用户名: 密码: 验证码:
可磁分离光催化剂的制备及其降解水中有机污染物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种应用广泛的光催化剂,TiO_2以其无毒、催化活性高、氧化能力强、稳定性好而最为常用。在水处理领域,悬浆型光催化反应器因其高比表面积和良好的分散性而受到普遍的关注。然而,由于受到从水中回收纳米二氧化钛微粒的困扰,悬浆型光催化反应器仍然受到很大的限制。为了克服催化剂分离的困难,人们研究报道了将二氧化钛负载在玻璃珠、玻璃纤维、沸石等载体上的负载型光催化剂。然而,由于这些光催化剂载体较小的比表面积,大大降低了二氧化钛的负载量和光催化活性。另外,虽然TiO_2表现出了优异的光催化去除环境中污染物的能力,但是它是一种宽禁带的半导体材料,只能吸收太阳光中不足5%的紫外光,这大大限制了其在实际工程中的应用。因此,为了解决纳米二氧化钛微粒的分离回收难题和目前光催化过程中太阳能利用率低的问题,研究开发容易分离回收以及能够响应可见光提高太阳能利用率的光催化剂就成为当前光催化研究中的关键课题。
     纳米磁性颗粒因其具有巨大的比表面积和良好的分离回收特性,将其作为光催化剂的载体,有希望利用其优点来解决水中纳米二氧化钛微粒难以分离回收的困扰,使制备的复合TiO_2光催化剂既有粉状纳米TiO_2优良的光催化活性,同时通过外加磁场很容易实现催化剂的回收而具有负载型TiO_2光催化剂的特点。本文采用纳米磁性粒子和光催化剂纳米粒子复合的思路,制备出了在紫外光下具有催化活性的可磁分离的复合光催化剂,并在其基础上改变工艺条件制备出了在可见光下具有催化活性的可磁分离的复合光催化剂。同时,结合VSM、XRD、TEM、EDS、XPS、FT-IR、BET、DRS等实验手段,研究了复合光催化剂的结构与催化性能之间的关系。
     1.通过液相催化相转化的方法制得了分散性好、磁性强、化学性质和晶相稳定具有超顺磁性的NiFe_2O_4纳米磁性粒子。当初始反应物的浓度(Ni~(2+)和Fe~(3+)的总浓度)为0.6~1.5 mol·L~(-1)、体系的pH范围为8.5≤pH≤10.3、Fe~(2+)离子催化剂的浓度与Fe~(3+)离子浓度之比为0.02时,沸腾回流2~4 h,获得了磁性强的NiFe_2O_4纳米粒子。TEM和XRD的分析结果表明,该NiFe_2O_4纳米粒子为尖晶石结构,其粒径不超过5nm。微量Fe~(2+)离子的存在对NiFe_2O_4纳米粒子的生成具有显著的催化作用,作者认为Fe~(2+)离子的这种催化作用是通过溶解再结晶和固相转化的途径来实现的。
     2.通过化学沉积的方法对制备的NiFe_2O_4纳米磁性粒子进行SiO_2改性,制备了包覆二氧化硅膜的SiO_2/NiFe_2O_4(SN)纳米磁性粒子。然后将SN纳米磁性粒子和P-25纳米粒子复合制备出可磁分离的TiO_2/SiO_2/NiFe_2O_4(TSN)复合光催化剂,其在紫外光下对甲基橙溶液表现出了高的光催化活性。TEM和XRD的分析结果表明,SN纳米磁性粒子被P-25包裹形成了TiO_2壳。当SiO_2的含量为NiFe_2O_4质量的200%时,能通过化学沉积的方法在NiFe_2O_4纳米粒子的表面包覆一层较致密的SiO_2膜,其对复合光催化剂的磁性能和光催化性能的影响达到最佳。TSN复合光催化剂中,SiO_2膜中间层的引入极大地提高了复合光催化剂的光催化性能。SiO_2膜对光催化性能的改善是由于其阻止了光生电子和空穴向磁核NiFe_2O_4中迁移和复合。
     3.在通过化学沉积的方法制备的SN纳米磁性粒子上,负载具有可见光活性的TiO_(2-x)N_x纳米粒子,制备出可磁分离的TiO__(2-x)N_x/SiO_2/NiFe_2O_4(N-TSN)复合光催化剂,其能在可见光下(λ> 400 nm)降解甲基橙溶液。TEM和XRD的分析结果表明,SN纳米粒子黏附在TiO__(2-x)Nx聚集体的表面形成N-TSN复合光催化剂。N-TSN复合光催化剂不仅比表面积较大、在可见光下具有光催化活性、重复使用光催化活性稳定,而且具有超顺磁性。
     4.在通过化学沉积的方法制备的SN纳米磁性粒子上,负载对可见光有较好吸收特性的Bi_(12)TiO_20光催化剂纳米粒子,制备出具有可见光活性的可磁分离的Bi_(12)TiO_20/SiO_2/NiFe_2O_4(BSN)复合光催化剂,其吸收边为450 nm左右。苯酚溶液的降解实验结果表明,BSN复合光催化剂在可见光下(λ> 400 nm)具有催化活性。TEM和XRD的分析结果表明,SN纳米粒子黏附在Bi_(12)TiO_20聚集体的表面形成BSN复合光催化剂
     5.在制备的NiFe_2O_4纳米磁性粒子基础上,首先通过反胶束的方法制备磁性SiO_2/NiFe_2O_4(m-SN)纳米球。然后通过化学沉积的方法在磁性m-SN纳米球的表面包覆一层TiO_2壳制备出蛋型结构的可磁分离的TiO_2/SiO_2/NiFe_2O_4(e-TSN)纳米球光催化剂,其在紫外光下对甲基橙溶液表现出了高的光催化活性。TEM和XRD的分析结果表明,NiFe_2O_4纳米粒子被完全包裹在单分散的二氧化硅纳米球内形成磁性m-SN纳米球,二氧化钛纳米粒子聚集体包覆在m-SN纳米球的表面形成不完美的二氧化钛壳层。当NiFe_2O_4的含量为SiO_2质量的15 wt%时,m-SN纳米球对e-TSN纳米球光催化剂的磁性能和光催化性能的影响达到最佳。e-TSN纳米球光催化剂循环使用几次后,其光催化性能仍然没有明显的降低。
Semiconductor photocatalysts, mainly TiO_2, have attracted much attention in last decade because of their potential application in the removal of all kinds of organic and inorganic pollutants in air or water. In water and wastewater treatment field, a slurry type reactor is the most commonly applied method because of its high specific surface area and dispersion. However, the use of TiO_2 slurry reactor is still limited mainly due to difficult separation of TiO_2 particles from treated water. To overcome the problem, titania beads, TiO_2 based thin film, fiberglass loaded with titania, and encapsulated titania within a zeolite framework have been prepared and used in fixed bed. However, the activity of TiO_2 photocatalyst is reduced to a considerable extent in the application of these immobilizations because the effective surface area of photocatalysts decreases considerably. In addition, though titania shows excellent photocatalytic activity for removal of environmental pollutants under ultraviolet irradiation, it is a wide bandgap semiconductor (3.2 eV for anatase) and can only absorb about 5% of sunlight in the ultraviolet region, which greatly limits its practical applications. So, it is an urgent and important task to develop an easily separable titania photocatalyst with visible light activity.
