用户名: 密码: 验证码:
纤蛇纹石表面改性及对铜离子吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤蛇纹石是三八面体层状结构硅酸盐矿物,因具有较大的比表面积和大量的羟基与不饱和键,而拥有较好的吸附性能和改性基础。目前,已有利用蛇纹石族类矿物处理含铜废水的报道,但研究内容多局限于单一试验因素对吸附效果的影响,且研究结果缺乏理论性和系统性。本文以纤蛇纹石为对象,系统研究了改性前后纤蛇纹石对铜离子吸附行为及其机制。研究结果可为纤蛇纹石及类似硅酸盐矿物在金属阳离子废水处理中的应用提供理论依据。论文所取得的主要研究结果及创新如下:
     (1)在水相体系下,实现了硅烷偶联剂γ-APS对纤蛇纹石的表面改性。测试分析结果表明,偶联剂成功接枝于纤蛇纹石表面。
     (2)影响纤蛇纹石吸附Cu2+的主要因素有温度、pH值和初始浓度,改性后纤蛇纹石对Cu2+的吸附能力有较明显提高,吸附量增加0.235mmol/g,去除率提高33%。
     (3)改性前后纤蛇纹石对Cu2+的吸附符合准二级动力学吸附模型。纤蛇纹石改性可以提高吸附平均反应速率与初始反应速率。阐述了温度、pH值、初始浓度等主要因素对改性前后纤蛇纹石吸附动力学的影响途径。
     (4)改性前Cu2+与纤蛇纹石外羟基中的氢质子发生离子交换而被吸附,交换作用力主要是偶极作用力和氢键力。改性后吸附机理除离子交换之外,Cu2+还与表面改性剂中的氨基形成配合物而被吸附。
Chrysotile is a typical tubular phyllosilicate constituted by repeating sheets of basic Mg(OH)2 and acidic SiO2 groups. Chrysotile asbestos have certain adsorption performance and modification basic because of special structure:a large specific surface area, unsaturated bonds and surface hydroxyl. Currently, although there are few reports about the use of serpentine group minerals to deal with wastewater containing copper, these researches are more confined to a single test on adsorption effect, lacking of theoretical studies and systematism. This article focuses on the above questions, selecting a silane coupling agentγ-APS containing amino group as modified resin, treating chrysotile in water phase with single experimental condition factor, then it analyzes the modification mechanism. Adsorption behavior and dynamics are studied systematically. These results provide theory basis for application of chrysotile in wastewater treatment. Major conclusions and innovations of this thesis are obtained as follows:
     (1) Chrysotile can be modified by a silane couping agent namedγ-APS in the water system. The analysis test results reveal that the coupling agent has been grafted onto the chrysotile surface successfully.
     (2) Main factors of adsorption by Cu2+ on chrysotile are temperature, pH value, and initial concentration of copper ions. The capacity that Cu2+ ions adsorb on modified chrysotile has been significantly increased. The adsorption increased 0.235mmol/g, with removal rate of 33%.
     (3) The adsorption of Cu2+ on modified chrysotile can coincide with the pseudo-second order reaction kinetics model. The modification could enhance the adsorption average reaction rate and the initial reaction rate. The effect ways of main factors, like temperature, pH value and initial concentration, on the adsorption kinetics of modified chrysotile are also explained.
     (4) The initial concentration provides the necessary driving force to overcome the resistance to the mass transfer of copper between aqueous phase and the solid phase. The main mechanism is due to the ion exchange between copper ions and the H+ of the external hydroxyl groups of the inorganic matrix. The dipole force and hydrogen bonding force are the main driving forces. After modification, copper ions chelating with amidogen is the another mechanism beside ions exchange.
引文
[1]王绍文.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [2]Younger P L. Mine water pollution in Scotland:nature, extent and preventative strategies[J]. The Science of the Total Enviroment,2001(265):309-326.
    [3]Nriagu, Jerome O. Quantitative assessment of worldside contamination of air, water and soils by trace metals[J]. Nature,1988,333(6169):134-139.
    [4]金熙.工业水处理技术问题及常用数据[M].北京:化学工业出版社,1997.
    [5]魏俊清,吴大清,彭金莲,等.铜(Ⅱ)在高岭石表面的吸附[J].矿物岩石,2000,20(3):19-22.
    [6]樊帮堂.环境化学(下)[M].杭州:浙江大学化学系,1987.
