用户名: 密码: 验证码:
纳米Fe_2O_3和Mn_2O_3及其混合物表面酸碱性质和吸附行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁和锰是自然界中常见的变价元素,在沉积环境中带有表面电荷的天然铁锰氧化物和氢氧化物是典型的潜在氧化剂。铁,锰氧化物及氢氧化物矿物是土壤中非常活跃的成分,因为他们对环境变化的敏感性,可以提高许多营养物质的利用率和控制重金属的毒性。
     用沉淀法制备了Fe_2O_3和Mn_2O_3并对其进行了X-射线衍射(XRD)、比表面测定(BET)、透射电镜(TEM)等表征;并对其在水溶液中的溶解度作了初步分析,发现在Fe_2O_3和Mn_2O_3混合物中Fe_2O_3能使Mn_2O_3更稳定存在;采用自动酸碱滴定法对其表面进行酸碱滴定,利用先进的计算机软件FITEQL模拟计算了平衡常数;试验结果表明实验室制备的纳米Fe_2O_3和Mn_2O_3的表面酸碱常数与其混合物的表面酸碱常数是一种简单的加和关系,但并不是其平均值。然后利用实验室制备的纳米Fe_2O_3和Mn_2O_3作为吸附剂,进行金属离子(Cd2+)的吸附性能的研究,测定了在不同pH值下对金属离子(Cd2+)的吸附的影响,利用先进的计算机软件MEDUSA和WinSGW模拟了溶液组分分布和计算了纳米Fe_2O_3和Mn_2O_3表面吸附重金属离子的平衡常数;并通过表面配合反应平衡常数计算其表面≡XO-上的吸附反应自由能,说明属于化学吸附的范畴。
     使用Fe_2O_3和Mn_2O_3对As(V)离子作了初步的吸附研究,研究了不同pH值和不同As(V)离子初始浓度对吸附的影响,结果表明Fe_2O_3和Mn_2O_3及其混合物对As(V)离子有很好的吸附效果,可以用来除去废水中的As(V)离子。通过Fe_2O_3和Mn_2O_3对不同As(V)初始浓度的吸附数据得出Fe_2O_3和Mn_2O_3对As(V)的吸附等温线属于Langmuir型,并求得了最大吸附量。并通过Zeta电位分析推断了其吸附后形成的络合物类型。
Iron and manganese are common variable valence elements in nature. In the sedimentary environment, the natural Iron and manganese oxides and hydroxides with surface charges is typical of the potential oxidant. Iron and manganese oxides as well as hydroxide minerals are very active constituents in soils because they are sensitive to environmental changes and they could control the availability of many nutrients and the toxicity of heavy metals.
     Fe_2O_3 and Mn_2O_3 nanoparticles were synthesized by precipitation method. Powder X-ray diffraction (XRD), and nitrogen adsorption-desorption, transmission electron microscopy (TEM) analysis methods were used to characterize the crystal graphic, structure, morphology and the specific surface area. And we made preliminary analysis about its solubility in aqueous solution, then we found that Iron oxides makes manganese oxides more stable in their mixtures. According to the experimental data of acid base titration of mesoporousα-Fe_2O_3 suspention, using FITEQL computer software and Constant Capacitance Model (CCM), the protonation and deprotonation constants of Fe_2O_3 and Mn_2O_3 were determined. Base on the acid-base constants the adsorption of heavy metal ions (Cd2+) at the surfaces of Fe_2O_3 and Mn_2O_3 was studied as a function of different pH. The solution components were distributed using computer soft ware MEDUSA and the surface complexation constants of Cd2+ at the surfaces were determined using computer software WinSGW. We calculated the free energies of adsorption reaction through the constants of Fe_2O_3 and Mn_2O_3 which belongs to the scope of chemical adsorption.
     The adsorption of As(V) at the surfaces of Fe_2O_3 and Mn_2O_3 was studied as a function of different pH and initial concentrations of As(V). The results showed that Fe_2O_3 and Mn_2O_3 and its mixture have a very strong adsorption capacity for As(V), which can be used to remove the As(V) ions in waste water. The experimental data from different As(V) initial concentration of the adsorption fitted the Langmuir equation and obtain the maximum adsorption capacity. The type of its adsorption complexes was analysed by testing Zeta potential.
