用户名: 密码: 验证码:
V_2O_5/ACF选择性催化还原低温催化剂去除NO及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的火电厂目前以燃煤为主,燃煤排放的NOX在大气中形成的酸雨及光化学烟雾对环境及人体造成严重的破坏,因而控制并消除烟气中的NOX成为一项迫切的要求。目前最具有应用价值的方法是氨选择性催化还原(SCR)技术。本论文目的就是寻求一种高效净化NO、具有强抗硫性并且使用寿命长的低温选择性催化还原催化剂,并对其性能和脱除机理进行系统的研究。
     本论文采用等体积浸渍法制备了V_2O_5/ACF选择性催化还原低温(SCR)催化剂。空白ACF先用浓硝酸进行氧化改性,然后以酸氧化改性ACF为载体,负载偏钒酸铵以及其他活性物质。对制备的催化剂进行活性测试,考察活性物质负载量、温度、反应物入口浓度、氨氮比例、氧气含量等因素对脱硝效率的影响,以及考察系统中引入500ppm SO_2后催化剂的抗硫性。实验表明:在保持NH3、NO体积比为1.1、体积组成为1000×10-6NO、1000×10-6NH3、5% O_2以及载气N_2,温度180℃,催化剂V_2O_5/ACF质量为1.0 g的条件下,7%V_2O_5 /ACF催化剂有最好的脱硝活性,脱硝率能达到52%且有强抗SO_2中毒能力,脱硝率仅从无SO_2时的52%下降到50%。
     为提高V_2O_5/ACF的脱硝率及提高催化剂的稳定性和使用寿命,在筛选出的较好催化剂7%V_2O_5/ACF的基础上进行催化剂掺杂。由于Mn具有低温高效脱硝性能但抗硫性能较差的特性,与抗硫性较强的7%V_2O_5/ACF催化剂进行组合制备低温催化剂。对制备的系列7%V-(x)Mn/ACF催化剂进行活性测试,及引入500ppmSO_2进行抗硫性能考察。结果表明:在反应条件保持NH_3、NO体积比为1.1、体积组成为1000×10-6 NO、1000×10-6 NH_3、5%O_2以及载气N2,温度180℃,催化剂7% V_2O_5-(x)Mn/ACF质量为1.0 g的条件下, 7%V-3%Mn/ACF具有最好的脱硝率,达到69.5%,且在有500ppm SO_2时脱硝率也能达到62%,表现出了较强的抗硫中毒性能,实现了低温高效强抗硫性催化剂的制备。另外,考虑到V_2O_5/ACF的稳定性及使用寿命不高,而稀土元素具有稳定性好的特性,对7%V_2O_5 /ACF催化剂进行稀土元素(铈和锆)掺杂。实验结论表明:7%V-5%Ce/ACF具有较好的催化脱硝稳定性。在0-600 min内脱硝率仅从开始稳定时的58%波动到略低的54%,比未掺杂Ce的7%V_2O_5/ACF(从52%波动到43%)更稳定。实现了低温高效稳定性强催化剂的制备。
     对各催化剂进行BET比表面积分析、热重分析(TG)、X射线衍射分析(XRD)、X射线光电子能谱分析(XPS)、扫描电镜分析(SEM)、傅立叶红外光谱(FT-IR)等实验,以综合掌握催化剂的物理特征和化学特性,可以为催化剂催化净化NO的数据结论提供实验支持以及验证活性测试的结论,同时也可以为催化剂的开发和改进以及脱硝反应的可能机理提供指引。
Currently, the power plants of our country rely mainly on coalburning,which release NOX to the atmosphere. This kind of gas is themain precursor of forming acid rain and photochemical fog in theatmosphere, which will cause serious damage to the environment and thehuman's health. Therefore, it is urgent request to control the dischargeamount of NOX in the flue gas. One of the technologies that can effectivelycontrol the emissions of nitrogen oxides from these kinds of sources isselective catalytic reduction (SCR) of NOx with NH3. The purpose of thisstudy was to seek high-efficiency deNOx catalysts in low temperature,which also have sulfur resistance and long service life, and then toexamine the characterization and mechanisms of catalyst for NO reductionat low temperature.