     The nanosized magnetic particles can solve the difficulty of photocatalyst separation from the treated water by applying an external magnetic field due to its magnetism property. In this study, magnetically separable photocatalysts with UV and visible light activity have been prepared through the combination of the nanosized magnetic particles and nanosized photocatalyst particles. The morphology and structure of the samples have been characterized using analytical techniques of VSM, XRD, TEM, EDS, XPS, FT-IR, BET and DRS etc. The relationship between the microstructure and photocatalytic properties was investigated. Some conclusions have been made as follows:
     1. NiFe_2O_4 nanoparticles were prepared by liquid catalytic phase transformation method at low temperature. The prepared samples show the characteristics of excellent dispersion, high magnetic property, stable crystalline phase and the superparamagnetic nature. The magnetic property of the prepared samples is very strong, when the action conditions are 0.6~1.5 mol·L~(-1) of total concentration, 8.5~10.3 of pH value, 0.02 of mole ratio for Fe~(2+)/ Fe~(3+) and 2~4 h of boiling and refluxing time. The minute Fe~(2+) ions play the role of remarkable catalysis for the preparation of NiFe_2O_4 nanoparticles. The results of TEM and XRD testing indicate that the crystalline phase of prepared NiFe_2O_4 nanoparticles is spinel phase, and their size is less than 5 nm. The dissolution/reprecipitation and solid-state transformation mechanisms explain the reason why the minute Fe~(2+) ions play the role of remarkable catalysis.
     2. Silica-coated NiFe_2O_4 nanoparticles based on the prepared NiFe_2O_4 nanoparticles were prepared by a chemical precipitation method. A magnetically separable photocatalyst TiO_2/SiO_2/NiFe_2O_4 (TSN) with a typical ferromagnetic hysteresis was prepared by a simple process: the magnetic SiO_2/NiFe_2O_4 (SN) dispersion and P-25 titania were mixed, sonificated, refluxed, separated, dried, and calcined, showing high photocatalytic activity for the degradation of methyl orange in water under UV irradiation. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of photocatalyst TSN, indicating that the magnetic SN particle was compactly enveloped by P-25 titania, and TiO_2 shell was formed. The effect of a thin SiO_2 layer between NiFe_2O_4 and TiO_2 shell on the magnetic property and photocatalytic activity of photocatalyst TSN is least when the weight ratio of SiO_2/NiFe_2O_4 is 2:1. In photocatalyst TSN, a thin SiO_2 layer between NiFe_2O_4 and TiO_2 shell prevented effectively the leakage of charges from TiO_2 particles to NiFe_2O_4, which gave rise to the increase in photocatalytic activity.
     3. Silica-coated NiFe_2O_4 nanoparticles based on the prepared NiFe_2O_4 nanoparticles were prepared by a chemical precipitation method. A magnetically separable nitrogen-doped photocatalyst TiO_(2-x)N_x/SiO_2/NiFe_2O_4 (N-TSN) with a typical ferromagnetic hysteresis was prepared by a simple process: the magnetic SiO_2/NiFe_2O_4 (SN) dispersion and the visible-light-active photocatalyst TiO_(2-x)N_x were mixed, sonificated, dried, and calcined at 400°C, showing photocatalytic activity for the degradation of methyl orange in water under visible light irradiation (λ> 400 nm). Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of photocatalyst N-TSN. The results indicated that the magnetic SN nanoparticles adhered to the surface of TiO_(2-x)N_x congeries. The prepared photocatalyst N-TSN show the characteristics of high specific surface area, photocatalytic activity under visible light irradiation, stable photocatalytic activity after several cycles and the superparamagnetic nature.
     4. Silica-coated NiFe_2O_4 nanoparticles based on the prepared NiFe_2O_4 nanoparticles were prepared by a chemical precipitation method. A magnetically separable photocatalyst Bi_(12)TiO_(20)/SiO_2/NiFe_2O_4 (BSN) with a typical ferromagnetic hysteresis was prepared by a simple process: the magnetic SiO_2/NiFe_2O_4 (SN) dispersion and the visible-light-active photocatalyst Bi_(12)TiO_(20) prepared by a simple coprecipitation processing were mixed, sonificated, dried, and calcined at 550°C. The spectrum of UV-Vis absorption indicated that its absorption edge was at 450 nm. The prepared photocatalyst BSN showed photocatalytic activity for the degradation of phenol in water under visible light irradiation (λ> 400 nm). Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of photocatalyst BSN. The results indicate that the magnetic SN nanoparticles adhere to the surface of Bi_(12)TiO_20 congeries. The prepared photocatalyst BSN show the characteristics of photocatalytic activity under visible light irradiation and the superparamagnetic nature.
     5. Magnetic SiO_2/NiFe_2O_4 (m-SN) nanospheres based on the prepared NiFe_2O_4 nanoparticles were prepared by reverse micelle technique. A magnetically separable TiO_2/SiO_2/NiFe_2O_4 (e-TSN) photocatalyst nanosphere with egg-like structure was prepared by chemical precipitating TiO_2 onto the surface of m-SN nanospheres, showing high photocatalytic activity for the degradation of methyl orange in water under UV irradiation. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of e-TSN photocatalyst nanospheres, indicating that nickel ferrite core nanoparticles were completely enveloped into monodisperse silica nanospheres as carrier and titania nanoparticles aggregates coated onto the surface of m-SN nanospheres to form a imperfect TiO_2 shell for photocatalysis. Magnetic m-SN nanospheres can be prepared by reverse micelle technique when the weight ratio of NiFe_2O_4/SiO_2 is 15 wt%, the effect of NiFe_2O_4 nanoparticles on the magnetic property and photocatalytic activity of e-TSN photocatalyst nanospheres being least. The photocatalytic activity of the recycled e-TSN photocatalyst nanospheres has no noticeable change after several cycles under UV irradiation.