引文
[1]杨娟玉,陈晓青.纳米二氧化钛作为光催化剂在环保领导的应用研究新进展.精细化工中间体,2002,32(6):59-61.
    [2] Pankhurst Q.A, Pollard R.J. Moment canting in metallic glass ribbons using spatially resolvedMossbauer spectroscopy . J. Phys. Condens. Matter., 1993,5:8487-8508.
    [3] Vayssieres L, Chaneac C, Tronc E, et al. Wet chemistry of spinel iron oxide particles. J. Colloid Interface Sci, 1998,205:205-212.
    [4] Correa D, Giersig M, Kotov N., et al. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir, 1998,14:6430-6435.
    [5] Denizot B, Tanguy G.H. Phosphorylcholine coating of iron oxide nanoparticles . J. Colloid Interface Sci,1999,209:66-71.
    [6] Idriss H, Seebauer E.G. Effect of oxygen electronic polarisability on catalytic reactions over oxides. J. Mol. Catal., 2000,152:201-212.
    [7] Bandara J, Mielczarski J.A, Kiwi J. Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide . Appl. Catal. B, 2001,34:307-320.
    [8] Pankhurst Q.A, Connolly J, Jones S.K, et al. Applications of magnetic nanoparticles in biomedicine. J. Phys. D,2003,36:167-181.
    [9] Ajayi T.R. Statistical analysis of stream sediment data from the lfe-llesha area of Southwest Nigeria. J. Geochem. Explor.,1981,15:539-548.
    [10] Huang P.M,1991. Kinetics of redox reactions on manganese oxides and its impact on environmental quality. In: Sparks, D.L., Suarez, D.L. (Eds.), Rate of Soil Chemical Processes, Publ.27. Soil Science Society of America, Madison, WI, pp.191-230.
    [11] Sullivan L.A, Koppi A.J, Manganese oxide accumulations associated with some soil structural pores. I. Morphology, composition and genesis. J. Soil Res.,1992,30:409-427.
    [12] Schwertmann, U. Some properties of soil and synthetic iron oxides. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (Eds.), Iron in Soils and Clay Minerals. eidel, Dordrecht, The Netherlands, 1988,pp.203-250.
    [13] McKenzie R.M, Manganese oxides and hydroxides, In: Dixon, J.B., Weed, S.B(Eds.), 2. Minerals in Soil Environment. Soil Science Society of America, adison,WI,1989.pp.439-465.
    [14] Dixon J.B, Skinner H.C.W. Manganese minerals in surface environments. In:Skinner H.C.W, Itzpatrick R.W(Eds.), Biomineralization Processes of Iron and Manganese,Modern and Ancient Environments. Catena Verlag, Cremlingen,1992.pp.31-50.
    [15] Huang L, Tan W.F, Liu F, Hu H.Q, Huang Q.Y. Composition and transformation of 1.4 nmminerals in cutan and matrix of Alfisols in central China. J. Soils Sediments, 2007, 7: 240-246.
    [16] Huang, L, Hong J, Tan W.F, Hu H.Q, Liu F, Wang M.K, haracteristics of micromorphology and element distribution of iron-manganese cutans in typical soils of subtropical China. Geoderma, 2008,146:40-47.
    [17] Peavy H.S, Rowe D.R, Tehobangalos G. Environmental Engineering,McGraw Hill, NewYork,1985, p.38.
    [18] Volesky B, May H, Holan Z.R. Cadmium biosorption by Saccharomyces cerevisiae. Biotech Bioeng, 1993,41:826-829.
    [19]郑凯,潘丙才,张全兴等.吸附剂吸附除镉的研究进展.环境科学与技术,2005,28(增刊):136-137.
    [20] Dinesh M, Singh K.P. Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agriculturalwaste,Water Res. ,2002,36:2304-2318.
    [21]隋学叶,刘世权,徐杰等.中空SiO2微球对重金属Cd(II)的吸附研究.济南大学学报,2006,20(3):195-198.
    [22] Pollard S. J. T., Fowler G. D., Sollars C. J., et al.. Low cost adsorbents for waste by indigenous material[J]. J. Appl Interface Sci.,1995,173:66-70.
    [23] Say R, Garipcan B, Emir S, Patir S, Denizli A. Preparation and characterization of the newly synthesized metal-complexing-ligand N-methacryloylhistidine having PHEMA beads for heavy metal removal from aqueous solutions. Colloids Surf A.,2002,36:196-199.