    [7]Demirbas E, Dizge N, Sulak M T, et al. Adsorption Kinetics and Equilibrium of Copper from Aqueous Solutions Using Hazelnut Shell Activated Carbon[J]. Chemical Engineering Journal,2009,148(2/3):480-487.
    [8]Aman T'Kazi A, Sabri M U, et al. Potato Peels as Solid Waste for the Removal of Heavy Metal Copper(II) from Waste Water/Industrial Efnuent m[J]. Colloids and Surfaces B,2008,63(1):116-121.
    [9]唐受印,王大军.废水处理工程[M].化学工业出版社,1998:207-225.
    [10]问一波.发展适合中国国情的城市污水处理技术[J].环境保护,1999(5):26-27.
    [11]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005(4):36-39.
    [12]杜军.石灰中和法处理含重金属离子废水[J].工业水处理,1987,7(4):23-24.
    [13]姜玉兰.含铜锌重金属废水处理[J].工业水处理,1987,7(1):52-54.
    [14]Tien Yung, J Chu. Fly ash put to use in wastewater[J]. JWPCF,1978,50(9): 2234-2251.
    [15]任高平.化学法治理铜件酸洗废水并电解回收铜[J].工业水处理,1986,6(6):46-47.
    [16]宫本涛,袁浩,李永德等.铜氨废水处理与废铜液回收[J].电镀与精饰,2002,24(1): 31-33.
    [17]李磊,刑志强,郑正.微电解处理酞绿废水中铜的研究[J].工业用水与废水,2004,2(35):35-38.
    [18]Hatfield T L, Kleven T L, Pierce D T. Electrochemical remediation of metal-bearing wastewaters. part 1:Copper removal from simulated drainge waters[J]. Joural of Applied Electrochemical,1996(26):567-574.
    [19]董晓雯,肖振业,梁琥琪.电化学法综合利用废杜镁丝[J].环境科学,1998,19(1):58-61.
    [20]Armstrong R D, Todd M, Atkinson J W, et al. Selective electro deposition ofmetal from simulated waste solutions[J]. Applied Electrochem,1996(26):379.
    [21]张微微,谢国建.含铜废水的治理技术综述[J].现代冶金,2009,37(3):8-9.
    [22]Selvaraj Rengaraj, Jei Won Yeon, Younghun Kim. Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H:Kinetics, isotherms and error analysis[J]. Journal of Hazardous Materials.2007(143):469-477.
    [23]周定.新型螯合树脂木梢柠檬酸酯的合成及其应用[J].环境化学,1984,3(6):30-35.
    [24]罗道成,易平贵,陈安国.腐植酸树脂对电镀废水中重金属离子的吸附[J].材料保护,2002,35(4):54-56.
    [25]陈学民,周云,罗永鑫.腐植酸树脂的研制及用于含铜废水处理的的研究[J].环境工程,12(2):43-47.
    [26]Amanda B, Dave C. Arsemic copper and zinc occurrence at the Wangaloa coalmine[J]. International Journal of Coal Geology,2001(45):181-193.
    [27]高以衡.反渗透方法处理电镀废水的研究、应用、进展[J].电镀与环保,1983,2(2): 3-7.
    [28]谢少雄,黄功浩,陈晓明.液膜接触法处理含铜废水的实验研究[J].膜科学与技术,2003(2):65-68.
    [29]姚志春.含铜废水处理及资源循环利用的应用研究[J].甘肃科技,2005(12):96-98.
    [30]冯爱红,迟大明.重金属螯合剂在印刷电路板含铜废水处理中的应用[J].电镀与环保,2006,26(6):39-42.
    [31]常青,安瑜,于明泉.高分子重金属絮凝剂的制备及含铜废水处理[J].环境化学,2006,25(2):176-179.
    [32]董新娇,林晓华,周仕官.铜绿假单细胞对Cu2+的吸附条件及动力学初步研究[J].江西科学,2002,20(2):85-89.
    [33]Sheng P X, Ting Y P, Chen J P. Biosorption of lead, copper and cadmium by the marine alga sargassum Sp[C]. Proceedings of International Symposium on water Resources and the Urban Environment. Wuhan, China,2004:262-266.
    [34]李青彬,褚松茂,徐伏,等.芽孢杆菌生物吸附处理含铜废水研究[J].环境 科学与技术,2007,30(5):89-91.