引文
[1] Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
    [2] Carey J. H., Lawrence J., Tosine H. M., Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension, Bull. Environ. Contam. Toxicol. 16 (1976) 697-701.
    [3] Frank S. N., Bard A. J., Heterogeneous photo-catalytic oxidation of cyanide ion in aqueous solution at TiO2 powders, J. Am. Chem. Soc. 99 (1977) 303-308.
    [4] Frank S. N., Bard A. J., Heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem. 81 (1977) 1484-1489.
    [5]蔡乃才,董庆华,悬浮体系中的半导体光催化及应用,化学通报7 (1991) 9.
    [6] Ollis D. F., Pelizzetti E., Serpone N., Destruction of water contaminants, Environ. Sci. Technol. 25 (1991) 1523-1529.
    [7] Hoffmann M. R., Martin S. T., Choi W., Bahnemann, D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
    [8] Vidal A., Diaz A. I., El Hraiki A., Romero M., Muguruza I., Senhaji F., Gonzalez J., Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies, Catal. Today 54 (1999) 148. 283-290.
    [9] Wang R., Hashimoto K., Fujishima A. A., Light-induced amphiphilic surfaces, Nature 88 (1997) 431-432.
    [10]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.
    [11] Marta I. L., Heterogeneous photocatalysis and transition metal ions in photocatalytic systems, Appl. Catal. B-Environ. 23 (1999) 89-114.
    [12] Peller J., Wiest O., Kamat P. V., Synergy of Combining Sonolysis and Photocatalysis in the Degradation and Mineralization of Chlorinated Aromatic Compounds, Environ. Sci. Technol. 37 (2003) 1926-11932.
    [13] Rengaraj S., Li X. Z., Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension, J. Mol. Catal. A-Chem. 243 (2006) 60-67.
    [14] Rabani J., Yamashita K., Ushida K., Stark J., Kira A., Fundamental Reactions in Illuminated Titanium Dioxide Nanocrystallite Layers Studied by Pulsed Laser, J. Phys. Chem. B 102 (1998) 1689-1695.
    [15] Raja P., Bozzi A., Mansilla H., Kiwi J., Evidence for superoxide-radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4-hydroxyphenylmethylcarbinol), J. Photochem. Photobiol. A-Chem. 169 (2005) 271-278.
    [16] Cho M., Chung H., Choi W., Yoon J., Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res. 38 (2004) 1069-1077.
    [17] Coronado J. M., Maira A. J., Martínez-Arias A., Conesa J. C., Soria J., EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts, J. Photochem. Photobiol. A-Chem. 150 (2002) 213-221.
    [18] Antonaraki S., Androulaki E., Dimotikali D., Hiskia A., Papaconstantinou E., Photolytic degradation of all chlorophenols with polyoxometallates and H2O2, J. Photochem. Photobiol. A-Chem. 148 (2002) 191-197.
    [19] Chhor K., Bocquet J. F., Colbeau-Justin C., Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen, Mater. Chem. Phys. 86 (2004) 123-131.
    [20] ska B. Z., Grzechulska J., czuk R. J. K., Morawski A. W., The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide, Appl. Catal. B-Envirn. 45 (2003) 293-300.
    [21] Assabane A., Yahia A. I., Tahiri H., Guillard C., Herrmann J. M., Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid), Appl. Catal. B-Environ. 24 (2000) 71-87.
    [22] Carrway E., Hoffman A., Hoffmann M., Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids, Environ. Sci. Technol. 28 (1994) 786-793.
    [23]Ishibashi K. I., Fujishima A., Watanabe T., Hashimoto K., Quantum yields of active oxidative species formed on TiO2 photocatalyst Photochem, J. Photochem. Photobiol. A-Chem. 134 (2000)139-142.
    [24] El-morsi T. M., Budakowski W. R., Abd-el-Aziz A. S., Friesen K. J., Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO2: A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals, Environ. Sci. Technol. 34 (2000) 1018-1022.
    [25] Yang J. K., Davis A. P., Photocatalytic Oxidation of Cu (II)-EDTA with Illuminated TiO2: Kinetics Environ. Sci. Technol. 34 (2000) 3789-3795.
    [26] Zhao J., Wu T., Wu K., Oikawa K., Hidaka H., Serpone N., Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO2 Particles, Environ. Sci. Technol. 32 (1998) 2394-2400.
    [27] Wu T., Lin T., Zhao J., Hidaka H., Serpone N., TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation, Environ. Sci. Technol. 33 (1999) 1379-1387.
    [28] Liu G., Wu T., Zhao J., Hidaka H., Serpone N., Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO2 Dispersions, Environ. Sci. Technol. 33 (1999) 2081-2087.
    [29] Liu G., Li X., Zhao J., Hidaka H., Serpone N., Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation, Environ. Sci. Technol. 34 (2000) 3982-3990.
    [30] Stylidi M., Kondarides D. I., Verykios X. E., Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions, Appl. Catal. B-Environ. 47 (2004) 189-201.
    [31] Johannes S., Joseph R., Photocatalytic Dechlorination of Aqueous Carbon Tetrachloride Solutions in TiO2 Layer Systems: A Chain Reaction Mechanism, J. Phys. Chem. B 103 (1999) 8524-8531.
    [32] Arslan I., Balcioglu I. A., Bahnemann D. W., Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts, Appl. Catal. B-Environ. 26 (2000) 193-206.
    [33]韩高荣,汪建勋,杜丕一,张溪文赵高凌,纳米复合薄膜的制备及其应用研究,材料科学与工程, 17 (1999) 1-6.
    [34]谭常优,卢安贤,光催化TiO2薄膜的制备、性能及其应用,中国陶瓷, 38 (2002) 40-43.
    [35] Nagayama A., Honda H., Kawahara T., A new process for silica coating, J. Electro-Chem. Soc. 135 (1998) 2013-2016.
    [36] Miyauchi M., Tokudome H., Low-reflective and super-hydrophilic properties of titanate or titania nanotube thin films via layer-by-layer assembly, Thin Solid Films 515 (2006) 2091-2096.
    [37] Decher G., Fuzzynanoassemblies: towardlayeredpolymericmulticomposites, Science 277 (1997) 1232~1237.
    [38]郭清萍,武正簧,赵君芙,CVD法TiO2薄膜的制备条件及光学性质的研究,太原理工大学学报, 29 (1998) 240-243.
    [39] Iler R. K., The Effect of Surface Aluminosilicate Ions on the Properties of Colloidal Silica, J. Colloid Interface Sci. 21 (1966) 569-594.