    [24] Say R, Denizli A, Arica M. Y. Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus phanerochaete chrysosporium Bioresour Technol,2001,23:76-67.
    [25] Karabulut S., Karabakan A., Denizli A., Yurum Y. Cadmium(II) and mercury(II) removal from aquatic solutions with low-rank Turkish coal. Sep. Sci. Technol,2001,36:36-57.
    [26] Blake DA, Blake RC, Khosraviani M, Pavlov AR. Immunoassays for metal ions. Anal Chim Acta. ,1998,37:6-13.
    [27] Beuvais R.A, Alexandratos S.D. DIPHONIX-CS : a novel combined cesium and strontiumselective ion exchange resin. React Funct Polym,1998,36:113-117.
    [28] Reed B.E, Lin V, Matsumoto M.R, Jensen J.N. Physicochemical processes. Water Environ Res. , 1997,69:444-448.
    [29] Lakshmipathiraj P., Narasimhan B. R. V., Prabhakar S., Bhaskar Raju G.. Adsorption studies of arsenic on Mn-substituted iron oxyhydroxide. J Colloid Interface Sci., 2006, 304(2): 317-322.
    [30] Gupta S.S, Bhattacharyya K.G. Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives, J. Hazard. Mater,2006,128:247-257.
    [31]尹奇德,夏畅斌,何湘柱.污泥灰对Cd (II)和Ni( II)的吸附作用研究.材料保护,2008,41:80-82.
    [32]程永清,杨晶华,胡权刚.活性污泥对重金属离子的吸附研究.中国科技论文在线,2009,4:691-694.
    [33]樊海明,何少华,谷志攀等.天然凹凸棒石对水中镉的吸附行为.水科学与工程技术,2009,2:30-33.
    [34]蒋明琴.天然高岭土对Pb2+、Cd2+、Ni2+、Cu2+的吸附及解吸性能研究.福建师范大学学报(自然科学版),2009,25:55-60.
    [35]潘嘉芬,卢杰.天然斜发沸石吸附废水中Pb2+、Cd2+、Ni2+、Zn2+的试验研究.金属矿山,2009,391:135-139.
    [36]李虎杰,刘爱平,易发成等.膨润土对Cd2+的吸附作用及影响因素.中国工业,2004,13:(11)79-81.
    [37]刘东明,徐婉珍,李春香等.四钛酸钾晶须预分离富集测定环境水样中镉.冶金分析,2009,29 (7):71-74.
    [38]肖萍,袁林,魏世强.针铁矿对重金属Pb2+、Cd2+的吸附特征.四川环境,2009,28(1):17-21.
    [39]朱霞萍,汪模辉,李锡坤等.活性炭分离富集水体中痕量镉离子.交换与吸附,2008,24 (2):112-117.
    [40] De P.Y.P, Gallego M, Varcarcel M, On-line sorbent extraction, preconcentration and determination of lead by atomic absorption spectrometry. Anal. At. Spectrom, 1994,9(6): 691-696.
    [41]刘创,赵松林,许坚.竹炭对水溶液中Cd(II)的吸附研究.科学技术与工程,2009,9(11):112-116.
    [42]吕明姬,蔡佳亮,郑维爽等.红绒盖牛肝菌菌丝对Cu(II)和Cd(II)生物吸附的影响因子.环境科学研究,2009,22(11):1335-1342.
    [43]谢朝阳,黄巧云,魏凌云.耐重金属细菌与土壤胶体吸附Cu2+、Cd2+的动力学研究.长江大学学报(自然科学版),2009,6(3):1-7.
    [44]苏峰,罗胜联,曾光明等.海带对镉的吸附动力学与热力学研究.环境工程学报,2009,3(5):857-859.
    [45]王素娟,李正文,王彦祥.羽叶鬼针草对Cd(II)、Pb(II)的吸附特性研究.河南农业科学,2009,6:77-82.
    [46] ?zer A, Pirin??i?H.B. The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran. J Hazard. Mater., 2006,137:849-855.
    [47]石亚中,伍亚华.花生壳综合利用研究现状.花生学报,2008,37(2):41-44.
    [48]谷亚昕.花生壳粉吸附模拟废水中Cd2+、Pb2+的研究.安徽农业科学,2008,36 (36):16126– 16128.
