用户名: 密码: 验证码:
粘土矿物胶体对铅的环境行为影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对灌溉水体和土壤污染愈加严重的客观现实,以及为了进一步揭示重金属污染物在具有不同类型胶体体系土壤中的迁移及环境行为,深入研究无机胶体和胶体携带污染物在多孔介质中传输机理与相关理论,将极大的促进对于地下水污染的认识和对废水处理的研究与应用。尽管前人对土壤介质中污染物的迁移研究已取得了丰硕成果,但是,仍然有许多工作亟待研究和进一步完善。以往研究文献中,只是对在土壤介质中单一重金属离子污染物的迁移研究工作很多,而对重金属与无机胶体的复合物、且与传输介质均能够发生反应的复合污染物的迁移规律研究尚显不足。基于国内外学科发展动态与客观实际的迫切需要,本论文选取了土壤体系中常见的两种不同结构类型的粘土矿物胶体高岭石和蒙脱石作为主要实验材料,通过室内模拟实验和数学模型分析的手段,在分别研究两种无机胶体和重金属铅在多孔介质中迁移规律、无机胶体与重金属铅的相互作用规律基础上,重点研究了无机矿物胶体与土壤重金属铅的复合体在多孔介质中迁移时的分异特征与迁移规律,同时,探求了重金属污染物的修复原理与技术,取得了以下主要结论:
     (1)粘土矿物胶体在饱和多孔介质中的运移会受到介质性质、胶体类型及孔隙水流速等物理化学条件的影响。石英砂介质的表面特性(水洗处理和烘烤处理)差异,导致粘土矿物胶体在该介质中运移过程时受到的吸附力不同,是影响胶体运移的外因;而粘土矿物胶体结构类型不同、粒径差异显著,决定着粘土矿物胶体在运移过程中的吸附和沉积反应,是影响胶体运移的内因;平均孔隙水流速变化(胶体运移速度)所产生的剪切力不同,影响着胶体移动性;溶液的pH值和离子强度会强烈地影响粘土矿物胶体的表面电荷和ξ电位,随胶体类型的不同,其影响程度差异显著,均是影响胶体运移的环境条件。
     (2)不同类型的粘土矿物胶体对Pb2+均具有一定的吸附性,但吸附机制与特点有明显不同。高岭石对Pb2+的吸附主要是离子交换作用机制的饱和性吸附,而蒙脱石则是离子交换机制的非饱和性吸附,Pb的饱和度直接影响着不同类型胶体对其吸附与解吸过程。pH是重金属离子在胶体溶液中的吸附和解吸行为的重要影响因素,不同类型的粘土矿物胶体对溶液pH的反应有所不同,溶液pH对以可变电荷为主的高岭石吸附Pb2+影响较大,而对于以永久负电荷为主的蒙脱石影响相对较小。离子强度也是影响胶体和重金属吸附和解吸行为的重要因素,在不同离子强度下,不同类型粘土矿物胶体表面吸附Pb2+的解吸过程均随着时间的变化呈阶段性分布,即初始的快速解吸反应之后伴随着一个缓慢的解吸过程,高岭石随着离子强度的增加,吸附Pb2+的解吸量逐渐增大,蒙脱石胶体则当离子强度达到一定程度后会抑制其解吸,并且在同一离子强度下解吸量远小于高岭石胶体Pb2+的解吸量,进一步证明两种不同类型粘土矿物胶体对重金属的吸附机制有所不同。由粘土矿物胶体对铅的吸附-解吸特性可以推断,当外界环境中低浓度的Pb2+进入土壤,将立即被吸附固定,使Pb2+有效性降低。但是,当外来高浓度的Pb2+进入土壤环境,土壤的吸附作用导致Pb2+在土壤中不断累积,最终达到在总量上饱和。受外界环境变化的影响,如降雨、灌溉和施肥等,就会导致吸附在土壤胶体上的Pb2+的解吸释放而产生更大的生态风险。因此,研究铅在土壤中的迁移规律,才能更好地治理土壤铅的污染。
     (3)与单纯的胶体运移相比,铅在饱和多孔介质中的运移更复杂,涉及静态和动态反应,导致运移过程中有大量的铅残留在多孔介质中。铅的这种很强的与其他材料结合的趋势,及其在多孔介质中具有低流动性,是造成土壤铅污染的主要原因。粘土矿物胶体在多孔介质中的移动能够加速铅的移动,导致其提前出流。证明了天然胶体可以作为“运输者”以促进重金属的运移;虽然以胶体吸附态铅形式作为输入物质,但在多孔介质中的运移过程,粘土矿物胶体和铅的迁移并不是完全同步,说明粘土矿物胶体和铅作为双反应性复合体进行迁移,在迁移过程中时刻存在着铅在无机胶体与介质相之间的再分配问题。因此,在描述胶体与重金属污染物复合体在多孔介质中迁移特征时,需要以物质检出时间为指标的“迁移速率”和以检出量为指标的“迁移能力”两个指标,才能够完整地表征在有运输载体情况下重金属离子的迁移规律,因为在多孔介质中污染物“迁移峰面”移动快的,未必迁移出的量就一定大。
     (4)同样是胶体和铅的协同运输,粘土矿物胶体在铅污染的多孔介质中的运移,胶体和铅的相关性高于胶体与铅的吸附体在多孔介质中的运移情况。主要原因是两种不同状况下,铅与胶体之间的吸附或解吸过程与方向不同,对铅的携带与移动能力不同。在多孔介质中,胶体与铅的协同运输中存在着“吸附携带”和“解吸滞留”两种现象。“吸附携带”是给被Pb污染的介质中仅加入无机胶体,胶体对Pb的吸附携带,具有清除Pb污染物的过程;而“解吸滞留”是指胶体与Pb污染物的复合体一同进入到未被污染的多孔介质中,污染物Pb从胶体上解吸下来,而滞留在多孔介质中,对介质却发生了污染过程。对于以上两种情况可以将其称之为“胶体对污染物的解吸和吸附过程效应”。
     (5)沉积在多孔介质中的胶体可以通过增加孔隙水流速、降低溶液离子浓度和用稀碱溶液淋洗等方法进行释放与修复。当土壤环境由于污水灌溉等原因而具有了较高的离子强度,之后在不断的降低离子强度的过程中,土壤中的胶体物质便会产生增量释放,使吸附在土壤胶体上的污染物质的迁移加剧,由此便可能对深层土壤环境和地下水环境产生威胁。那么,此时可以通过人为调节离子强度的变化,例如灌水等方式来进行人为管理,降低对环境的危害。
     (6)利用Langmuir模型和HYDRUS-1D软件处理粘土矿物胶体对铅的吸附解吸实验以及粘土矿物胶体和铅在多孔介质中的穿透实验的数据,相关性可达到显著水平。
Irrigation water and soil contamination is getting worse, in order to reveal the migration machanism and environmental behavior of of heavy metal pollutants in soil with different colloidal systems, we investigated the mechanism and related theory of inorganic colloids and colloids bounded contaminants transport in porous media, which will benefit the understanding of groundwater pollution and improve the research and application on wastewater treatment. Most scitensists have achieved a lot of successfull results on the research of contaminants migration in soil media, but much work need to be studied and further improved. Based on the past literature, most work focused on the trasnport of contaminant with a single heavy metal ion in the soil media, while the research of the transport mechanism of complexes consisted of heavy metals and inorganic colloids, and the complex contaminants which have reactive characters with the migration media is inadequate. Based on the develement of discipline at home and abroad and the crtitical need for objective reality, this study selected kaolinite and montmorillonite as the main experimental material, which are two different structure colloidal clay minerals in common types soil. Using laboratory experiments and mathematical model simulation, based on the study of transport mechanism of the two inorganic colloids and Pb in porous media, and the interaction of inorganic colloid and Pb, this study focused on the differentiation and migration mechanism of complexs transport in porous media, which consisted of inorganic mineral colloid and Pb, and explored the remediation principle and technology for heavy metal pollutants. This thesis achieved the following major conclusions:
