    [117]朱庆华,梁书亭,等.基于OpenSEES的钢筋混凝土框架节点抗震性能影响因素分析[J].工程抗震与加固改造,2007,29(5):30-34.
    [118]齐虎.结构三维非线性分析软件OpenSEES的研究与应用[D].哈尔滨:中国地震局工程力学研究所,2007.
    [119]宁超列,段忠东OpenSEES中三种非线性梁柱单元的研究[J].低温建筑技术,2009,3:49-52.
    [120]朱雁茹,郭子雄.基于OpenSEES的SRC柱低周往复加载数值模拟[J].广西大学学报(自然科学版),2010,35(4):555-559.
    [121]高嵩.基于OpenSEES的钢筋混凝土非线性有限元分析及试验对比[D].合肥:合肥工业大学,2010.
    [122]Lignos D G, Chung Y, et al. Numerical and experimental evaluation of seismic capacity of high-rise steel buildings subjected to long duration earthquakes[J]. Computers and Structures,2011,89(11):959-967.
    [123]阳洋,周锡元,金国芳.基于OpenSEES系统识别工具箱开发及应用[J].四川建筑科学研究,2011,37(1):7-10.
    [124]Portoles JM, Romero ML, Filippou FC, Bonet JL. Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns [J]. Engineering Structures,33(2011):1576-1593.
    [125]李乾坤,郑罡,高波.基于OpenSEES的钢筋混凝土桥墩拟静力试验数值分析[J].世界地震工程,2011,27(1):110-114.
    [126]Jiang J, Usmani A. Modeling of steel frame structures in fire using OpenSEES[J]. Computers and Structures,2013,118(2):90-99.
    [127]Zhang YY, Harries KA, Yuan WC. Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete[J]. Engineering Structures,48(2013):255-265.
    [128]李四平,霍达,等.偏心受压方钢管混凝土柱极限承载力的计算[J].建筑结构学报,1998,19(1):41-51.
    [129]陶忠,杨有福,韩林海.方钢管混凝土构件弯矩-曲率滞回性能研究[J].工业建筑,2000,30(6):7-12.
    [130]李惠,刘克敏,等.钢骨高强混凝土叠合柱压弯承载力的计算[J].哈尔滨建筑大学学报,2001,34(3):1-4.
    [131]Chen ZY, YI WJ. Numerical simulation of the moment-curvature relationship for HSCCRST [J]. International Conference on Computing in Civil Engineering, Cancun, Mexico, July12-15,2005
    [132]Liang QQ. Performance-based analysis of concrete-filled steel tubular beam-columns, Part Ⅱ:Verification and applications [J]. Journal of Constructional Steel Research,65(2009):351-362.
    [133]Liang QQ. Performance-based analysis of concrete-filled steel tubular beam-columns, Part Ⅰ:Theory and algorithms [J]. Journal of Constructional Steel Research,2009,65:363-372.
    [134]过镇海,时旭东.钢筋混凝土原理和分析[S].北京:清华大学出版社,2003.
    [135]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报,1997,25(2):135-140.
    [136]杜修力,欧进萍.建筑结构地震破坏评估模型.世界地震工程,1991,7(3):52-58.
    [137]GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [138]江枣.竖向组合构件抗震性能研究[D].北京:清华大学土木工程系,2010.
    [139]钱稼茹,江枣,纪晓东.高轴压比钢管混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2010,31(7):40-48.
    [140]Park YJ, Ang AH, Wen YK. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, ASCE,1985,111(4):722-739.
    [141]郑山锁,侯丕吉,李磊,等.RC剪力墙地震损伤试验研究[J].土木工程学报,2012,45(2):51-59.
    [142]郑山锁,王斌,于飞,等.低周反复荷载作用下型钢高强高性能混凝土框架梁损伤试验研究[J].工程力学,2011,28(7):37-44.
    [143]郑山锁,王斌,侯丕吉,等.低周反复荷载作用下型钢高强高性能混凝土框架柱损伤试验研究[J].土木工程学报,2011,44(9):1-10.
    [144]王斌,郑山锁,国贤发,李磊.考虑损伤效应的型钢高强高性能混凝土框架柱恢复力模型研究[J].建筑结构学报,2012,33(6):69-76.
    [145]王斌,郑山锁,李磊.基于损伤理论的型钢与混凝土界面损伤分析.工业建筑,2010,40(4):112-117.
    [146]王斌,郑山锁,李磊.基于损伤的型钢混凝土构件数值分析[J].工程力学,2011,28(5):124-129.
    [147]Structural calculations of steel and concrete structures. Tokyo(Japan):Architectural Institute of Japan (AIJ),1987.
    [148]Eurocode4:Design of steel and concrete structures, part1.1, general rules and rules for buildings. Brussels (Belgium):European Committee for Standardization,1996.
    [149]Load and resistance factor design specification for structural steel buildings,2nd ed. Chicago(IL):American Institute of Steel Construction (AISC),1999.
    [150]Building code requirements for structural concrete and commentary, ACI318-99. Farmington Hills(MI):American Concrete institute,1999.