    [40] Gerischer H., Heller A., The Role of Oxygen in Photooxidation of Organic Molecules on Semiconductor Particles, J. Phys. Chem. 95 (1991) 5261-5267.
    [41] Gerischer H., Heller A., The Role of Oxygen in Photooxidation of Organic Molecules on Semiconductor Particles, J. Phys. Chem. 95 (1991) 5261-5267.
    [42] Kesselman J. M., Shreve G. A., Hoffmann M. R., Lewis N. S., Flux-Matching Conditions at TiO2 Photoelectrodes: Is Interfacial Electron Transfer to O2 Rate-Limiting in the TiO2-Catalyzed Photochemical Degradation of Organics?, J. Phys. Chem. 98 (1994) 13385-13395.
    [43] Senevirathna M. K. I., Pitigala P. K. D. D. P., Tennakone K., High quantum efficiency Pt/TiO2 catalyst for sacrificial water reduction, Sol. Energy Mater. Sol. Cells. 90 (2006) 2918-2923.
    [44] Park H., Lee J., Choi W., Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity, Catal. Today 111 (2006) 259-265.
    [45] Teoh W. Y., M?dler L., Beydoun D., Pratsinis S. E., Amal R., Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose, Chem. Eng. Sci. 60 (2005) 5852-5861.
    [46] Zou J., Chen C., Liu C., Zhang Y., Han Y., Cui L., Pt nanoparticles on TiO2 with novel metal–semiconductor interface as highly efficient photocatalyst, Mater. Lett. 59 (2005) 3437-3430.
    [47] Sano T., Negishi N., Takeuchi K., Matsuzawa S., Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator, Sol. Energy 77 (2004) 543-552.
    [48] Vorontsov A. V., Dubovitskaya V. P., Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO2, J. Catal. 221 (2004) 102-109.
    [49] Sathish M., Viswanathan B., Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting, Int. J. Hydrog. Energy 31 (2006) 891-898.
    [50] Belver C., López-Mu?oz M. J., Coronado J. M., Soria J., Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors, Appl. Catal. B-Environ. 46 (2003) 497-509.
    [51] Stir M., Nicula R., Burkel E., Pressure–temperature phase diagrams of pure and Ag-doped nanocrystalline TiO2 photocatalysts, J. European Ceram. Soc. 26 (2006) 1547-1553.
    [52] Kim K. D., Han D. N., Lee J. B., Kim H. T., Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method, Sci. Mater. 54 (2006) 143-146.
    [53] Zhang X., Zhou M., Lei L., Preparation of an Ag–TiO2 photocatalyst coated on activated carbon by MOCVD, Mater. Chem. Phys. 91 (2005) 73-79.
    [54] Moonsiri M., Rangsunvigit P., Chavadej S., Gulari E., Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products, Chem. Eng. J. 97 (2004) 241-248.
    [55] Kanan S. M., Kanan M. C., Patterson H. H., Photoluminescence spectroscopy as a probe of silver doped zeolites as photocatalysts, Current Opinion in Solid State and Materials Science 7 (2003) 443-449.
    [56] Arabatzis I. M., Stergiopoulos T., Andreeva D., Kitova S., Neophytides S. G., Falaras P., Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation, J. Catal. 220 (2003) 127-135.
    [57] Sasirekha N., Basha S. J. S., Shanthi K., Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal. B-Environ. 62 (2006) 169-180.
    [58] Ileperuma O. A., Tennakone K., Dissanayake W., Photocatalytic behavior of metal-doped titanium dioxide.Studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems, Appl. Catal. B-Environ. 62 (1990) 1-5.
    [59] Wang X. H., Li J. G., Kamiyama H., Ishigaki T., Fe-doped TiO2 nanopowders by oxidative pyrolysis of organometallic precursors in induction thermal plasma: synthesis and structuralcharacterization, Thin Solid Films 506-507 (2006) 278-282.
    [60] Liu G., Zhang X., Xu Y., Niu X., Zheng L., Ding X., The preparation of Zn2+-doped TiO2 nanoparticles by sol–gel and solid phase reaction methods respectively and their photocatalytic activities, Chemosphere 59 (2005) 1367-1371.
    [61] Pan C., Wu J. C. S., Visible-light response Cr-doped TiO2?XNX photocatalysts, Mater. Chem. Phys. 100 (2006) 102-107.
    [62] Jing D., Zhang Y., Guo L., Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution, Chem. Phys. Lett. 415 (2005) 74-78.
    [63] Harada M., Sasaki T., Ebina Y., Watanabe M., Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts, J. Photochem. Photobiol. A-Chem. 148 (2002) 273-276.
    [64] Yamashita H., Harada M., Misaka J., Takeuchi M., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catal. Today 84 (2003) 191-196.
    [65] Chen S., Cao G., Study on the photocatalytic oxidation of NO2– ions using TiO2 beads as a photocatalyst, Desalination 194 (2006) 127-134.
    [66] Choi W., Termin A., Hoffmann M. R., The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
    [67] Butler Z. C., Davis A. P., Photocatalyic oxidation in aqueous titanium dioxide suspensions; the Influence of Dissolved Transition Metals, J. Photochem. Photobiol. A-Chem. 70 (1993) 273-283.
    [68] Hwang D., Kim H., Jang J., Bae S., Ji S., Lee J., Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation, Catal. Today 93-95 (2004) 845-850.
    [69] Gratzel M., Russell F. H., Electron paramagnetic resonance studies of doped TiO2 colloids, J. Phys. Chem. 94 (1990) 2566-2572.
    [70] Gautron J., Lemasson P., Marucco J. F., Correlation between the non-stoichiomery of titaniumdioxide and its photoelectrochemical behaviour, Faraday Discuss. Chem. Soc. 70 (1981) 81-91.
    [71] Gerisher H., Willing F., Endocytosis and photoactivated fusion of photosensitive liposomes, Top. Curr. Chem. 61 (1976) 31-38.
    [72] Buschmann C., Meier D., Kleudgen H. K., Regulation of chloroplast development by redand blue light, J. Photochem. Photobiol. A-Chem. 27 (1978) 195-198.
    [73] Chatterjee D., Mahata A., Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light, Appl. Catal. B-Environ. 33 (2001) 119-125.
    [74] Ojah R., Dolui S. K., Photopolymerization of methyl methacrylate using dye-sensitized semiconductor based photocatalyst, J. Photochem. Photobiol. A-Chem. 172 (2005) 121-125.