     (1) The characters of media, colloid type and pore water physical and chemical conditions will impact the transport of clay mineral colloids in saturated porous media. The difference surface characteristics of quartz sand (washed sand and baked sand) results the different absorption force to colloidal clay mineral in the transport process, which is the external factors affecting colloid transport. The difference of clay minaral colloidal structure and significant difference of particle size determines the reaction of adsorption and deposition during the colloidal clay mineral migration, which is the internal factor affecting colloid transport. The change of shear stress generated from the varity of pore water velocity (colloid transport velocity) will affect the colloidal mobility, also pH and ionic strength (IS) of solution will strongly affect the surface charge andξpotential of colloidal clay minerals, which is the environmental conditions impacting the colloid transport, and the effect was significantlly difference,
     (2) All the different types of clay mineral colloids have some adsorption on Pb2+, but the adsorption mechanism and characteristics are significantly different, the adsorption of Pb2+ on kaolinite is mainly saturation adsorption of exchange mechanism, though the montmorillonite is unsaturated adsorption of ion exchange mechanism. pH is an important factor to impact heavy metal ions adsorption and desorption in colloidal suspension, different clay mineral colloids have different reaction with solution pH. The solution pH has greater impact to the adsorption of Pb2+ on kaolinite which mainly has pH variable charge, but which has relatively small impact to the adsorption of Pb2+ on montmorillonite which mainly has permanent negative charge. Ionic strength also is an important affect factor to the adsorption and desorption of colloid and heavy metals, in different ionic strength, the desorption process of adsorbed Pb2+ in different types clay mineral colloids surface was distributed to different stage over time, the first stage is initial fast desorption, followed with a slow desorption process, and as the increasing of ionic strength, the desorption quantity of adsorbed Pb2+on kaolinite gradually increasing. But montmorillonite colloid will inhibit the desorption of adsorbed Pb2+ when the ionic strength reach a certain concentration, and at the same ionic strength concentration, the desorption quantity of Pb2+ is far less than kaolinite, which further show the adsorption mechanism of two different types colloidal clay minerals have different mechanism to adsorpt heavy metals. The characteristics of Pb adsorption-desorption on the clay mineral colloids further showed, when the low concentration of Pb2+ got into the soil, the Pb2+ would immediately be attracted and stabliablized, and the Pb2+ activity decreased. However, when high concentration Pb2+ got into soil, because of soil adsorption, the Pb2+ accumulated in the soil and saturated eventually. The changing of external environment, such as rainfall, irrigation and fertilization, will lead to soil colloids adsorbed Pb2+ desorption, which release a greater ecological risk. Therefore, only the understanding of mechanism of lead migration in soil was improve, that the soil lead pollution could be controlled.