    [35]Li Wang, Jian Zhang, Ran Zhao. Adsorption of Pb(Ⅱ) on activated carbon prepared from Polygonum orientale Linn:Kinetics, isotherms, pH, and ionic strength studies[J]. Bioresource Technology,2010(101):5808-5814.
    [36]Denis Lima Guerra, Claudio Airoldi, Kaline S.de Sousa. Adsorption and thermodynamic studies of Cu(Ⅱ) and Zn(Ⅱ) on organofunctionalized kaolinite[J]. Applied Surface Science,2008(254):5157-5163.
    [37]Pimentel P M, Melo M A F, Melo D M A, et al. Kinetics and thermodynamics of Cu(Ⅱ) adsorption on oil shale wastes[J]. Fuel Processing Technology,2008, 89(1):62-67.
    [38]Anirudhan T S, Radhakrishnan P G. Thermodynamics and kinetics of adsorption of Cu(Ⅱ) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell [J]. The Journal of Chemical Thermodynamics,2008(40): 702-709.
    [39]Bani Bhattacharya, Rashmi Sanghi. Review on decolorisation of aqueous dye solutions by low cost adsorbents [J]. Coloration Technology,2002,118(5): 256-269.
    [40]黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版社,2005,5:2-3.
    [41]严瑞宣.水处理剂应用手册[M].化学工业出版社,2000:42-45.
    [42]羊依金,邹长武,张雪乔.非金属矿物材料在重金属废水处理中的应用[J].成都信息工程学院学报,2006,21(3):435-441.
    [43]Suraj G, Iyer C S P, Lalithambika M. Adsorption of cadmium and copper by modified kaolinites[J]. Applied Clay Science,1998,13(4):293-306.
    [44]Su Hsia Lin, Ruey Shin Juang. Heavy metal removal from water by sorption using surfactant modified mont-morillonite[J]. Tournal of Hazardous Materials, 2002(B92):315-316.
    [45]Alvarez Ayuso E, Ganchez Sanchez A. Removal of heavy metals from waste waters by natural and Na ex-changed bentonite[J]. Clays and Clay Minerals, 2003,51(5):475-480.
    [46]Kapoor Anoop. Use of immobilized bentonite in removal of heavy metals from waste water[J]. Journal of Environmental Engineering,1998,124(10): 1020-1024.
    [47]刘伟,王林山.膨润土与PAM联用处理重金属离子的废水[J].辽宁城乡环境科技,1998,17(6):62-63.
    [48]杨华明,张华.Ca基膨润土制备重金属废水吸附剂的研究[J].金属矿山,2004(9):57-59.
    [49]彭书传,李辉夫.纯凹凸棒石吸附Cu2+的实验研究[J].安徽农业大学学报,2005,32(2):212-215.
    [50]王红艳.硝酸改性凹凸棒石粘土及吸附Cu2+的工艺研究[J].工业用水与废水,2005(4):59-61.
    [51]周伟,杜卫刚,许干.改性凹凸棒石处理含铜废水的研究[J].四川化工,2007,10(3): 43-45.
    [52]Brigatti M F, Franchini G. Treatment of industrial wastewater using zeg-litite and sepiolite, natural microporous materials[J]. Canadian Journal of Chemical Engineering,1999,77(1):163-168.
    [53]Garcia Sanchez A, Alvare E, Ayuso Z, et al. Sorption of heavy metals from industrial wastewater by low cost mineral silicates[J]. Clay Minerals,1999, 349(30):469-478.
    [54]叶力佳,杜玉成.非金属矿物材料吸附重金属离子的研究进展[J].中国非金属矿工业导刊,2002(6):27-29.
    [55]郭晓芳.改性粘土矿物在重金属废水处理中的应用研究[D].长沙:湖南大学,2006.
    [56]沈岩柏,朱一民,魏德州.硅藻土对铜离子的吸附研究[J].有色矿冶,2004,20: 144-146.
    [57]Majeda A M, Khraisheh, Yahya S, et al. Remediation of wastewater containing heavy metals using raw and modified diatomite[J]. Chemical Engineering Journal,2004,99:177-184.
    [58]罗道成,刘俊峰.改性硅藻土对废水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].中国矿业,2005,14(7):69-71.
    [59]Alvarez-Ayusoa E, Garcla Sancheza A, Querol X. Purification of metal electroplating waste waters using zeolites[J]. Water Research,2003(37): 4855-4862.