    [75] Lammasniemi J., Rakennus K., Effects of annealing on performance of InP solar cells on GaAs substrates, Sol. Energy Mater. Sol. Cells 30 (1993) 301-307.
    [76] Icli S., Demi? S., Dindar B., Doroshenko A. O., Timur C., Photophysical and photochemical properties of a water-soluble perylene diimide derivative, J. Photochem. Photobiol. A-Chem. 136 (2000) 15-24.
    [77] Stafford U., Gray K. A., Kamat P. V., Photocatalytic degradation of 4-chlorophenol: The effects of varying TiO2 concentration and light wavelength, J. Catal. 167 (1997) 25-32.
    [78] Stamatis H., Christakopoulos P., Kekos D., Macris B. J., Kolisis F. N., Studies on the synthesis of short-chain geranyl esters catalysed by Fusarium oxysporum esterase in organic solvents J. Mol. Catal. B 4 (1998) 229-236.
    [79] Shiragami T., Matsumoto J., Inoue H., Yasuda M., Antimony porphyrin complexes as visible-light driven photocatalyst, J. Photochem. Photobiol. C 6 (2005) 227-248.
    [80] Uchihara T., Matsumura M., Ono J., Tsubomura H., Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide, J. Phys. Chem., 94 (1990) 415-418.
    [81] Vrachmou E., Gratzel M., McEvoy A.J., Efficient visible light photoresponse following surface complexation of titanium dioxide with transition metal cyanides, J. Electroanal. Chem. 258 (1989) 193-205.
    [82] Nozik A. J., Micic O. I., Curtis C. J., Synthesis and characterization of InP quantum dots, J. Phys.Chem. 98 (1994) 4966-4969.
    [83] Bessekhouad Y., Chaoui N., Trzpit M., Ghazzal N., Robert D., Weber J. V., UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension, J. Photochem. Photobiol. A-Chem. 183 (2006) 218-224.
    [84] Jang J., Li W., Oh S. H., Lee J., Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light, Chem. Phys. Lett. 425 (2006) 278-282.
    [85] Shi D., Feng Y., Zhong S., Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst, Catal. Today 98 (2004) 505-509.
    [86] Kumar A., Jain A. K., Photophysics and photocatalytic properties of Ag+-activated sandwich Q-CdS–TiO2, J. Photochem. Photobiol. A-Chem. 156 (2003) 207-218.
    [87] Hirai T., Suzuki K., Komasawa I., Preparation and Photocatalytic Properties of Composite CdS Nanoparticles–Titanium Dioxide Particles, J. Colloid Interface Sci. 244 (2001) 262-265.
    [88] Kumar A., Jain A. K., Photophysics and photochemistry of colloidal CdS–TiO2 coupled semiconductors—photocatalytic oxidation of indole, J. Mol. Catal. A-Chem. 165 (2001) 265-273.
    [89] Habibi M. H., Vosooghian H., Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension, J. Photochem. Photobiol. A-Chem. 174 (2005) 45-52.
    [90] Shinguu H., Bhuiyan M. M. H., Ikegami T., Ebihara K., Preparation of TiO2/WO3 multilayer thin film by PLD method and its catalytic response to visible light, Thin Solid Films 506-507 (2006) 111-114.
    [91] Xing C., Zhang Y., Yan W., Guo L., Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting, Int. J. Hydrog. Energy 31 (2006) 2018-2024.
    [92] Zhang M., An T., Hu X., Wang C., Sheng G., Fu J., Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide, Appl. Catal. A 260 (2004) 215-222.
    [93] Vinodgopal K., Kamat P. V., Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films, Environ. Sci. Technol. 29 (1995) 841.
    [94] Choi H., Stathatos E., Dionysiou D. D., Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications, Appl. Catal. B-Environ. 63 (2006) 60-67.
    [95] Lopez T., Navarrete J., Gomez R., Adem E., Boldu J. L., Munoz E., Novaro O., Spectroscopic characterization of sol-gel silica obtained by electron irradiation, Mater. Lett. 38 (1999) 1-5.
    [96] Yang Q., Xie C., Xu Z., Gao Z., Li Z., Wang D., Du Y., Effects of synthesis parameters on the physico-chemical and photoactivity properties of titania–silica mixed oxide prepared via basic hydrolyzation, J. Mol. Catal. A 239 (2005) 144-150.
    [97] Emeline A. V., Kuzmin G. N., Basov L. L., Serpone N., Photoactivity and photoselectivity of a dielectric metal-oxide photocatalyst (ZrO2) probed by the photoinduced reduction of oxygen and oxidation of hydrogen, J. Photochem. Photobiol. A-Chem. 174 (2005) 214-221.
    [98] Tanabe K., Sumiyoshi T., Shibata K., A new hypothesis regarding the surface acidity of binary metal oxides, Bull. Chem. Soc. Jpn. 47 (1974) 1064-1066.
    [99]清山哲郎,著,黄敏明,译,金属氧化物及其催化作用,中国科学技术大学出版社:合肥, 1991, p248.
    [100]濑升等著,赵修建译,超微颗粒导论,武汉工业大学出版社:武汉,1991,p50.
    [101] Kawai M., Onaka M., Izumi Y., Clay montmorillonite-catalyzed aldol reactions of silyl enol ethers with aldehydes and acetals, Chem. Lett. 9 (1986) 1581-1584.
    [102]梁娟,王善鋆,主编,催化剂新材料:催化科学与技术,化学工业出版社:北京,1990,p52.
    [103] Pinnavaia T. J., Intercalated clay catalysts, Science 220 (1983) 365-371.
    [104] Enea O., Bard A. J., Photoredox reactions at semiconductor particles incorporated into clays. Cadmium sulfide and zinc sulfide + cadmium sulfide mixtures in colloidal montmorillonite suspensions, J. Phys. Chem. 90 (1986) 301-306.
    [105] Stramel R. D., Nakamura T., Thomas J. K., Cadmium sulfide on synthetic clay, Chem. Phys. Lett. 130 (1986) 423-425.
    [106] Sterte J., Synthesis and properties of titanium oxide cross-linked montmorillonite, Clay Clay Min. 34 (1986) 658- 664.
    [107] Shoji Y., Yamanaka S., Nishihara T., Suzuki M. H., Preparation and properties of titania pillaredclay, Mater. Chem. Phy. 17 (1987) 87-101.
    [108] Yoneyama H., Haga S., Yamanaka S., Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay, J. Phys. Chem. 93 (1989) 4833-4837.