     (3) Compared with the pure colloid transport, the Pb transport in saturated porous media was more complicated, including static and dynamic reaction, resulting abundant Pb stored in the porous media in the migration process. Such a strong trend of Pb combining with other materials and low movability in porous media is the main reason of Pb contamination in soil.
     Clay mineral colloids can accelerate the migration of Pb in porous media, resulting the Pb leach out ahead of schedule. Which proved that natural colloid can be a "carrier" to accelerate the migration of heavy metals. Although the input material was colloid adsorbed Pb, but the transport of colloidal clay minerals and lead in porous media was not synchronized absolutely, which showed that colloidal clay minerals and Pb migrated as a two-reaction complex, furthermore Pb would always redistribute between inorganic colloids and the media in the migration process. Thus, when describing the migration characteristics of complex of colloids and heavy metal pollutants in porous media, the two indicators, "migration rate" whose indicator was material detection time, and "migration ability" whose indicator was detection quantity, were indispensable to characterize the migration of heavy metal ions in the case of a transport carrier.
     (4) As colloid and lead facilitated transport, when clay mineral colloids transported in Pb contaminated porous media, the correlation of colloid and Pb is much higher than the correlation of colloid and complex. The main reason is that in the two different situations, the peocess and direction of adsorption and desorption between Pb and colloid are different, and the ability of Pb carrying and migration is different, thus there are "adsorption carrying" and "desorption retardation" phenomenas. "Adsorption carrying" is the process that the colloid is added to the contaminated media, which erased the pollutants via adsorption carrying. "Desorption retardation" is the process that when the complex of colloid and pollutants was added into the porous media, contaminants desorbed from colloids, which was retarded in porous media, so the porous media was cotaminatinated. Fot the two cases mentioned above, they can be named as "adsorption and desorption process effect of colloids on pollutants".
     (5) Colloids deposited in porous media can be release and remediation via increasing the pore water velocity, reducing the ionic concentration, leaching with diluted alkali solution and other methods. When the soil has a high ionic strength, no matter it was irrigated with sewage or other reasons, then in the ionic strength decreasing process, the colloidal substances in soil will release produce incremental release, which will inhance the migration of contaminants adsorbed on soil colloids, which may threaten deep soil and groundwater. The harm to the environment can be reduced via artificially adjusting the ionic strength, such as artificial irrigation and other management method.
     (6) When dealing with the data of Pb adsorption and desorption on colloidal clay mineral experiments and transport of clay minerals and colloids in porous media experiments, the data resulting from Langmuir model and the HYDRUS-1D software has significant correlation.
引文
于天仁.1987.土壤化学原理.北京:科学出版社
    于天仁,季国亮,丁昌璞.1996.可变电荷土壤的电化学.北京:科学出版社
    王永,徐仁扣,王火焰,姜军.2009.砷酸根在可变电荷土壤颗粒表面的配位吸附.环境化学,28(2):163-167
    王宏镔,束文圣,蓝崇钰.2005.重金属污染生态学研究现状与展望.生态学报,25(3):596-605
    王果.1995.Cu、Cd在2种土壤上的吸附特征.福建农业大学学报,24(4):436-441
    王维君,邵宗臣,何群.1995.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究.土壤学报,32(2):167-178
    何宏平,郭九皋,谢先德.1999.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究.矿物学报,19(2):231-235
    何良彪,辛春英.1986.西赤道太平洋沉积物中的粘土矿物.科学通报,31(6):449-452
    何翊,牛盾,门阅.2005.高岭石对铅离子吸附性能的特征研究.金属矿山,35(2):60-64
    余国营,吴燕玉.1997.土壤环境中重金属元素的相互作用及其对吸持特性的影响.环境化学,16(1):30-36
    李成保,季国亮.1999.恒电荷土壤和可变电荷土壤动电性质的研究:Ⅰ.阳离子吸附和pH的影响.土壤学报,36(3):354-360
    李孟,刘新明.2006.国内外深层过滤理论的最新研究进展.中国水运,6(10):45-46
    李琴,翟建平,张文艺,吕慧峰.2006.膨润土对Pb2+、Cu2+、Cr3+的吸附动力学及等温线研究.环境污染治理技术与设备,7(10):55-58
    李军,张玉龙,陈维新.1992.有机质对土壤铅吸附特性的影响.沈阳农业大学学报,23(Z09):38-42
    李国山,周启友,刘汉乐.2008.高密度电阻率法监测纳米胶体在多孔介质中运移的实验.地球科学与环境学报,30(1):75-79
    李学垣.2001.土壤化学.北京:高等教育出版社:114
    周代华,李学垣,徐凤琳.1997.重金属在氧化物表面的吸附形态.土壤学报,34(3):348-351
    周泽义.1999.中国蔬菜重金属污染及控制.资源生态环境网络研究动态,10(3):21-27
    金相灿.1992.沉积物污染化学.北京:中国环境科学出版社
    侯惠珍,袁可能.1999.土壤有机矿质复合胶体的金属离子平衡.浙江大学学报(农业与生命科学版),25(4):389-391