    [49]郑慧,王敏,孙新涛.苦荞麸皮微粉对Pb2+、Cd2+、Hg2+的吸附特性研究.中国粮油学报,2008,44(1):44-49.
    [50]张军科,郝庆菊,江长胜等.废弃茶叶渣对废水中铅(II)和镉(II)的吸附研究.中国农学通报,2009,25(04):256-260.
    [51]钱国勇,侯明,汪菊玲.绿茶对水溶液中Pb2+和Cd2+吸附性能初步研究.分析实验室,2008,67(1):63-67.
    [52]陈德翼,郑刘春,党志易等.Cu2+和Pb2+存在下改性玉米秸秆对Cd2+的吸附.环境化学,2009,28(3):379-383.
    [53]曾鸣,巩学敏,彭先佳等.碳纳米管溶胶对水中微量Cd2+与Cu2+吸附的研究.化学工程,2009,37(6):8-12.
    [54]巩学敏,彭先佳,栾兆坤.碳纳米管溶胶的制备及其去除水中异狄氏剂的研究.环境工程学报,2007,1(11):629-632.
    [55]姜虎生,吴南.纳米氧化锌对废水中Cu2+、Cd2+吸附性能研究.长春理工大学学报(自然科学版),2008,31(1):139-141.
    [56]酒金婷,李春霞.纳米氧化锌在水中的分散行为及其应用.印染,2002,1:3-5.
    [57]金政伟,王建清,高文华.SBA-16硅基介孔材料结构对Cd2+吸附性能的影响.天津科技大报,2009,24(3):13-16.
    [58]孙中溪,郭淑云.纳米四氧化三铁表面酸碱性质研究.高等学校化学学报,2006,27(7):1351-1354.
    [59] Benschoten J.E, Young W.Y, Matsumoto M R, et al. A nonelectrostatic surface complexation model for lead sorption on soils and mineral surfaces. J. Environ Qual, 1998,27(1):24-30.
    [60] Du Q, Sun Z.X., Forsling W, et al. Acid-base properties of aqueous illite surfaces. J Colloid Interface Sci.,1997,187:221-231.
    [61] Hayes K.F, Redden G, Ela W, et al. Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J Colloid Interface Sci.,1991, 142(2):449-469.
    [62] Charmas R., Piasecki W., Rudzinski W. Four layer complexation model for ion adsorption at electrolyte/oxide interface: Theoretical foundations. Langmuir,1995,11(8):3199-3210.
    [63] Hiemstra T., Van Riemsdijk W.H, Bolt G.H. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approachⅡ, Application to various important (hydr)oxides. J Colloid Interface Sci.,1989,133(1):105-117.
    [64] Hiemstra T, Van Riemsdijk W.H. A surface structural approach to ion adsorption: The charge distribution(CD) model. J Colloid Interface Sci. ,1996,179(1):488-508.
    [65] Iso C. et al. Competitive sorption of copper alld lead at the oxid-water interface: hnplications for surface site density. Geochim Cosmochim Acta,1999,63(20):2929-2938.
    [66] Johalmes. Ionic strellath effects on cation sorption to oxides: Macroscopic observations and their significance in microscopic interpretation. J Colloid Interface Sci., 1995,195:149- 155.
    [67] Gu X., Evans L.J. Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite. J Colloid Interface Sci., 2007,307:317-325.
    [68] Michael. J, Angove P. et al. The influence of temperature on adsorption of Ca(II), Co(II) on goethitel. J Colloid Interface Sci., 1999,211:281-290.
    [69] Schindler P.W, Liechti P, Westall J.C. Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite water interface. Neth. J. Agr. Sci. ,1987,35:219-230.
    [70] Angove M. J., Johnson B. B, Wells J. D. Adsorption of dmium (II) on kaolinite. Coll. Surf.1997,126:137-147.
    [71] Boily J.F, Fein J.B. Experimental study of cadmium-citrate adsorption co-adsorption onto a-Al2O3. Geochim. Cosmochim. Acta,2002,60:2929-2938.
    [72] Barbier F, et al. Adsorption of lead and cachniurn ions from aqueous solution themontmorillonite/water interface).Colloid and surf. A,2000,166:153-59.
    [73] Zhou P. et al. Competitive complexation of metal ions with humic substances. Chemosphere,2005,58:1327-1337.
    [74] Schaller M.S. et al. Surface complexation modeling of Cd(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. J Colloid Interface Sci. ,2009,339:302-309.