    [109] Miyoshi H., Mori H., Yoneyama H., Light-induced decomposition of saturated carboxylic acids on iron oxide incorporated clay suspended in aqueous solutions, Langmuir. 7 (1991) 503-507.
    [110] Kazunari K., Domen K., Kudo A., Tanaka A., Onishi T., Overall photodecomposition of water on a layered niobiate catalyst, Catal. Today 8 (1990) 77-84.
    [111] Hoffmann M. R., Martin S. T., Choi W., Bahnemann, D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
    [112] Fernandez A., Lassaletta G., Jimenez V. M., Justo A, Herrmann J. M., Tahiri H., Ait-Ichou Y., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports, Appl. Catal. B-Environ. 7 (1995) 49-63.
    [113] Yamazaki S., Matsunaga S., Hori K., Photocatalytic degradation of trichloroethylene in water using TiO2 pellets, Water Res. 35 (2001) 1022-1028.
    [114]方佑龄,赵文宽,尹少华,董庆华,孙育斌,纳米TiO2在空心陶瓷球上的固定化及光催化及光催化分解辛烷,应用化学, 14 (1997) 81-83.
    [115]王怡中,胡春,有机物多相光催化降解反应中催化剂的固定化技术研究,环境科学, 19 (1998) 40-43.
    [116]胡春,王怡中,汤鸿霄,表面键联型TiO2/SiO2固定化催化剂的结构及催化性能,催化学报, 22 (2001) 185-187.
    [117] Ollis D. F., Marinageli R. E., Photo assisted heterogeneous catalysis with optical fibres:Ⅰ. Isolated single fibre, AICHE. 23 (1977) 415-421.
    [118] Peill N. J., Hoffmann M. R., Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-Chlorophenol, Environ. Sci. Technol. 29 (1995) 2974-2981.
    [119] Peill N. J., Hoffmann M. R., Chemical and Physical Characterization of a TiO2-Coated Fiber Optic Cable Reactor, Environ. Sci. Technol. 30 (1996) 2806-2812.
    [120] Beydoun D., Amal R., Low G. K. C., McEvoy S., Novel Photocatalyst: Titania-Coated Magnetite.Activity and Photodissolution, J. Phys. Chem. B 104 (2000) 4387-4396.
    [121] Shchukin D. G., Schattka J. H., Antonietti M., Caruso R. A., Photocatalytic Properties of Porous Metal Oxide Networks Formed by Nanoparticle Infiltration in a Polymer Gel Template, J. Phys. Chem. B 107 (2003) 952-957.
    [122] Shchukin D. G., Caruso R. A., Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration, Chem. Materi. 16 (2004) 2287-2292.
    [123] Schattka J. H., Shchukin D. G., Jia J., Antonietti M., Caruso R. A., Photocatalytic Activities of Porous Titania and Titania/Zirconia Structures Formed by Using a Polymer Gel Templating Technique, Chem. Mater. 14 (2002) 5103-5108.
    [124] Liu H., Cheng S. A., Zhang J. Q., Cao C. N., Zhang S. K., Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid, Chemosphere 38 (1999) 283-292.
    [125] Leng W. H., Liu H., Cheng S. A., Zhang J. Q., Cao C. N., Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel, J. Photochem. Photobiol. A-Chem. 131 (2000) 125-132.
    [126]张强,纳米TiO2固定化技术,.环境科学与技术,3 (2003) 54-58.
    [127]徐炽焕,日本TiO2光催化技术的发展,国际化工信息,4 (2003) 16-17.
    [128] Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shmmohigoshi M., Watanab T., Light-induced amphiphilic surface, Nature 388 (1997) 431-432.
    [129] Ramanathan K., Avnir D., Modestov A., Lev O., Sol-gel derived ormosil-exfoliated graphite-TiO2 composite floating catalyst: Photodeposition of copper, Chem. Mater. 9 (1997) 2533-2540.
    [130] Keleher J., Bashant J. N., Heldt M., et al., Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications, World J. Microbio. Biotechnol. 18 (2002) 133-139.
    [131] Yu J. G., Zhao X. J., Zhao Q. N., Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method, Mater. Chem. Phys. 69 (2001) 25-29.
    [132] Misono M., Inui T., New catalytic technologies in Japan, Catal. Today 51 (1999) 369-375.
    [133] Watanabe A., Nakajima R., Minabe R., oizumi S. K., Fujishima A., Hashimoto K., Thin Solid Films 351 (1999) 260-263.
    [134] Raupp G. B., Alexiadis A., Hossain M. M., Changrani R., First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification, Catal. Today 69 (2001) 41-49.
    [135] Yamashita H., Ichihashi Y., Anpo M., Hashimoto M., Louis C., Che M., Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities: The Structure and Role of the Active Sites, J. Phys. Chem. 100 (1996) 16041-16044.
    [136] Kenji H., Teruaki H., Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions, Water Res. 24 (1990) 1415-1417.
    [137] Blount M. C., Kim D. H., Falconer J. L., Transparent Thin-Film TiO2 Photocatalysts with High Activity, Environ. Sci. Technol. 35 (2001) 2988-2994.
    [138] Nie X., Leyland A., Matthews A., Low temperature deposition of Cr(N)/TiO2 coatings using a duplex process of unbalanced magnetron sputtering and micro-arc oxidation, Surf. Coat. Technol. 133 (2000) 331-337.
    [139] Molinari R., Pirillo F., Falco M., Loddo V., Palmisano L., Photocatalytic degradation of dyes by using a membrane reactor, Chem. Eng. Process. 43 (2004) 1103-1114.
    [140] Lonnen J., Kilvington S., Kehoe S. C., Al-Touati F., McGuigan K. G., Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water, Water Res. 39 (2005) 877-833.
    [141] Ljubas D., Solar photocatalysis—a possible step in drinking water treatment, Energy 30 (2005) 1699-1710.
    [142] McLoughlin O. A., Kehoe S. C., McGuigan K. G., Duffy E. F., Al Touati F., Gernjak W., Alberola I. O., Rodríguez S. M., Gill L. W., Solar disinfection of contaminated water: a comparison of three small-scale reactors, Sol. Energy 77 (2004) 657-664.
    [143] Iwata T., Ishikawa M., Ichino R., Okido M., Photocatalytic reduction of Cr(VI) on TiO2 film formed by anodizing, Surf. Coat. Technol. 169 (2003) 703-706.
    [144] Frank S. N., Bard A. J., Heterogeneous photocatalytic oxidation of cyani de ion in aqueous solution at TiO2 powder, J. Am.Chem.Soc. 99 (1977) 303-308.