     In this study, the catalysts were prepared by a solution-impregnationmethod. Activated carbon fiber (ACF) was modified with concentratednitric acid, and then loaded ammonium metavanadate and other activesubstances with HNO3-modified ACF as the carrier. The SCR performanceof V2O5/ACF catalyst was evaluated under varying reaction parameters, such as V_2O_5 loading, the reaction temperature, the volume ratio of NH3and NO, O_2 concentration and an introduction of 500ppm SO_2 intoinspection system. Results showed that the de-NO efficiency could beimproved greatly by ACF oxidized by 20% nitric acid and loaded by V_2O_5 .The catalyst of V_2O_5/ACF had higher de-NO efficiency when theconcentration ratio of NH3 and NO was 1.1, NO concentration was1000×10-6, O_2 concentration was 5%, and the reaction temperature was180℃. It also had a better SO_2 anti-poisoning ability, and the de-NOefficiency was only decreased from 52% to 50% when SO_2 introduced.
     In order to improve the de-NO efficiency and the catalyst stability ofV_2O_5/ACF, some other elements were introduced into the above catalyst(7% V_2O_5 /ACF). Owing to manganese catalyst has a high denitrificationperformance at low-temperature but poor sulfur resistance, the lowtemperaturecatalyst can be prepared with 7%V_2O_5/ACF catalystssupported Mn. The results showed that the high activity with 69.5% of de-NO efficiency could be obtained under the condition that the volume ratioof NH3 and was 1.1, the flue gas was mixed with 1000×10-6 NO, 1000×10-6NH3, 5% O_2 as well as the carrier gas N2, the reaction temperature was180℃, and the mass of 7%V-Mn/ACF catalyst was 1.0g. When 500ppmSO_2 introduced, the de-NO efficiency still can reach 62%, which showinga relatively strong sulfur anti-poisoning ability. Furthermore, in order toimprove the stability and service life of V_2O_5 /ACF, the rare earth elements (Ce and Zr), with a good stability characteristics, were doped into the 7%V2O5/ACF catalyst. Experimental results showed that 7%V-5% Ce/ACFcatalyst had better stability during denitrification process. The de-NOefficiency by 7%V-5%Ce/ACF was fluctuated from 58% to 54% whenreation time increased from 0 to 600min, which was better than thatdecresed from 52% to 43% by 7%V2O5/ACF.
     A series of experiments, such as BET surface area analysis, thermalgravimetric analysis (Thermal Gravity, TG), X-ray diffraction analysis(XRD), X-ray photoelectron spectroscopy (XPS), scanning electronmicroscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR)were conducted to estimate the selected catalysts’physical and chemicalcharacters. The results not only supported the datas obtained from thecompared experiments, but also provided some theoretic base of thecatalyst improvement.