    徐仁扣,肖双成,赵安珍.2008.基于Zeta电位的水稻土吸附Pb(Ⅱ)和Cd(Ⅱ)能力的比较.环境化学,27(6):742-745
    崔德杰,张玉龙.2004.土壤重金属污染现状与修复技术研究进展.土壤通报,35(3):366-370
    曹积飞,杨秋荣,李英杰,康桂玲.2008.粘土矿物对重金属有害元素吸附性研究.环境科学与技术,31(1):42-44
    郭守玺.1996.在NH4H2PO4体系中土壤胶体锌吸附的研究.山西农业大学学报,16(1):52-55
    熊毅.1985.土壤胶体.第二册,土壤胶体研究法.北京:科学出版社:515
    刘廷志,田胜艳,商平,李学明,刘维华.2005.蒙脱石吸附Cr3+、Cd2+、Cu2+、Pb2+、Zn2+的研究:pH值和有机酸的影响.生态环境,14(3):353-356
    刘俊,周元祥,汤利华,施晶俊.2007.无机陶瓷膜处理生活污水中膜污染及清洗研究.安徽建筑工 业学院学报(自然科学版),15(3):57-60
    刘庆玲,徐绍辉.2005.地下环境中胶体促使下的污染物运移研究进展.土壤,37(2):129-135
    刘庆玲,徐绍辉,刘建立.2007.离子强度和pH对高岭石胶体运移影响的实验研究.土壤学报,44(3):425-429
    刘庆玲,徐绍辉,刘建立.2008.饱和多孔介质中高岭石胶体和Si02胶体运移行为比较.土壤学报,45(3):445-451
    吴宏海,刘佩红,张秋云,何广平.2005.高岭石对重金属离子的吸附机理及其溶液的pH条件.高校地质学报,11(1):85-91
    吴宏海,吴大清,彭金莲.2000.溶液介质条件对重金属离子与石英表面反应的影响.地球化学,29(1):62-66
    吴树森.1993.应用物理化学:界面化学与胶体化学.北京:高等教育出版社
    张强,李支援.1996.海泡石对镉污染土壤的改良效果.湖南农业大学学报(自然科学版),22(4):346~350
    杨金燕,杨肖娥,何振立,杨金英.2005.土壤中铅的吸附-解吸行为研究.生态环境,14(1):102-107
    杨金燕,杨肖娥,何振立,杨金英.2008.碱性盐化条件下蒙脱石和伊利石对镉的吸附特征研究.农业环境科学学报,27(6):2251-2257
    杨亚提,张一平.2001a.土壤胶体表面吸附态铜的解吸动力学特征.土壤与环境,10(3):181-184
    杨亚提,张一平.2001b.离子强度对恒电荷土壤胶体吸附Cu2+和Pb2+的影响.环境化学,20(6):566-571
    贾晓玉,李海明,王博.2009.不同酸碱条件下胶体迁移对含水介质渗透性的影响.环境科学与技术,32(5):45-47
    郑喜砷,鲁安怀,高翔,赵谨,郑德圣.2002.土壤中重金属污染现状与防治方法.土壤与环境,11(1):79-84
    Aherns L H.1965. Distribution of the Elements in Our Planet. New York:McGraw-Hill
    Amrhein C, Mosher P A, Strong J E.1993. Colloid-assisted transport of trace metals in roadside soils receiving deicing salts. SOIL SCI SOC AM J,57(1):212-217
    Anderson P R, Christensen T H.1988. Distribution coefficients of Cd, Co, Ni, and Zn in soils. Journal of Soil Science,39(1):15-22
    Appel C, Ma. L Q.2002. Concentration, pH, and surface charge effects on Cd and Pb sorption in three tropical soils. J. Environ. Qual.,31:581-589
    Artinger R, Kienzler B, Schler W, Kim J I.1998. Effects of humic substances on the 241 Am migration in a sandy aquifer:column experiments with Gorleben groundwater/sediment systems. Journal of Contaminant Hydrology,35(1-3):261-275
    Artinger R, Schuessler W, Scherbaum F, Schild D, Kim J I.2002.241 Am Migration in a Sandy Aquifer Studied by Long-Term Column Experiments. Environmental Science & Technology,36(22): 4818-4823
    Bailey S E, Olin T J, Bricka R M, Adrian D D.1999. A review of potentially low-cost sorbents for heavy metals. Water Research,33(11):2469-2479
    Barrow N J, Bowden J W, Posner A M, Quirk J P.1981. Describing the adsorption of copper, zinc and lead on a variable charge mineral surface. Australian Journal of Soil Research,19(3):309-321
    BastaN T, Pantone D J, Tabatabai M A.1993. Path Analysis of Heavy Metal Adsorption by Soil. Agron. J., 85(5):1054-1057
    Berti W, Cunningham S D.1997. In-place inactivation of Pb in Pb-contaminated soils. Environ. Sci. Technol.,31:1359
    Bozkurt S, Moreno L, Neretnieks I.2000. Long-term processes in waste deposits. Sci. Total Environ.,250: 101
    Bradford S A, Simunek J, Bettahar M, van Genuchten M T, Yates S R.2006. Significance of straining in colloid deposition:Evidence and implications. Water Resour. Res.,42(12):W12S15
    Bradford S A, Yates S R, Bettahar M, Simunek J.2002. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research,38(12):63.1-63.12
    Brooks C S.1955. Nitrogen Adsorption Experiments on Several Clay Minerals. Soil Science,79(5): 331-348
    Bruemmer G W, Gerth J, Tiller K G.1988. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Journal of Soil Science,39(1): 37-52
    Burt R, Wilson M A, Mays M D, Lee C W.2003. Major and Trace Elements of Selected Pedons in the USA. J Environ Qual,32(6):2109-2121
    Candelone J-P, Hong S, Pellone C, Boutron C F.1995. Post-Industrial Revolution changes in large-scale atmospheric pollution of the northern hemisphere by heavy metals as documented in central Greenland snow and ice. Journal of Geophysical Research-Atmospheres,100(D8):16605-16616
    Cao X, Ma L Q, Chen M, Singh S, Harris W G.2002. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ. Sci. Technol.,36:5296
    Citeau L, Lamy I, van Oort F, Elsass F.2003. Colloidal facilitated transfer of metals in soils under different land use. Colloids and Surfaces A:Physicochemical and Engineering Aspects,217(1-3):11-19
    Clausen J L, Bostick B, Korte N. In Review 2009. A Review of the Migration of Metallic Lead in Surface Water, Pore Water and Ground Water with Emphasis on Risks from Shooting Ranges.