    [145] Serpone N., Borgarello E., Barben M., et al., A decade of hetrogeneous photocatalysis in ourlaboratory:pure and applied studies in procuction and environmental detoxification, J. Photochem. Photobiol. A-Chem. 36 (1987) 373-388.
    [146]戴遐明,陈永华,李庆丰,半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究,环境科学, 6 (1996) 34-36.
    [147] Wyness P., Performance of nonconcentrating solar photocatalytic oxidation reactors, PartⅡ: shallow pond configuration, J. Sol. Energy Eng. Trans.-ASME 116 (1994) 8-13.
    [148] Angelidis T. N., Koutlemani M., Poulios I., Kinetic study of the photocatalytic recovery of Pt from aqueous solution by TiO2, in a closedloop reactor, Appl. Catal. B-Environ. 16 (1998) 347-357.
    [149]江立文,李耀中,周岳溪,流化床光催化反应器动力学模式,中国环境科学,20 (2000) 540-543.
    [150] Ollis D. S., Al-Ekabi H., Ed. Photocatalytic Purification and Treatment of Water and Air, Trace Metals in the Environment, Wol.3, Elsevier, Amsterdam, 1993.
    [151] Rodríguez S. M., Richter C., Gálvez J. B., Vincent M., Photocatalytic degradation of industrial residual waters, Sol. Energy 56 (1996) 401-410.
    [152] Beydoun D., Ameal R., Low G., McEvoy S., Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B 104 (2000) 4387-4396.
    [153] Chen F., Xie Y., Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation, Chemosphere 44 (2001) 1159-1168.
    [154] Gao Y., Chen B., Li H., Ma Y., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties, Mater. Chem. Phys. 80 (2003) 348-355.
    [155] Chung Y. S., Park S. B., Kang D. W., Magnetically separable titania-coated nickel ferrite photocatalyst, Mater. Chem. Phys. 86 (2004) 375-381.
    [1]黄波,固体材料及其应用,广州:华南理工大学出版社,1995.
    [2]石晓波,李春根,王德先,铁酸锌纳米微粒的制备及其催化性能,化学世界,43 (2002) 451-456.
    [3]刘辉,魏雨,纳米级铁酸盐粉体材料合成的进展,功能材料,31 (2000) 124-126.
    [4]刘辉,魏雨,张艳峰,纳米铁酸盐的制备研究:低温催化相转化法合成纳米级铁酸锌及表征,无机材料学报,17 (2002) 56-60.
    [5]刘辉,张艳峰,贾振斌,魏雨,孙予罕,催化相转化法制备纳米铁酸镍及性质研究,功能材料, 34 (2003) 509-510.
    [6]张锦柱,工业分析,重庆:重庆大学出版社,2000.
    [7]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.
    [8] Shafi K. V. P. M., Koltypin Y., Gedanken A., Prozorov R., Balogh J., Lendvai J., Felner I., Sonochemical Preparation of Nanosized Amorphous NiFe2O4 Particles, J. Phys. Chem. B 101 (1997) 6409-6414.
    [9] Liu H., Wei Y., Sun Y., The formation of hematite from ferrihydrite using Fe(II) as a catalyst, J. Mol. Catal. A-Chem. 226 (2005) 135-140.
    [10]马子川,魏雨,郑学忠,Fe(I)离子对r-FeOOH相转化为α-Fe2O3的影响,河北师范大学学报(自然科学版),22 (1998) 223-225.
    [11] Jolivet J. P., Bellevill E. P., Tronc E., Livage J., Crystallization of ferric hydroxide into Schultz, Clay Clay Min. 5 (1992) 531-537.
    [1] Zhang Y., Crittenden J. C., Hand D. W., Perram D. L., Fixed-bed photocatalysts for solar decontamination of water, Environ. Sci. Technol. 28 (1994) 435-442.
    [2] Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
    [3] Zhao J. C., Wu T. X., Wu K. Q., Oikawa K., Hidaka H., Serpone N., Photoassisted degradation of dye pollutants. 3. degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles, Environ. Sci. Technol. 32 (1998) 2394-2400.
    [4] Mukherjee P. S., Ray A. K., Major challenges in the design of a large-scale photocatalytic reactor for water treatment, Chem. Eng. Technol. 22 (1999) 253-260.
    [5] Arslan I., Balcioglu I. A., Bahnemann D. W., Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts, Appl. Catal. B-Environ. 26 (2000) 193-206.
    [6] Yamazaki S., Matsunaga S., Hori K., Photocatalytic degradation of trichloroethylene in water using TiO2 pellets, Water Res. 35 (2001) 1022-1028.
    [7] Horikoshi S., Watanabe N., Onishi H., Hidaka H., Serpone N., Photodecomposition of a nonylphenol polyethoxylate surfactant ina cylindrical photoreactor with TiO2 immobilized fiberglass cloth, Appl. Catal. B-Environ. 37 (2002) 117-129.
    [8] Anpo M., Shu G. Z., Mishima H., Matsuoka M., Yamashita H., Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature, Catal. Today 39 (1997) 159-168.
    [9] Beydoun D., Ameal R., Low G., McEvoy S., Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B 104 (2000) 4387-4396.
    [10] Chen F., Xie Y., Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation, Chemosphere 44 (2001) 1159-1168.
    [11] Gao Y., Chen B., Li H., Ma Y., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties, Mater. Chem. Phys. 80 (2003) 348-355.
    [12] Chung Y. S., Park S. B., Kang D. W., Magnetically separable titania-coated nickel ferrite photocatalyst, Mater. Chem. Phys. 86 (2004) 375-381.
    [13]伍越寰,有机结构分析,合肥:中国科学技术大学出版社,1993.
    [14] Watson S., Beydoun D., Amal R., Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core, J. Photochem. Photobiol. A-Chem. 148 (2002) 303-313.
    [15] Shangguan W. F., Yoshida A., Photocatalytic Hydrogen Evolution from Water on Nanocomposites Incorporating Cadmium Sulfide into the Interlayer, J. Phys. Chem. B 106 (2002) 12227-12230.
    [16] Balaji S., Selvan R. K., Berchmans L. J., Angappan S., Subramanian K., Augustin C. O., Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 119 (2005) 119-124.
    [17] Robertson J., Band offsets of high dielectric constant gate oxides on silicon, J. Non-Cryst. Solids. 303 (2002) 94-100.
    [18] Bekb?let M., Balcioglu I., Photocatalytic oxidation and subsequent adsorption characteristics of humic acids, Water Sci. Technol. 34 (1996) 73-80.