引文
[1]国家环保总局.燃煤二氧化硫排放污染防治技术政策[N]. 2002, 120-123
    [2]国家环保总局.火电厂大气污染物排放标准“升级”[N]. 2004, 79-86
    [3] GB13233-2003,火电厂大气污染物排放标准[S]
    [4] Xie GY, Liu ZY, Zhu ZP, et al. Simultaneous removal of SO2 and NOx fromflue gas using a CuO/Al2O3 catalyst sorbent I. Deactivation of SCR activity by SO2 atlow temperatures [J]. Journal of Catalysis,2004,5:36-41
    [5] Lu CJ, Chmielarz P, Ku S, et al. Catalytic activity of Co-Mg-Al, Cu-Mg-Al andCu-Co-Mg-Al mixedoxides derived from hydrotalcites in SCR of NO with ammonia [J].Applied Catalysis B:Environmental, 2002,35(3):195-210
    [6] Soczynski J, Janas T, Mache J, et al. Catalytic activity of chromiumspinels inSCR of NO with NH3[J].Applied Catalysis B:Environmental,2000,24(1):45-60
    [7] Gong S,Ralph T Y.Performance and kinetics study forlow temperature SCR ofNO with NH3 over MnOx–CeO2 catalyst[J]. Journal of Catalysis, 2003,21(7):434-441
    [8] Teresa VS, Gregorio M, Antonio BF. Low-temperature SCR of NOx with NH3over carbon ceramicsupported catalysts[J]. Applied Catalysis B: Environmental,2003,46:261-271
    [9] Labbe N, Juteau P, Parent S, and Villemur R, Bacterial diversity in amarine.methanol denitrification Reactor at the Montreal Biodome [J].Canada MicrobialEcology,2003,46(1):12-21
    [10] Alemany L.Supported on carbon-coated monoliths for the SCR of NO at lowtemperature effect of pore structure [J].Applied CatalysisB:Environmental,2004,50(5):235-242
    [11] Wang YL, Huang .ZG, Liu Z Y, etal. A novel activated carbon honeycombcatalyst For simultaneous SO2 and NO removal at low temperatures [J] Carbon,2004,42:423-460
    [12]Zhu Z, Liu Z, Liu S, et al. Mechanism of SO2 .promotion for NO reduction withNH3 over activated carbon-supported vanadium oxide catalyst [J]Applied Catalysis B:Environmental, 2001, 197(5):6-16
    [13] Zhu Z, Liu Z, Liu S, et al. A novel carbon-supported vanadium oxide catalystfor NO reduction with NH3 at low temperatures [J]. Applied Catalysis B:Environmental,1999,23:29-33
    [14] Awad H H, Stanbury D M. Autooxidation of NO in aqueous solution[J]. Int. J. Chem. Kinet.,1993, 25:375-381
    [15]陈代宾.燃煤电厂选择性催化脱硝工艺的实践与探讨[J].电力环境保护,2003, 19(9): 21-23
    [16]邓永强,胡将军,邓永华等.高尘区选择性催化还原法的主要影响因素分析[J].电力环境保护,2004,20(9):28-30
    [17] U.S Department of Energy Office of Fossil Energy Federal Energy TechnologyCenter. Demonstration of Selective Catalytic Reduction Technology to Control NitrogenOxide Emissions From High-Sulfur Coal-Fired Boilers:A DOE Assessment [R].2001:123-125
    [18] Dich'osoo RE, Ciceorne RJ. Future global warming from atmospheric tracegases [J]. Nature,1986,3:19-109
    [19] Guido B, Luca L, Gianguido R, et al. Chemical and Mechanistic Aspects of theSelective Cataytic.Reduction of NOX by Ammonia over Oxide Catalysts, A review [J].Applied Catalysis B:Environmental,1998,18(5):1-36