    [60]Ouki S K, Kavannagh M. Treatment of metals contaminated waste waters by use of natural zeolites[J]. Water Science and Technology,1999,39(10/11):115-122.
    [61]Shawabkeh, Reyad, Harahsheh A, et al. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel,2004,83(7):981-985.
    [62]吴宏海,吴大清.重金属离子与方解石表面反应的实验研究[J].岩石矿物学杂志,1999,18(4):301-308.
    [63]Suzuki T, M iyakeM, N agasawa H.当代离子交换技术[M].北京:化学工业出版社,1993.
    [64]史晓莉.凹凸棒石表面特性及与重金属离子的界面作用[D].合肥:合肥工业大学,2005.
    [65]Matheson Leah J, Goldberg. Remediation of metal contaminated soil and groundwater using apatite [C]. Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds,2002:2103-2110.
    [66]石和彬,刘羽.磷灰石固定水溶性铅离子研究进展[J].地质科技情报,1999,18(2): 73-76.
    [67]刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9-12.
    [68]罗伟华,煎茶岭蛇纹石矿物学及其吸附性能研究[D].西安:长安大学,2008.
    [69]杨志宽.用蛇纹石处理含铜废水的研究[J].环境科学与技术,1997,20(2):17-19.
    [70]郭继香,袁存光.蛇纹石吸附处理污水中重金属的实验研究[J].精细化工,2000,17(10):586-589.
    [71]李学军,王丽娟,鲁安怀.天然蛇纹石活性机理初探[J].岩石矿物学杂志,2003,22(4):386-390.
    [72]杨艳霞.纤蛇纹石酸浸及其制备氧化硅纳米线的研究[D].长沙:中南大学,2007.
    [73]彭同江,懂发勤,李国武,等.纤蛇纹石石棉的纳米效应与生物活性[J].岩石矿物学杂志,2000,19(3):280-286.
    [74]Wicks F J, Whittaker E J W. A reappraisal of the structures of the serpentines minerals[J]. Canadian Mineralogist,1975,13:227-243.
    [75]彭同江,万朴.纤蛇纹石石棉纤维界面相的研究[J].西南工学院学报,1995,10(4): 31-36.
    [76]Yada K. Study of chrysotile asbestos by a high resolution electron microscopy[J]. Acta Crystallogr,1967,23:704-707.
    [77]万朴,彭同江,刘维.我国西北地区不同类型纤蛇纹石石棉的电镜研究[J].矿物岩石学杂志,1991,10(2):162-167.
    [78]吴清辉.表面化学与多相催化[M].北京:化学工业出版社,144-149.
    [79]浙江大学普通化学教研组.普通化学[M].北京:高等教育出版社,94-107.
    [80]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005,373.
    [81]杨飞华.环境矿物纤维—坡缕石有机化改性机理及应用基础研究[D].武汉:中国地质大学,2002.
    [82]Maria G. Fonseca, Claudio Airoldiy. Thermodynamics Data of Interaction of Copper Nitrate with Native and Modified Chrysotile Fibers in Aqueous Solution[J]. Journal of Colloid and Interface Science,2001(240):229-230.
    [83]Efraim Mendelovici, Ray L Frost. Modification of Chrysotile Surface by Organosilane:An IR-Photoacoustic Spectroscopy Study[J]. Journal of Colloid and Interface Science,2001(238):273-278.
    [84]Claudio Airoldi. Chemisorption of divalent cations on N-(2-pyridyl)acetamide immobilized on silica gel——a thermodynamic study[J]. The Journal of Chemical Thermodynamics,1995(27):623-632.
    [85]Antonio R. Cestari, Claudio Airoldi. Chemisorption on Thiol silicas:Divalent cations as a function of pH and primary amines on Thiol Mercury adsorbed[J]. Journal of colloid and interface science,1997(195):338-342.
    [86]Seogil Oh, Taewook Kang, Honggon Kim. Preparation of novel ceramic membranes modified by mesoporous silica with 3-aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase[J]. Journal of Membrane Science,2007(301):118-125.
    [87]Maria G. da Fonseca, Edson C. da Silva Filho. Anchored fibrous chrysotile silica and its ability in using nitrogenbasic centers on cation complexing from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003(227):85-91.
    [88]Lijuan Wang, Anhuai Lu, Zhiyong Xiao. Modification of nano-fibriform silica by dimethyldichlorosilane[J]. Applied Surface Science,2009(255):7542-7546.