    [151]徐培福,王翠坤,肖从真.中国高层建筑结构发展与展望[J].建筑结构,2009,39(9):28-32.
    [152]汪大绥,周建龙.我国高层建筑钢-混凝土组合结构发展与展望[J].建筑结构学报,2010,31(6):62-70.
    [153]王翠坤,田春雨,肖从真.高层建筑中钢-混凝土组合结构的研究及应用进展[J].建筑结构,2011,41(11):28-33.
    [154]郭家耀,郭伟邦,等.中国国际贸易中心三期主塔楼结构设计[J].建筑钢结构进展,2007,9(5):1-6.
    [155]颜锋,肖从真,等.北京国贸三期工程高含钢率型钢混凝土异形柱试验研究[J].土木工程学报,2010,43(8):11-20.
    [156]盛和太,郭彦林CCTV新台址主楼高含钢率SRC柱承载性能研究[J].建筑结构学报,2008,29(3):47-53.
    [157]汪大绥,陆道渊,等.天津津塔结构设计[J].建筑结构学报,2009,(增刊1):1-7.
    [158]董志君,滕军,郭伟亮.深圳京基金融中心的施工过程力学性能分析[J].建筑结构学报,2009,(增刊1):409-412.
    [159]刘鹏,殷超,等.天津高银117大厦结构体系设计研究[J].建筑结构,2012,42(3):1-10.
    [160]叶列平.混凝土结构设计[M].北京:中国建筑工业出版社,2012.
    [161]王清湘,赵国藩,林立岩.高强混凝土柱延性的试验研究[J].建筑结构学报,1995,16(4):22-31.
    [162]JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1996.
    [163]Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering. PEER2010/109, Berkeley, UC Berkeley,2010.
    [164]National Earthquake Resilience Research, Implementation, and Outreach, Committee on Seismology and Geodynamics. National Research Council,2011.
    [165]陈涛,肖从真,田春雨,徐培福.高轴压比钢-混凝土组合剪力墙压弯性能试验研究[J].土木工程学报,2011,44(6):1-7.
    [166]聂建国,卜凡民,樊健生.低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J].建筑结构学报,2011,32(11):74-81.
    [167]Qian J R, Jiang Z, Ji XD. Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading [J]. Engineering Structures,2012,36(3):173-184.
    [168]Krawinkler H., Zohrei M. Cumulative damage in steel structures subjected to earthquake ground motions [J]. Computers&Structures.1983,16(4):531-541.
    [169]Park Y.-J., Ang A.H.-S., Wen Y.K. Seismic damage analysis of reinforced concrete buildings [J]. Journal of Structural Engineering ASCE,1985,111(4):740-757.
    [170]刘伯权,白邵良,等.钢筋混凝土柱低周疲劳性能的试验研究[J].地震工程与工程振动,1998,18(4):82-89.
    [171]何利,叶献国Kratzig及Park-Ang损伤指数模型比较研究[J].土木工程学报,2010,43(12):1-6.
    [172]王斌.型钢高强高性能混凝土构件及其框架结构的地震损伤研究[D].西安,西安建筑科技大学,2010.
    [173]曲哲,叶列平.基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J].工程力学,2011,28(6):45-51.
    [174]丁阳,伍敏,等.钢柱考虑损伤累积效应的强震下损伤演化规律[J].建筑结构学报,2011,32(7):112-117.
    [175]Varma AH, Ricles JM, Sause R, Lu LW. Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns. Journal of Constructional Steel Research58(2002)725-758.
    [176]Susantha K A S, Ge H, Usami T. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes[J]. Engineering Structures,2001,23(10):1331-1347.
    [177]OpenSEES version1.7User Manual, Pacific Earthquake Engineering Research Center, University of California, Berkeley,2006, http://opensees.berkeley.edu.
    [178]徐福江.钢筋混凝土框架-核心筒结构基于位移抗震设计方法研究[D].北京:清华大学,2006.
    [179]GB50009-2012建筑结构荷载规范[S].北京,中国建筑工业出版社,2012.
    [180]Menegotto M, Pinto P E. Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending [C]. IABSE symposium on resistance and ultimate deformability of structural acted on by well-defined repeated loads, Lisbon,1973:15-22.
    [181]林震宇,沈祖炎,等.基于纤维模型有限元柔度法的L形钢管混凝土构件非线性反正分析[J].建筑钢结构进展,2010,12(4):11-16.
    [182]张继承,沈祖炎,周海军.L形钢管混凝土柱抗震性能非线性有限元分析[J].工业建筑,2010,40(7):85-90.
    [183]张继承,沈祖炎,林振宇.异形钢管混凝土轴压短柱的非线性分析[J].桂林理工大学学报,2011,31(1):80-85.
    [184]余勇,吕西林.方钢管混凝土柱的三维非线性分析[J].地震工程与工程振动,1999,19(1):57-64.
    [185]余勇,吕西林,等.轴心受压方钢管混凝土短柱的性能研究:Ⅱ分析[J].建筑结构,2000,30(2):43-46.