    [75] Dyer J.A. et al. Surface complexation modeling of zinc sorption onto ferrihydrite. J Colloid Interface Sci.,2004,270:56-65.
    [76]杜青.天然水体沉积物对重金属离子的吸附特性.环境化学,1996,15(3):199-206.
    [77] Herbelin A.L, Westall J.C. 1996. FITEQL version 3.2, a computer program for determination of chemical equilibrium constants from experimental data. Department of Chemistry, Oregon State University.Corvallis, Oregon 97331.
    [78] Hizal J, Apak R. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J Colloid Interface Sci.,2006,295:1-13.
    [79] Nagy N.M. et al. Study of the change in the properties of Mn-bentonite by aging. J Colloid Interface Sci.,2004,278:166-172.
    [80] Landry C.J. et al. Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Geochim. Cosmochim. Acta ,2009,73:3723-3737.
    [81] Hizal J., Apak R.. Modeling of cadmium(II) adsorption on kaolinite-based clays in the absence and presence of humic acid. Applied Clay Sci.,2006,32:232-244.
    [82] For more information and availability, please visit the website .
    [83] Wang Y.J. et al. Zinc adsorption on goethite as affected by glyphosate. J Hazard.Mater.,2008,151:179-184.
    [84] Jia D.A. et al. Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma 2008,146:224-230.
    [85] Gorzsás A. et al. Speciation in aqueous vanadate-ligand and peroxovanadate-ligand systems. J Inorg Biochem,2009,103:517-526.
    [86]严新,朱雪梅,吴俊方等.均匀氧化铁纳米粒子的制备及表征.盐城工学院学报,2002,15 (2):50-52.
    [87]胡兵,龙化云,黄光斗.均匀沉淀法制备超细透明氧化铁黄颜料.湖北工学院学报,2003,18(1):53-55.
    [88] Sugimoto T, Sakata.K. Preparation of mono disperse peanut type a-ferric oxide particles from condensed ferric hydroxide gel. J Colloid Interface Sci.,1993,70(2):167-169.
    [89]马子川,魏雨.亚铁盐氧化法合成纺锤形a-Fe203微粒的条件的研究.功能材料,1998,129(5):465-467.
    [90]许国花,李先国,冯丽娟.溶胶-凝胶法与冷冻干燥法结合制备纳米氧化铁.青岛科技大学学报,2003,24 (4):354-357.
    [91] Xie Y, Qian Y T, Wang W. Z. et al. A benzene-thermal synthetic route to nanocrystalline GaN. J. Mater.Chem.,1996,272:1926-1927.
    [92]杜仕国.超微粉制备技术及其应用.功能材料,1997,28 (3):237- 240.
    [93] Wortham E, Bonnet B, Jones D J., et al. Birnessite-type manganese oxide-alkylamine mesophases obtained by intercalation and their thermal behaviour.J. Mater.Chem.,2004,14:121-126.
    [94] Luo J, Suib S.L. Formation and transformation of mesoporous and layered manganese oxides in the presence of long-chain ammonium hydroxide. Chem.Commun.,1997,11:1031-1032.
    [95] Yuan J, Laubernds K,Zhang Q, et al. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres. J. Am. Chem. Soc.,2003,125:4966-4967.
    [96]洪听林,张高勇,杨恒权.介孔锰氧复合物的表面活性剂模板合成与孔结构分析.日用化工业,2002,32(6):6– 8.
    [97] HongX.L, Zhang G.R, Zhu Y.Y, et a l. Sol-gel synthesis and characterization of mesoporous manganese oxide Materials. Res. Bulletin,2003,38:1695-1703.
    [98] DeBruyn P.L, Agarin G.E, Fuerstenau D.W. (Ed.), Froth Flotation 50th Anniversary Volume, AIME-SME, New York,1962,p.91.
    [99] Gómez-Lopera S.A, Plaza R.C, Delgado A.V. Synthesis and Characterization of Spherical Magnetite/Biodegradable Polymer Composite Particles, J. Colloid Interface Sci. ,2001,240:40-47.
    [100] Viota J.L, Vicente J, Durán J.D.G, Delgado A.V. Stabilization of magnetorheological suspesions by polyacrylic acid polymer. J. Colloid Interface Sci.2005,284:527-541.