    [89]Masahiko Kamada, Hiroshi Kominami, Yoshiya Kera. Deposition and Interaction of Phosphododecatungstate on a Silica Gel Surface Modifiedwith a Silane Coupling Agent Having Anilino Groups[J]. Journal of Colloid and Interface Science,1996(182):297-300.
    [90]Gun ko V M, Sbeeran D J, Augustine S M, et al. Structural and Energetic Eharacteristics of Silicas Modified by Organosilicon Compounds[J]. Journal of Collold and Interface Science,2002,134(249):123-133.
    [91]Francesca Monticelli, Manuel Toledano, Raquel Osorio, et al. Effect of temperature on the silane coupling agents when bonding core resin to quartz fiber posts[J]. Dental Materials,2006(22):1024-1028.
    [92]Maria G. da Fonseca, Claudio Airoldi. New amino-inorganic hybrids from talc silylation andcopper adsorption properties[J]. Materials Research Bulletin,2001 (36):277-287.
    [93]Zhao. C, G. Feng, M. Gong. Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites [J]. Polymer Degradation and Stabi lity, 2005,87(1):183-189.
    [94]Kornlnann X, Berglund L A, Sterte J. Nanoeomposites based on monimorillonite and unsaturated polyester[J]. Polymer Engineering and Science,1998,38(8): 1351-1358.
    [95]陈海群,王海靖,朱俊武,等.偶联剂KH—550修饰蒙脱土及MC尼龙/蒙脱土复合材料的制备与性能研究[J].中国塑料,2004,18(4):80-85.
    [96]王雪明.硅烷偶联剂在金属预处理及有机涂层中的应用研究[D].济南:山东大学,2005.
    [97]Arkles B. Taliloring Surface with silancs[J]. Chemical Technology,1977(7): 766
    [98]Hooper R C. Method of making metal contacts and interconnections for VLSI devices[P]. United States:4619887,1986-12-2.
    [99]Zisman W A. Surface chemistry of plastics reinforced by strong fibers[J]. I E C Product Research and Development,1963,8(2):98-110.
    [100]Pt Pleddeman E. Interface on polymer Matrix Composites[J]. Acadmedic Press,1974:1-10.
    [101]郑水林.粉体表面改性[M].北京:中国建材工业出版社,2003,35-49.
    [102]张其春,孙传敏.矿物材料精细加工工程学报[J].成都:四川科学技术出版社,1998.
    [103]黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版社,2005,5.
    [104]辛琳琳.复合吸附材料的制备及其砷氟共除性能的研究[D].北京:北京交通大学,2009.
    [105]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社,1983.
    [106]天津大学物理化学教研室.物理化学(下册)[M].北京.高等教育出版社,1991:183-200.
    [107]Bektas N, Akman B, Agim. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite[J]. Journal of Hazardous Maternals,2004(112):115-122.
    [108]江绍英.蛇纹石矿物学及性能测试[M].北京:地质出版社,1987:179-185.
    [109]解原.微晶白云母氨基硅烷[C3H6(NH2)Si(OC2H5)3]表面改性研究[D].成都:成都理工大学,2000.
    [110]Joonyeong kim, Paul Seidler, Lai Sze Wan, et al. Formation,structure,and reactivity of amino-terminated organic films on silicon substrates[J]. Journal of Colloid and Interface Science,2009(329):114-119.
    [111]丁浩,卢寿慈,张克仁,等.矿物填料湿法超细表面改性工艺的影响因素与特点[J].粉体技术,1998,4(2):19-23.
    [112]Van Ooij W J, T Child. Protecting metals with silane coupling agents[J]. Chemtech,1998,28(2):26-35.
    [113]盖县化工厂,硅烷偶联剂KH-550的生产和应用[J].精细化工,1985(2).
    [114]李宝智.硅烷偶联剂用于非金属粉体表面改性的机理及应用中应注意的问题[J].有色矿冶,2006(22).
    [115]冯启明,张宝述,彭同江,等.几种非金属矿粉体的硅烷偶联剂表面改性研究[J].非金属矿,1999(22).
    [116]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[J].硅酸盐学报,2007,3(35):373-376.
    [117]Tesoro G, Wu Y, Silane coupling agents:The role of the organefunctional group[J]. Journal of Adhesion Science Technology,1991,5(10):771-784.