    [20] Ana B, Alessandra BP, edro A, et al. An Experimental and TheoreticalInvestigation of the Behavior of a Monolithic Ti-V-W-Sepiolite Catalyst in the Reductionof NOX with NH3 [J]. Industry England Chemical Research, 1996, 35:2516-2521
    [21] Carlo O, Luca L. Dynamic Investigation of the Enrico Troconi, Role of theSurface Sulfates in NOX reduction and SO2 Oxidation over V2O5-WO3/TiO2 Catalysts [J]Industry England Chemical Research, 1998,37(4):2350-2359
    [22] Riniev A, Heiden M, Genderen Marcvan, et al. SCR-System for Heavy-DutyTruck Engines [C]. SAE Paper 2002,1:86-89
    [23] Alemany LJ, Francesco B, Guido B, etal. Character ization and Composition ofCommercialV2O5-WO3/TiO2 SCR Catalysts [J]. Applied Catalysis B:Environmental,1996,10(8):299-311
    [24] Alemany LJ, Luca L, Natale F, et al. Reactivity and PhysicochemicalCharacterization ofV2O5-WO3/TiO2 De-NOX Catalysts [J]. Journalof Catalysis, 1995,155:117-130
    [25] Will R, Roduit B, Koeppel RA, et al. Selective Catalytic Reduction of NO byNH3 Over Vanadia-Based Commercial Catalyst; Parametric Sensitivity and KineticModelling [J]. Chemical Engineering Science, 1996, 11:2897-2902
    [26] Delbecq F, Sautet P. Electronic and chemical properties of the Pt80 Fe20(111)alloy surface: a theoretical study of the adsorption of atomic H、CO and unsaturatedmolecules [J]. Catalysis 1996, 164(1):152-165
    [27]符若文,杜秀英.负载金属活性炭纤维对一氧化氮和一氧化碳的吸附及催化性能研究[J].新型炭材料. 2000, 15(3):1-4
    [28]张华,赵由才,生物法处理氮氧化物废气的原理与技术研究进展[J].山东建筑工程学院院报, 2005, 20(3):69-74
    [29]李晓芸,赵毅,王修彦.火电厂有害气体控制技术北京[J].中国水利水电出版,2005,144-182
    [30]毕玉森.电站锅炉NOX排放现状、预测及技术政策[J].中国电力,1998,31(2):1-2
    [31]黄少鹦.浅谈电站锅炉固体燃料燃烧技术的发展与NO排放治理[J].电力环境保护,2001,l:6-9
    [32]钟秦.煤烟气脱硫脱硝技术及工程实例[M].北京大学出版社,2002,1(3):284-287
    [33] Davidova Y, Schroeder E D, Chang D P Y. Biofiltration of nitric oxide process[A], Air & WasteManagement Association 90th Annual Meeting & Exhibition, Toronto, Canada, 1997, June 8-13P97-WP71B, 05
    [34] Buisman C J N, Dijkman H, Verbraak L. Process for purifying flue gas containing nitrogenoxides [P]. US Patent: 5891408, April 6,1999
    [35] Richter A, Burrows JP, Nuess H, et al. Increase in tropospheric nitrogen dioxide over Chinaobserved from space[J]. Nature, 2005, 437:129-132
    [36]郝吉明.燃煤而氧化硫污染控制技术手册[M].北京:化学工业出版社,2001:352-362
    [37]叶代启.烟气中氮氧化物污染的治理[J].环境保护科学, 1999, 26(4):1-4
    [38]管锡瑶,董典同等.NOx的产生及脱除研究进展[J].青岛建筑工程学院学报,2002, 23(4):39
    [39]彭会清,胡海祥等.活性炭材料用于脱硫脱硝的研究现状及展望炭素技术[J]2003, 6(3):32-36
    [40]王斌.SCR脱硝技术及其在燃煤电厂中的应用[J].电力科学与工程,2003,3(5):61-63
    [41]孙锦余.利用氮氧化物控制技术治理大气污染[J].节能, 2004, 5:41-44
    [42]马保国,李相国,胡贞武等.煤燃烧过程中NOx的形成及控制技术[J].武汉理工大学学报,2004, 26(4):33-35
    [43] Pen DA, Uphade BS, Reddy EP. Smirniotis [J]. Physical Chemical 2004,99:27-29
    [44] Ito ER. J, Hultermans RJ, Rigutto Hvan Bekkum CM.Vanden Bleek [J].Applied Catalysis B:Environmental, 1994, 5:95.-100
    [45] Busca G, Larrubia MA, Arrighi A Aerobic removal of N .on carbonfoamPackings [J]. Catalytic Today, 2005, 139:107-108