    Covelo E F, Andrade M L, Vega F A.2004. Heavy metal adsorption by humic umbrisols:selectivity sequences and competitive sorption kinetics. Journal of Colloid and Interface Science,280(1):1-8
    Crist J T, Zevi Y, McCarthy J F, Throop J A, Steenhuis T S.2005. Transport and Retention Mechanisms of Colloids in Partially Saturated Porous Media. Vadose Zone Journal,4(1):184-195
    de Jonge H, Jacobsen O H, de Jonge L W, Moldrup P.1998. Particle-Facilitated Transport of Prochloraz in Undisturbed Sandy Loam Soil Columns. J. Environ. Qual.,27(6):1495-1503
    de Jonge L W, Moldrup P, Rubaek G H, Schelde K. Djurhuus J.2004. Particle leaching and particle-facilitated transport of phosphorus at field scale. Vadose Zone Journal,3(2):462-470
    Dermatas D, Menounou N, Dadachov M, Dutko P, Shen G, Xu X, Tsaneva V.2006. Lead Leachability in Firing Range Soils. Environmental Engineering Science,23(1):88-101
    DeVolder P S, Brown S L, Hesterberg D, Pandya K.2003. Metal Bioavailability and Speciation in a Wetland Tailings Repository Amended with Biosolids Compost, Wood Ash, and Sulfate. J Environ Qual,32(3):851-864
    Diamond S, Kinter E.1958. Surface area of clay minerals as derived from measurements of glycerol retention. Clays and Clay Minerals,5:334-347
    Dyal R S, Hendricks S B.1950. Total Surface of Clays in Polar Liquids As A Characteristic Index. Soil Science,69(6):503-509
    Eisler R,1988. Lead hazards to fish, wildlife, and invertebrates:a synoptic review. Number of Medium:X; Size:Pages:146.
    Elimelech M, O'Melia C R.1990a. Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir,6(6):1153-1163
    Elimelech M, O'Melia C R.1990b. Kinetics of deposition of colloidal particles in porous media. Environmental Science & Technology,24(10):1528-1536
    Erel Y, Patterson C C.1994. Leakage of industrial lead into the hydrocycle. Geochimica et Cosmochimica Acta,58(15):3289-3296
    Essington M E, Foss J E, Roh Y.2004. The Soil Mineralogy of Lead at Horace's Villa. Soil Sci Soc Am J, 68(3):979-993
    Faur M H, Sardin M, Vitorge P.1996. Transport of clay particles and radioelements in a salinity gradient: experiments and simulations. Journal of Contaminant Hydrology,21(1-4):255-267
    Flury M, Qiu H.2008. Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone Journal,7(2):682-697
    Forbes E A, Posner A M, Quirk J P.1976. The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite. European Journal of Soil Science,27(2):154-166
    Frausto da Silva J J R, Williams R J P.1991. The Biological Chemistry of the Elements:The Inorganic Chemistry of Life. Oxford, U.K.:Clarenden Press
    Francek M.1997. Soil lead levels in orchards and roadsides of mission Peninsula, Michigan. Water, Air,& Soil Pollution,94(3):373-384
    Gamerdinger A P, Kaplan D I.2001a. Colloid transport and deposition in water saturated Yucca Mountain tuff as determined by ionic strength. Environmental Science and Technology,35(16):3326-3331
    Gamerdinger A P, Kaplan D I.2001b. Physical and chemical determinants of colloid transport and deposition in waterunsaturated sand and Yucca Mountain tuff material. Environmental Science and Technology,35(12):2497-2504
    Gao B. Dong Y, Luo Y. Ma L Q.2009. Colloid deposition and release in soils and their association with heavy metals. Critical Reviews in Environmental Science and Technology, Accepted
    Gao B, Saiers J E, Ryan J N.2004. Deposition and mobilization of clay colloids in unsaturated porous media. Water Resources Research,40(8):W08602, doi:10.1029/2004WR003189
    Garcia C, Hernandez T, Costa F, Ceccanti B.1994. Biochemical Parameters In Soils Regenerated By The Addition Of Organic Wastes. Waste Management & Research,12(6):457-466
    Goldenberg L C, Hutcheon I, Wardlaw N.1989. Experiments on transport of hydrophobic particles and gas bubbles in porous media. Transport in Porous Media,4(2):129-145
    Gounaris V, Anderson P R, Holsen T M.1993. Characteristics and environmental significance of colloids in landfill leachate. Environmental Science & Technology,27(7):1381-1387
    Grasso D, Subramaniam K, Butkus M, Strevett K, Bergendahl J.2002. A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology,1(1): 17-38
    Griffin J.1968. The distribution of clay minerals in the world ocean. Deep-sea research,15(4):433-459
    Grolimund D, Barmettler K, Borkovec M.2001. Release and Transport of Colloidal Particles in Natural Porous Media 2. Experimental Results and Effects of Ligands. Water Resour. Res.,37(3):571-582
    Grolimund D, Borkovec M.2001. Release and Transport of Colloidal Particles in Natural Porous Media 1. Modeling. Water Resour. Res.,37(3):559-570
    Grolimund D, Borkovec M.2005. Colloid-Facilitated Transport of Strongly Sorbing Contaminants in Natural Porous Media:Mathematical Modeling and Laboratory Column Experiments. Environ. Sci. Technol.,39:6378-6386