    [118]Satoshi O, Naokatsu F. Theoretical study of hydrolysis and condensation of silicon alkoxides[J]. Journal of Physical Chemistry A,1998(102):3991.
    [119]Kozerski G E, Gallavan R H, Ziemelis M J. Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling[J]. Analytica Chimica Acta,2003(489):103.
    [120]Sanchez C, Ribot F, Rozes L, et al. Design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry[J]. Molecular Crystals and Liquid Crystals,2000(354):731-746.
    [121]王雨松,戴干策.硅烷表面处理对粉体悬浮液流变性的影响[J].硅酸盐学报,2005,33(5):644-649.
    [122]张秀菊,陈鸣才,冯嘉春,等.稀土偶联剂对PP/云母体系性能的影响[J].塑料工业,2003,31(1):36-37.
    [123]江绍英.蛇纹石矿物学及性能测试[M].北京:地质出版社,1987.
    [124]Mendelovici E, Frost R L, Kloprogge J T. Modification of Chrysotile Surface by Organosilanes:An IR-Photoacoustic Spectroscopy Study[J]. Journal of Colloid and Interface Science,2001,238(2):273-278.
    [125]刘琨,彭同江,马国华.水洗提纯对温石棉表面电性影响的研究[J].非金属矿,2003,26(5):8-10.
    [126]Fonseca M G, Oliveira A S, Airoldi C. Silylating agents grafted onto silica derived from leached chrysotile[J]. Journal of Colloid and Interface Science, 2001,240(2):533-538.
    [127]王淀佐,胡岳华.浮选溶液化学[M].湖南科学技术出版社,132-134.
    [128]江绍英.蛇纹石矿物学及性能测试[M].北京:地质出版社,1987:248-249
    [129]Lagergern S. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar Band, 1898,24(4):1-39.
    [130]Ho Y S. Adsorption of heavy metals from waste streams by peat[D]. UK Birmingham:University of Birmingham,1995.
    [131]Weber Jr W, J Morris J C. Kinetics of adsorption on carbon from solution[J]. Journal Sanitary Enneering division processing American Sciety of civil engineers,1963,33:31-59.
    [132]Aharoni C, Sparks D L, Levinson S. Kinetics of soil chemical reaction: relationships between empirical equations and diffusion models[J]. Soil science society of America journal,1991,55(9/10):1307-1313.
    [133]Xiaojun Hu, Yushuang Li, Yan Wang. Adsorption kinetics, thermodynamics and isotherm of thiacalix[4]arene loaded resin to heavy metal ions[J]. Desalination,2010,259(1/3):76-83.
    [134]Shaobin Wang, Zhu Z H. Effect of acidic treatment of actived carbons on dye adsorption[J]. Dyes and Pigments,2007,75(2):306-314.
    [135]Alkan M, Demirbas O, Dogan M. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite[J]. Microporous and Mesoporous Materials,2007, 101(3):388-396.
    [136]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. The Journal of the American chemical Socity,1918,40(9): 1361-1403.
    [137]彭长宏,程晓苏,曹金艳.离子液体负载型碳纳米管吸附除砷研究[J].中南大学学报(自然科学版),2010,41(2):416-421.
    [138]T W Weber, R K Chakkravorti, Pore and solid diffusion models for fixed-bed adsorbers[J]. AlChE Journal,1974,20(2):228-238.
    [139]Rogas G, Silva J, Flores J A, et al. Adsorption of chromium onto cross-linked chitosan[J]. Seperation and Purification Technology,2005,44(1):31-36.
    [140]Kilic M, Yazici H, Solak M. A Comprehensive Study on Removal and Recovery of Copper (Ⅱ)from Aqueous Solutions by NaOH pretreated Marrubium globosum sp. globosum leaves Powder:Potential for Utilizing the Copper (Ⅱ) Condensed Desorption Solutions in Agricultural Applications[J]. Bioresource Technology,2009,100(7):2130-2137.
    [141]Lyubchik S I, Lyubchik A I, Galushko O L, et al. Kinetics and thermodynamics of the Cr (Ⅲ) adsorption on the activated carbon from co-mingled wastes[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2004,242(1/3): 151-158.
    [142]Von Oepen B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils:Processes,measurement and experience with the applicability of the modified OECD guideline 106[J]. Chemosphere,1991,27(1/2):285-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700