    [46]孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学, 2003, 22(3):74-77
    [47]程慧,解永钢,朱国荣.火电厂烟气脱硝技术发展趋势[J].浙江电力, 2005,2:34-36
    [48] Huang HY, Yang RT. Removal of NO by reversible adsorptionon Fe-Mn basedtransition metal oxides [J]. Langmuir, 2001, 17(5):4997-5003
    [49] Sakamoto Y, Higuchi K, Takahashi N, Yokota KD. Effect of the addition of Feon catalytic activitie .of Pt/Fe/?-Al2O3 [J]. Applied Catalysis B:Environmental, 1999,23:159-167
    [50] Qi G., Yang RT. Low-temperature selective catalytic reduction of.NO withNH3 over iron and manganese oxides supported on titania [J]. Applied CatalysisB:Environmental, 2003, 44(6):217-225
    [51] Kapteijn F, Singoredjo L, Andreini A Activity and selectivity of puremanganese oxides in the selective catalytic reduction of nitric oxide with ammonia [J].Applied Catalysis B:Environmental, 1994,3:173-189
    [52] Kijlstra W S, Brands DS, Smit HI, et al. A Mechanism of the selective catalyticreduction of NO with NH3 over MnOx/Al2O3 II reactivity of adsorbed NH3 and NOcomplexes [J]. Catalytic,1997, 171(2):219-230
    [53] Qi, G., Yang, RT Characterization and FT-IR. Studies of MnOx-CeO2catalyst forlow-temperature selective catalytic reduction of NO with NH3 [J] J PhysicalChemical, 2004,108(3):15738-15747
    [54] Pena DA, Uphade BS, Reddy EP. Dentification. Of surface species ontitaniasupported.manganese, chromium, and copper oxidelow temperature SCR catalysts [J]. J.Physical. Chemical, 2004, 108:9927-9936
    [55] Wu Z, Jiang BQ, Liu Y, et al. Experimental study on a low-temperature. SCRcatalyst based on MnOx/TiO2 prepared by sol-gel method [J]. J.Hazard Mater, 2007,54:345-348
    [56] Larrubia MA, Ramis G, Busca G. An FT-IR study of the adsorption of urea andammonia over.V2O5-MoO3-TiO2 SCR catalysts Applied Catalysis B:Environmental,2000, 27(16):145-151
    [57] Chi Y, Chuang SSC. The effect of oxygen concentration on the reduction ofNO with propylene over CuO/?-Al2O3 [J]. Catalytisis Today, 2000, 62(23):303-318
    [58]苏亚欣,毛玉如,徐璋编著.燃煤氮氧化合物排放控制技术[M].北京:化学工业出版社,2005:142-192
    [59] Busca G, Lietti L,Raimis G, et al.Chemical and Mechanistic Aspect of theSelective Catalytic Reduction of NOx by Ammonia over Oxide Catalysts [J]. AppliedCatalysis B:Environmental, 1998,18(1):1-36.
    [60] Forzatti P,.Environment Catalysis for Staionare Applications [J]. CatalysisToday, 2000, 62(1):51-65
    [61]陈梅倩,何伯述.氨法脱除烟气中气态污染物的应用分析[J].北方交通大学学报,2003,27(4):69-74
    [62] Schay Z, Guczi L, Koppány Z, et ac. Decomposition of NO over Cu-AITS-1.zeolites [J]. Catalysis Today, 1999,54(4):69-574
    [63] Busca G, Lietti L, Ramis G, Chemical and mechanistic aspects of theselectivecatalytic reduction of NOx by ammonia over oxide catalysts a review [J].Applied. Catalysis B:Environmental, 1998, 18(2):1-36