    G 脛 Bler H E.1997. Mobility of heavy metals as a function of pH of samples from an overbank sediment profile contaminated by mining activities. J. Geoch. Expl.,58:185
    Hahn M W, Abadzic D, O'Melia C R.2004. Aquasols:On the role of secondary minima. Environmental Science & Technology,38(22):5915-5924
    Haidouti C.1997. Inactivation of mercury in contaminated soils using natural zeolites. Science of The Total Environment,208(1-2):105-109
    Hayes K F, Leckie J O.1987. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J. Colloid Interface Sci.,115:564-572
    Hayes M H B, Bolt G H.1991. Soil colloids and the soil solution. In ed. G. H. Bolt, et al. Interactions at the Soil Colloid-Soil Solution Interface. Netherlands:Kluwer Academic Publishers
    Hogg R, Healy T W, Fuerstenau D W.1966. Mutual Coagulation of Colloidal Dispersions. Transactions of the Faraday Society,62:1638-1951
    Holford I C R, Wedderburn R W M, Mattingly G E G.1974. A langmuir two-surface equation as a model for phosphate adsorption by soils. Journal of Soil Science,25(2):242-255
    Hornberger G M, Beven K J, Germann P F.1990. Inferences about solute transport in macroporous forest soils from time series models. Geoderma,46(1-3):249-262
    Huber N, Baumann T, Niessner R.2000. Assessment of colloid filtration in natural porous media by filtration theory. Environ. Sci. Technol.,34:3774-79
    James S C, Chrysikopoulos C V.2000. Transport of Polydisperse Colloids in a Saturated Fracture with Spatially Variable Aperture. Water Resour. Res.,36(6):1457-1465
    Johnson W P. Li X Q, Yal G.2007. Colloid retention in porous media:Mechanistic confirmation of wedging and retention in zones of flow stagnation. Environmental Science & Technology,41(4): 1279-1287
    Kanti Sen T, Khilar K C.2006. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science,119(2-3):71-96
    Kaplan D 1, Sumner M E, Bertsch P M, Adriano D C.1996. Chemical Conditions Conducive to the Release of Mobile Colloids from Ultisol Profiles. Soil Sci Soc Am J,60(1):269-274
    Kaste J M, Friedland A J, Sturup S.2003. Using Stable and Radioactive Isotopes To Trace Atmospherically Deposited Pb in Montane Forest Soils. Environmental Science & Technology, 37(16):3560-3567
    Klitzke S, Lang F, Kaupenjohann M.2008. Increasing pH releases colloidal lead in a highly contaminated forest soil. European Journal of Soil Science,59(2):265-273
    Korte N.1999. A Guide for the Technical Evaluation of Environmental Data. Lancaster PA/Boca Raton, FL:Technomic Publishing Company/CRC Press
    Krauskopf K B.1972. Geochemistry of Micronutrients. In ed. Mortvedt, J. J. et al. Micronutrients in Agriculture. Madison. WI:Soil Science Society of America
    Kretzschmar R, Borkovec, M., Grolimund, D., Elimelech, M.1999. Mobile subsurface colloids and their role in contaminant transport. Adv. Agron.,66:121-193
    Kretzschmar R, Sticher H.1997. Transport of humic-coated iron oxide colloids in a sandy soil:Influence of Ca2+and trace metals. Environmental Science & Technology,31(12):3497-3504
    Lenhart J J, Saiers J E.2002. Transport of silica colloids through unsaturated porous media:Experimental results and model comparisons. Environmental Science & Technology,36(4):769-777
    Levi-Minzi R, Soldatini G F, Riffaldi R.1976. Cadmium adsorption by soils. Journal of Soil Science,27(1): 10-15
    Liu D, Johnson P R, Elimelech M.1995. Colloid deposition dynamics in flow through porous media:role of electrolyte concentration. Environ. Sci. Technol.,29(12):2963-2973
    Mueller B, Sigg L.1992. Adsorption of lead(II) on the goethite surface:Voltammetric evaluation of surface complexation parameters. Journal of Colloid and Interface Science,148(2):517-532
    Ma L Q, Logan T J, Traina S J.1995. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ. Sci. Technol.,29:1118
    Ma Y B, Wren N C.1998. Transformations of heavy metals added to soil-application of a new sequential extraction procedure. Geoderma,84:157
    Marshall C E.1935. Layer lattice and base-exchange of clays. Z Kristallogr,91:433
    Matlack K S, Houseknecht D W, Applin K R.1989. Emplacement of clay into sand by infiltration. Journal Of Sedimentary Research,59(1):77-87
    McCarthy J E, Zachara J M.1989. Subsurface transport of contaminants. Environ. Sci. Technol.,23(5): 496-502
    McCaulou D R, Bales R C, McCarthy J F.1994. Use of short-pulse experiments to study bacteria transport through porous media. Journal of Contaminant Hydrology,15(1-2):1-14
    McDowell-Boyer L M.1992. Chemical mobilization of micro sized particles in saturated porous media under steady flow conditions. Environ. Sci. Technol.,26(3):586-593