    [186]陈曦,周德源.五种本构模型在钢管混凝土有限元中的比较[J].工程力学,2009,26(6):116-121.
    [187]赵同峰,李宏男,刘宏.方钢管钢骨混凝土轴压短柱极限承载力计算[J].辽宁工程技术大学学报(自然科学版),2010,29(2):220-223.
    [188]李雪,李宏男,黄连壮.高压输电线路覆冰倒塔非线性屈曲分析[J].振动与冲击,2009,28(5):111-115.
    [189]杨昌民,李宏男,等.防屈曲支撑的有限元模拟及滞回性能分析[J].防灾减灾工程学报,2012,32(2):145-152.
    [190]陈勇,张耀春.设对拉片方形薄壁钢管混凝土短柱的试验研究与有限元分析[J].建筑结构学报,2006,27(5):23-29.
    [191]张耀春,陈勇.设直肋方形薄壁钢管混凝土短柱的试验研究与有限元分析[J].建筑结构学报,2006,27(5):16-22.
    [192]张耀春,徐超,卢孝哲.带肋薄壁方钢管混凝土柱的滞回性能[J].东南大学学报,2007,37(1):100-106.
    [193]徐超,张耀春,卢孝哲.方形设肋薄壁钢管混凝土柱的恢复力模型[J].哈尔滨工业大学学报,2008,40(4):514-520.
    [194]张凤亮.空心圆钢管混凝土压弯构件骨架曲线和延性系数的研究[D].哈尔滨:哈尔滨工业大学学报,2008.
    [195]仓友清,查晓雄,王晓璐.钢管-GFRP管-混凝土柱抗震性能的研究[J].建筑钢结构进展,2011,13(1):43-48.
    [196]潘志宏,李爱群.基于纤维模型的外粘型钢加固混凝土柱静力弹塑性分析[J].东南大学学报(自然科学版),2009,39(3):552-556.
    [197]潘志宏,李爱群,孙义刚.基于纤维模型的外包钢加固混凝土框架结构静力弹塑性分析[J].沈阳建筑大学学报(自然科学版),2010,26(1):68-74.
    [198]陈学伟,韩小雷,等.基于纤维模型的CFRP布加固混凝土柱有限元分析[J].工业建筑,2007,增刊.
    [199]韩小雷,唐剑秋,等.钢管混凝土巨型斜交网格筒体结构非线性分析[J].地震工程与工程振动,2009,29(4):77-84.
    [200]韩小雷,陈学伟,等.基于OpenSEES的剪力墙低周往复试验的数值分析[J].华南理工大学(自然科学版),2008,36(12):7-12.
    [201]韩小雷,陈学伟,等OpenSEES的剪力墙宏观单元的研究[J].世界地震工程,2008,24(4):76-81.
    [202]陈学伟,韩小雷,等.三种非线性梁柱单元的研究及单元开发1J].工程力学,2011,28(增刊):5-11.
    [203]陈学伟.剪力墙结构构件变形指标的研究及计算平台开发[D].广州:华南理工大学,2011.
    [204]高嵩,叶献国.基于OpenSEES的钢筋混凝土柱非线性有限元分析[J].施工技术,2010,39(增刊):199-202.
    [205]ATC,"Seismic Evaluation for the Retrofit of Concrete Buildings"[R], Report No. ATC-40. Applied Technology Council, Redwood City, California,1996.
    [206]李海旺,薛振岗,张宗升.150m钢拱桁架在地震作用下的动力响应分析[J].建筑结构,2011,41(增刊):860-864.
    [207]陈跃,姚勇,张兆强.薄壁方钢管混凝土梁柱节点抗震性能试验研究[J].钢结构,2013,28(3):15-20.
    [208]徐礼华,童敏.方钢管混凝土柱-钢梁双侧板贯穿式节点抗震性能试验研究[J].土木工程学报,2012,45(3):49-57.
    [209]王万祯,杨保证,黄友钱,纪海涛.梁翼缘、腹板开孔方钢管混凝土柱-H型钢梁节点力学性能试验研究[J].建筑结构学报,2012,33(3):96-103.
    [210]李威.圆钢管混凝土柱-钢梁外环板式框架节点抗震性能研究[D].北京:清华大学土木工程系,2011.
    [211]江源.钢筋混凝土梁-钢管混凝土叠合柱节点试验研究[D].北京:清华大学土木工程系,2007.
    [212]王志浩,成戎.复合方钢管混凝土短柱的轴压承载力[J].清华大学学报(自然科学版)2005,45(12):1596-1600.
    [213]成戎,王志浩.复合截面方钢管混凝土梁的抗弯性能试验研究[J].建筑科学,2010,26(9):17-20.
    [214]张玉芬,王育平,赵均海.复式钢管混凝土外钢管不连通环梁节点抗震性能试验研究[J].土木工程学报,2012,45(6):90-100.
    [215]张冬梅,赵均海,张玉芬,等.复式钢管混凝土柱-钢梁节点的抗震性能有限元分析[J].世界地震工程,2013,29(1):49-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700