    [64] Nejar N, Makkee Mlllan-Gomez M J. Catalytic removal of NOx and soot fromdiesel exhaust;Oxidation behaviour of carbon materials used as model soot [J]. AppliedCatalysis B:environment, 2005,9(34):45-47
    [65] Chen, JM, Chang DPY, Schroeder ED, e .al. Inoculation and acclimation of anautotrophicNitrifying nitric oxide biofilter [A]. Presentation at the Air and WasteManagementAssociation 94thAnnual Meeting and Exhibition, Orlando, Florida, 2001, 4(5):25-28
    [66] Chou MS, Lin JH. Biotrickling filtration of nitricoxid [J]. J Air Waste Manage2000, 50(34): 502-508
    [67] WanXK, Zou.]X Q Shi HX, et a1 Nitroge .doping of activated carbon loadingFe203 and activity in carbon nitric oxide reaction [J]. Journal of Zhejiang UniversityScience A2007, 8(5):707-711
    [68] Pietrzak R, Wachowska H, Nowicki P. Preparation of nitrogen-enrichedactivated carbons from brown coal [J]. Energy and Fuels, 2006, 20(3):1275-1 280
    [69]陈中颖,余刚,蒋展鹏等.活性炭纤维对染料的吸附性能研究[J].环境污染与防治, 2001, 23(4):151-154
    [70]黄正宏,康飞宇,杨骏兵等.活性炭纤维对挥发性有机物的吸附及其等温线的拟合[J].离子交换与吸附, 2001, 17(6):487-493
    [71]李平,修国华,江雷.活性炭纤维填充床内多组分竞争吸附[J].化工学报,2001,52(11):987-992
    [72]苏金才,邱介山.炭纤维基复合吸附材料的制备及其气体分离性能研究[J].碳素技术, 2001, 114(3):1-4
    [73]陆安慧,郑经堂,王茂章.高比表面积PAN-ACF的吸附与孔结构解析[J].高分子材料科学与工程, 2001, 17(5):62-66
    [74]邹长武,尹华强,楚英豪等.黏胶基活性炭纤维的脱硫性能[J].环境工程,2001, 19(1):28-30
    [75]李伟,邵范武,陶克毅.活性炭纤维在催化剂中的应用[J].石油化工,2000,29(11):872-875
    [76]沈曾民,张学军.沥青氧化纤维制备活性炭纤维过程中孔隙结构的变化[J].北京化工大学学报, 2000, 29(1):29-32
    [77]钱慧娟.多用途的活性炭纤维的性质及其制造方法[J].林产化工通讯, 1999,30(6):23-24
    [78]王茂章.活性炭纤维的高功能化[J].高科技纤维与应用, 1999, 33(6):47-48
    [79]张引枝,贺福,王茂章,张碧江.含碳黑PAN纤维制备活性炭纤维过程中中孔的形成[J].新型碳材料, 1998, 13(1):19-27
    [80]朱本松,戴星.活化工艺对活性炭纤维性能的影响[J].合成纤维工业, 1997,20(6):29-31
    [81]金重阳,刘辉,荆志严.活性炭纤维处理含多氯联苯废水的研究[J].环境保护科学,1997, 23(3):6-7
    [82]刘振宇,郑经堂,王茂章.活性炭纤维孔结构控制和表面改性[J].离子交换与吸附,1997, 13(4):353-358
    [83] Jankowsk H Swiatkowski A, Chom J. Active Carbon [M]. New York EllisHorwood Ltd,1991:80-290
    [84] Bansal R C,Donnet J Stoeckli F.Active Carbon [M]. New York Marcel DekkerINC, 1998:36-97
    [85] Deimonte J Technology of carbon and graphite fiber composites [M]. NewYork, Van Nostrand Reinhold Company, 1981:18-25
    [86] Shigeru I, Yoshihumi K, et ac. Fibrous activated carbon with metalchelatecompound supported thereon, process for producing the same [J]. Carbon, 1980,21(6):52-53
    [87] Miyamichi K. Studies on carbonization of rayon fiberⅣ-Preparation of ACFfrom rayon precusor treated with (NH4)2SO4[J].Sen’I Gakkaishi,1986,423(2):76-79
    [88]许景文.炭素纤维与活性炭纤维[J].离子交换与吸附,1991,7(1):56-57
    [89] Dadlec O,Verhanikova A, Zukal A DRIFTS study of the heterogeneousreactionof NO2 with carbonaceous materials at elevated temperature[J]. Carbon, 1970,8(3):321
    [90]韩雪并.化学吸附炭布的制备J].新型炭材料, 1990, (4):50-51
    [91]王茂章,贺福.炭纤维的制备、性质及其应用[M].北京:科学出版社,1984:100-109