    McDowell-Boyer L M, Hunt J R, Sitar N.1986. Particle Transport Through Porous Media. Water Resour. Res.,22(13):1901-1921
    McGechan M B, Lewis D R.2002. Transport of Particulate and Colloid-sorbed Contaminants through Soil, Part 1:General Principles. Biosystems Engineering,83(3):255-273
    Meena A K, Rajagopal C, Nagar P N.2006. Water quality Assessment of groundwater/wastewater in Juiper city. Indian Journal of Environmental Protection,26(2):137-140
    Metreveli G, Kaulisch E M, Frimmel F H.2005. Coupling of a column system with ICP-MS for the characterisation of colloid-mediated metal(loid) transport in porous media. Acta Hydrochimica Et Hydrobiologica,33(4):337-345
    Mitchell D, Wild S R, Jones K C.1992. Arrested municipal waste incinerator ash as a source of heavy metals to the UK environment. Environmental Pollution,76(1):79-84
    Nriagu J O.1988. A silent epidemic of environmental metal poisoning. Environmental pollution 50(1-2): 139-161
    Pauling L.1930. The structure of the chlorites. Proceedings of the National Academy of Sciences of the United States of America,16(9):578-582
    Penrose W R, Polzer W L, Essington E H, Nelson D M, Orlandini K A.1990. Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environmental Science & Technology, 24(2):228-234
    Rabinowitz M B.1993. Modifying soil lead bioavailability by phosphate addition. Bull. Environ. Contam. Toxicol.,515:438
    Ren J H, Packman A I, Welty C.2000. Correlation of colloid collision efficiency with hydraulic conductivity of silica sands. Water Resources Research,36(9):2493-2500
    Richards B K, McCarthy J F, Steenhuis T S, Hay A G, Zevi Y, Dathe A.2007. Colloidal transport:The facilitated movement of contaminants into groundwater. Journal of Soil and Water Conservation, 62(3):55A-56A
    Rieuwerts J S, Farago M E.1995. Lead contamination in smelting and mining environments and variations in chemical forms and bioavailability. Chemical Speciation and Bioavailability,7(4):113-123
    Roe A, Hayes K F, Chisholm-Brause C, Brown G E, Parks G A, Hodgson K O, Leckie J O.1991. In situ x-ray absorption study of lead ion surface complexes at the goethite-water interface. Langmuir,7(2): 367-373
    Roy S B, Dzombak D A.1996. Colloid release and transport processes in natural and model porous media. Colloids and Surfaces A:Physicochemical and Engineering Aspects,107:245-262
    Roy S B, Dzombak D A.1997. Chemical factors influencing colloid-facilitated transport of contaminants in porous media. Environ. Sci. Technol.,31:656-664
    Ryan J A, Zhang P, Hesterberg D, Chou J, Sayers D E.2001. Formation of Chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ. Sci. Technol.,35:3798
    Ryan J N, Elimelech M.1996. Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects,107:1-56
    Saiers J, Hornberger G M, Harvey C F.1994a. Colloidal silica transport through structured, heterogeneous porous media. Journal of Hydrology,163(3-4):271-288
    Saiers J E, Hornberger G M.1996. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns. Water Resources Research,32(1):33-41
    Saiers J E, Hornberger G M, Liang L.1994b. First- and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resources Research,30(9):2499-2506
    Saiers J E, Ryan J N.2006. Introduction to special section on Colloid Transport in Subsurface Environments. Water Resour. Res.,42(12):W12S01
    Sauve S, McBride M, Hendershot W.1998a. Lead phosphate solubility in water and soil suspensions. Environ. Sci. Technol.,32:388-393
    Sauve S, McBride M, Hendershot W.1998b. Soil solution speciation of lead (Ⅱ):effects of organic matter and pH. Soil Science Society of America Journal,62(3):618-621
    Scheidegger A M, Sparks D L.1996a. A Critical Assessment of Sorption-Desorption Mechanisms At the Soil Mineral/Water Interface. Soil Science,161(12):813-831
    Scheidegger A M, Sparks D L.1996b. Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite. Chemical Geology,132(1-4):157-164
    Schulz J H, Millspaugh J J, Bermudez A J, Gao X, Bonnot T W, Britt L G, Paine M.2009. Acute Lead Toxicosis in Mourning Doves. Journal of Wildlife Management,70(2):413-421
    Sen T K, Khilar K C.2006. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science,119(2-3):71-96
    Sheppard M I, Thibault D H.1992. Desorption and Extraction of Selected Heavy Metals from Soils. Soil Science Society Of America Journal,56(2):415-423
    Simunek J, He C, Pang L, Bradford S A.2006. Colloid-Facilitated Solute Transport in Variably Saturated Porous Media:Numerical Model and Experimental Verification. Vadose Zone Journal,5(3): 1035-1047
    Singh S P, Ma L Q, Harris W G.2001. Heavy metal interactions with phosphatic clay:Sorption and desorption behavior. J. Environ. Qual.,30:1961