    [101] Rodríguez K, Araujo M. Temperature and pressure effects on zeta potential values of reservoir minerals. J Colloid Interface Sci.,2006, 300:788-794.
    [102] Sposito G. The Surface Chemistry of Soils, Oxford Univ. Press, New York,1984.
    [103] Stumm W. Chemistry of the Solid-Water Interface, Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, Wiley,New York,1992.
    [104] Liu R., Tang H. Surface acid-base characteristics of natural manganese mineral particles. Colloids and Surfaces A: Physicochem. Eng.2002,197:47-54.
    [105] Lakshmipathiraj P, Narasimhan B.R.V, Prabhakar S, Bhaskar R. G. Adsorption studies of arsenic on Mn-substituted iron oxyhydroxide. J Colloid Interface Sci.,2006,304(2): 317-322.
    [106] Huang C.P, Stumm W. Specific adsorption of cations on hydrousγ-Al2O3. J. Colloid Interface Sci. ,1973,43:409-420.
    [107] Lützenkirchen J. Parameter estimation for the Constant Cpaacitance Surface Complexation Model: Analysis of Parameter Interdependencies. J. Colloid Interface Sci.,1999,210:384-390.
    [108] Smith, R.W, Jenne, E.A. Recalculation evaluation and prediction of surface complexation constants for iron and manganese oxides. Environ. Sci. Techn.1991,25:525-529.
    [109] Sverjensky D.A, Sahai N. Prediction of surface-protonation enthalpies for oxides. Geochim. Cosmochim. Acta,1998,62:3703-3715.
    [110] Nagy N.M. et al. Study of the change in the properties of Mn-bentonite by aging. J. Colloid Interface Sci.2004,278:166-172.
    [111] Poinsignon C. et al. Electrochemical and surface properties of nanocrystallineβ-MnO2 in aqueous electrolyte. Electrochim. Acta.2006,51:3076-3085.
    [112] James R.O, Parks G.A. Determination of surface charge density parameters of silicon nitride Surf. Colloid Sci.1982,12,119.
    [113] Uheida A. et al. Fe3O4 andγ-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J. Colloid Interface Sci.,2006,298:501-507.
    [114] Puigdomenach, I. MEDUSA Vers.2, Royal Institute of Technology, Sweden,1999.
    [115] Davila-Jimenez M.M, Elizalde-Gonzales M.P, Geyer W, Mattusch J, Wennrich R, Adsorption of metal cations from aqueous solution onto a natural and a model biocomposite. Colloids Surf. A Physicochem. Eng.2003,219:243-252.
    [116] Bousse L, Meindl J.D.Surface Potential-pH Characteristics in the Theory of the Oxide-Electrolyte Interface .American Chemical Society1986,5:79-98.
    [117] Mitura S. Nanotechnology in Materials Science. Nethel: Elsivier Science B.V.,2000:178-182.
    [118]郭文录,张秀荣.纳米材料在涂料中的改性与应用.化学世界,2002 (2):108-110.
    [119]梁美娜,朱义年,刘海玲等.氢氧化铁对砷的吸附研究.水处理技术,2007,32(7):35-38.
    [120]肖亚兵,钱沙华,黄淦泉等.纳米二氧化钛对砷(III)和砷(V)吸附性能的研究.分析科学学报,2003,19(2):171-174.
    [121]张巧丽,高乃云,乐林生等.氧化铁/活性炭复合吸附材料去除水中砷的研究.同济大学学报,2006,34(12):1647-1661.
    [122]梁美娜,刘芳,刘海玲等.氢氧化铁胶体对砷吸附行为的初步研究.工业用水与废水,2005,36 (6):35-38.
    [123]杨敏,豆小敏,张昱.固液界面吸附机制与模型.环境科学学报,2006,26 (10):1581-1584.
    [124] Fuzhi L, Tuck Y.H, DanieL Y. An improved method for determining zeta potential and pore conductivity of porous materiaLs. J. Colloid Interface Sci.,2006,299:972-976.
    [125]豆小敏,张昱,杨敏等.砷在金属氧化物/水界面上的吸附机制I.电荷分布,多位络合模型模拟.环境科学学报,2006,26 (10):1587-1591.
    [126]豆小敏,张昱,杨敏等.砷在金属氧化物/水界面上的吸附机制II.电荷分布,多位络合模型模拟.环境科学学报,2006,26 (10):1592-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700