    [92] Lin, SD, Gluhoi, A C, Nieuwenhuys BE. Ammonia oxidationover Au/MOx/?-Al2O3-activity, selectivity and FT-IR measurements [J]. Catalysis Today, 2004, 90(56):3-14
    [93] Sayan S, Kantcheva M, Suzer.S Under FT-IR characterization of Ru/SiOcatalyst for ammonia synthesis [J]. Journal of Molecular Structure 1999, (480-481):241-245
    [94] Wu ZB, Jiang BQ, Liu Y. Effect of transition metals additionon the.catalystofmanganese titania for low-temperature selective catalytic reduction of nitric oxide withammonia [J]. Applied Catalysis B:Environmental,2007, 56:456-360
    [95] Kim B, Zhu X, Suidan M, ,et.al. An innovative biofilter for treating VOCs inair emissions [A]. Proceedings of the Air and Waste Management Association’s95thannual conference,Baltimore, 2002, 4(5):67-69
    [96] Gallardo A J. M, Sanchez E Z, Ramis Getal. adsorption and oxidation overanatases upportedmetal oxides Applied Catalsis,B:environment, 1997, 13:45-58
    [97] Raymundo-Pinero E, Cazorla-Amoros D SO2 Adsorption on ActivatedCarbons and ActivatedCarbon Fibers [A]. Influence of Surface Chemistry and Porosity Euro carbon'98Science and Technology of Carbon.Strasbourg, 1998,34:1-342
    [98] Mangun CL, DeBarr J.A Economy J. Adsorption of Sulfur Dioxide onAnmmonia-treated Activated Carbon Fibers [J]. Carbon, 2001,39(53):1689-1696
    [99] Carrasco-MarinF, Ultrera-Hidalgo. Eetal. Adsorption of SO2 in Flowing Aironto Activated Carbons from Olive Stones Fuel, 1992,7(5):75-78
    [100] Valdés-Solís T, Marbán G, Fuertes AB. Low-temperature.SCR of NOX withNH3 over carbonCeramic cellular monolith-supported. Manganese oxides [J]. CatalysisToday,2001,69(1/4):259-264
    [101]胡晓敏,张博.活性炭纤维及其在脱硫、脱氮中的应用[J].河南化工, 2005,22(3):527
    [102]沈伯雄,郭宾彬,吴春飞等.MnOX/ACF低温选择性催化还原烟气中的NO[J].环境污染与防治, 2006, 28(11):801-803
    [103]茅以升.稀土元素[M].北京:科学出版社, 1979:66-82
    [104]沈伯雄,梁材,郭宾彬等.烟气低温SCR脱硝技术的现状与展望[J].电力环境保护, 2006, 22(6):37-39
    [105]胡晓敏,张博.活性炭纤维及其在脱硫、脱氮中的应用[J].河南化工,2005,22(3):5-7
    [106]黄伯芬.活性炭纤维(ACF)及其应用[J].化工刊,2003, 17(11):16-17
    [107]陆益民,梁世强.活性碳纤维在催化领域中的应用[J].合成纤维工业,2005,28(2):51-54
    [108] Muniz J,Marbán G,Fuertes A B.Low temperature selective catalytic reductionof NO over modified activated carbon fibres [J]. Applied Catalysis B:Environmental,2000, 27(1):27-36
    [109] Marb′an G, Fuertes. A B. Low temperature SCR. of NOx with NH3 overNomexTM rejects based activate carbon. fiber composite supported manganeseoxides:Part1.Effect.of preconditioning. of the carbonaceous support [J]. Applied CatalysisB:environment, 2001, 34(1):43-53
    [110] Dunn J P,Koppula R, Stenger H. Oxidation of sulfur dioxide to sulfur trioxideover supported vanadia catalysts[J].Applied Catalysis B:environment,1998,19:103-107
    [111]陆维敏,陈芳.谱学基础与结构分析[M].北京:高等教育出版社,2005:41-42
    [112]赵瑶兴,孙祥玉.有机分子结构光谱鉴定(第二册)[M].北京:科学出版社,2010:138-143
    [113]路培,李彩亭,曾光明等.ACF负载稀土元素在微型反应器中净化NO的实验研究[J].化工环保,2006, 26(6):456-459

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700