    Strawn D G, Scheidegger A M, Sparks D L.1998. Kinetics and mechanisms of Pb(Ⅱ) sorption and desorption at the aluminum oxide-water interface. Environ. Sci. Technol.,32:2596-2601
    Sutherland R A.2003. Lead in grain size fractions of road-deposited sediment. Environ. Pollut.,121:229
    Taylor S R.1964. Abundance of chemical elements in the continental crust:a new table. Geochimica et Cosmochimica Acta,28:1273-85
    Tessier A, Campbell P G C, Bisson M.1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,51(7):844-851
    Traina S J, Laperche V.1999. Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. USA,96:3365
    Tuccillo M E.2006. Size fractionation of metals in runoff from residential and highway storm sewers. Science of The Total Environment,355(1-3):288-300
    Tufenkji N, Elimelech M.2004a. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology,38(2): 529-536
    Tufenkji N, Elimelech M.2004b. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir,20:10818-10828
    Uheida A, Iglesias M, Fontas C, Zhang Y, Muhammed M.2006. Adsorption behavior of platinum group metals (Pd, Pt, Rh) on nonylthiourea-coated Fe3O4 nanoparticles. Separation Science and Technology,41(5):909-923
    Um W, Papelis C.2002. Geochemical effects on colloid-facilitated metal transport through zeolitized tuffs from the Nevada Test Site. Environmental Geology,43(1-2):209-218
    Van de Velde K, Vallelonga P, Candelone J P, Rosman K J R, Gaspari V, Cozzi G, Barbante C, Udisti R, Cescon P, Boutron C F.2005. Pb isotope record over one century in snow from Victoria Land. Antarctica. Earth and Planetary Science Letters,232(1-2):95-108
    Van Olphen H, Hsu P H.1978. An Introduction to Clay Colloid Chemistry. Soil Science,126(1):59
    Vantelon D, Lanzirotti A, Scheinost A C, Kretzschmar R.2005. Spatial Distribution and Speciation of Lead around Corroding Bullets in a Shooting Range Soil Studied by Micro-X-ray Fluorescence and Absorption Spectroscopy. Environmental Science & Technology,39(13):4808-4815
    Verburg K, Baveye P.1994. Hysteresis in the binary exchange of cations on 2:1 clay minerals; a critical review. Clays and Clay Minerals,42(2):207-220
    Villholth K G, Jarvis N J, Jacobsen O H, de Jonge H.2000. Field Investigations and Modeling of Particle-Facilitated Pesticide Transport in Macroporous Soil. Journal Of Environmental Quality. 29(4):1298-1309
    Walkley A, Black I A.1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci.,37:29
    Wan J, Tokunaga T K.1997. Film Straining of Colloids in Unsaturated Porous Media:Conceptual Model and Experimental Testing. Environmental Science & Technology,31(8):2413-2420
    Wan J, Wilson J L.1994a. Colloid transport in unsaturated porous media. Water Resources Research,30(4): 857-864
    Wan J, Wilson J L.1994b. Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media. Water Resour. Res.,30(1):11-23
    Wang J M, Huang C P, Allen H E.2003a. Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter. Water Research,37(20):4835-4842
    Wang J P, Guo X K.1996. Impact of electronic wastes recycling on environmental quality. Biomedical and Environmental Science,19(2):137-142
    Wang W S, Wen B, Zhang S Z, Shan X Q.2003b. Distribution of Heavy Metals in Water and Soil Solutions Based on Colloid-Size Fractionation. International Journal of Environmental and Analytical Chemistry,83:357-365
    Wedepohl K H.1968. Origin and Distribution of the Elements. London:Pergamon Press
    William B M, Sally L, Fred K F.1991. Literature Review and Model (COMET) for Colloid/Metals Transport in Porous Media. Ground Water,29(2):199-208
    Wood J M.1975. Biological cycles for elements in the environment. Naturwissenschaften,62(8):357-364
    Xu S P, Liao Q, Saiers J E.2008. Straining of nonspherical colloids in saturated porous media. Environmental Science & Technology,42(3):771-778
    Yanai R D, Ray D G, Siccama T G.2004. Lead Reduction and Redistribution in the Forest Floor in New Hampshire Northern Hardwoods. J Environ Qual,33(1):141-148
    Yao K-M, Habibian M T, O'Melia C R.1971. Water and waste water filtration. Concepts and applications. Environmental Science & Technology,5(11):1105-1112
    Yong R N, Phadungchewit Y.1993. pH Influence on selectivity and retention of heavy metals in some clay soil. Can. Geotech. J.,30:821
    Zachara J M, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D.2007. Geochemical processes controlling migration of tank wastes in Hanford's vadose zone. Vadose Zone Journal,6(4): 985-1003
    Zhulidov A V, Headley J V, Robarts R D, Nikanorov A M, Ischenko A A, Champ M A. Concentrations of Cd, Pb, Zn and Cu in pristine wetlands of the Russian Arctic. Marine Pollution Bulletin,35(7-12): 242-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700