    [19] Al-Qaradawi S., Salman S. R., Photocatalytic degradation of methyl orange as a model compound, J. Photochem. Photobiol. A-Chem. 148 (2002) 161-168.
    [1] Beydoun D., Ameal R., Low G., McEvoy S., Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B 104 (2000) 4387-4396.
    [2] Chen F., Xie Y., Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation, Chemosphere 44 (2001) 1159-1168.
    [3] Gao Y., Chen B., Li H., Ma Y., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties, Mater. Chem. Phys. 80 (2003) 348-355.
    [4] Chung Y. S., Park S. B., Kang D. W., Magnetically separable titania-coated nickel ferrite photocatalyst, Mater. Chem. Phys. 86 (2004) 375-381.
    [5] Anpo M., Takeuchi M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal. 216 (2003) 505-516.
    [6] Xie Y. B., Yuan C. W., Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation, Appl. Catal. B-Environ. 46 (2003) 251-259.
    [7] Zakrzewska K., Radecka M., Kruk A., Osuch W., Noble metal/titanium dioxide nanocermets for photoelectrochemical applications, Solid State Ion. 157 (2003) 349-356.
    [8] Iimura S., Teduka H., Nakagawa A., Yoshihara S., Shirakashi T., Improvement of the photocatalytic activity of titanium oxide by X-ray irradiation, Electrochemistry 69 (2001) 324-328.
    [9] Khan S. U. M., Al-Shahry M., Ingler W. B., Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297 (2002) 2243-2245.
    [10] Umebayashi T., Yamaki T., Itoh H., Asai K., Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81 (2002) 454-456.
    [11] Wang C., Zhao J. C., Wang X. M., Mai B. X., Sheng G. Y., Peng P. A., Fu J. M., Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal. B-Environ. 39 (2002) 269-279.
    [12] Ihara T., Miyoshi M., Iriyama Y., Matsumoto O., Sugihara S., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B-Environ. 42 (2003) 403-409.
    [13] Li W., Shah S. I., Huang C. P., Jung O., Ni C., Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 96 (2002) 247-253.
    [14] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
    [15] Sano T., Negishi N., Koike K., Takeuchi K., Matsuzawa S., Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand, J. Mater. Chem. 14 (2004) 380-384.
    [16] Dutoit D. C. M., Schmeider M., Baiker A., Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties, J. Catal. 153 (1995) 165-176.
    [17] Duran A., Serna C., Fornes V., Fernandez Navarro J. M., Structural considerations about SiO2 glasses prepared by sol-gel, J. Non-Cryst. Solids 82 (1986) 69-77.
    [18] Balaji S., Selvan R. K., Berchmans L. J., Angappan S., Subramanian K., Augustin C. O., Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4, Mater. Sci.Eng. B-Solid State Mater. Adv. Technol. 119 (2005) 119-124.
    [19] Robertson J., Band offsets of high dielectric constant gate oxides on silicon, J. Non-Cryst. Solids 303 (2002) 94-100.
    [20] Shangguan W. F., Yoshida A., Chen M. X., Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol–gel processes, Sol. Energy Mater. Sol. Cells 80 (2003) 433-441.
    [1] Rainho J. P., Rocha J., Carlos L. D., Almeida R. M., Si-29 nuclear-magnetic-resonance and vibrational spectroscopy studies of SiO2-TiO2 powders prepared by the sol-gel process, J. Mater. Res. 16 (2001) 2369-2376.
    [2] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
    [3] Kudo A., Mikami I., New In2O3(ZnO)(m) photocatalysts with laminal structure for visible light-induced H2 or O2 evolution from aqueous solutions containing sacrificial reagents, Chem. Lett. 10 (1998) 1027-1028.
    [4] Mizoguchi H., Ueda K., Kawazoe H., Hosono H., Omata T., Fujitsu S., New mixed-valence oxides of bismuth: Bi1-xYxO1.5+delta (x=0.4), J. Mater. Chem. 7 (1997) 943-946.
    [5]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.
    [6] Sclafani A., Palmisano L., Schiavello M., Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion, J. Phys. Chem. 94 (1990) 829-832.
    [7] Robertson J., Band offsets of high dielectric constant gate oxides on silicon, J. Non-Cryst. Solids 303 (2002) 94-100.
    [8] Beydoun D., Ameal R., Low G., McEvoy S., Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B 104 (2000) 4387-4396.
    [9] Chen F., Xie Y., Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation, Chemosphere 44 (2001) 1159-1168.
    [1] Beydoun D., Ameal R., Low G., McEvoy S., Novel photocatalyst: Titania-coated magnetite. Activity and photodissolution, J. Phys. Chem. B 104 (2000) 4387-4396.
    [2] Chen F., Xie Y., Zhao J., Lu G., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation, Chemosphere 44 (2001) 1159-1168.
    [3] Gao Y., Chen B., Li H., Ma Y., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties, Mater. Chem. Phys. 80 (2003) 348-355.
    [4] Chung Y. S., Park S. B., Kang D. W., Magnetically separable titania-coated nickel ferrite photocatalyst, Mater. Chem. Phys. 86 (2004) 375-381.
    [5] Arriagada F. J., Osseo-Asare K., Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration, J. ColloidInterface Sci. 211 (1999) 210-220.
    [6] Chen S. L., Dong P., Yang G. H., Yang J. J., Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds, J. Colloid Interface Sci. 180 (1996) 237-241.
    [7] Van Helden A. K., Jansen J. W., Vrij A., Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents, J. Colloid Interface Sci. 81 (1981) 354-368.
    [8] Rana S., Srivastava R. S., Sorensson M. M., Misra R. D. K., Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2-NiFe2O4 system, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 119 (2005) 144-151.
    [9] Dutoit D. C. M., Schmeider M., Baiker A., Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties, J. Catal. 153 (1995) 165-176.
    [10] Moleski R., Leontidis E., Krumeich F., Controlled production of ZnO nanoparticles from zinc glycerolate in a sol–gel silica matrix, J. Colloid Interface Sci. 302 (2006) 246-253.
    [11] Duran A., Serna C., Fornes V., Fernandez Navarro J. M., Structural considerations about SiO2 glasses prepared by sol-gel, J. Non-Cryst. Solids 82 (1986) 69-77.
    [12] Kéomany D., Poinsignon C., Deroo D., Sol gel preparation of mixed cerium-titanium oxide thin films, Sol. Energy Mater. Sol. Cells 33 (1994) 429-441.
    [13] Cheng P., Li W., Zhou T. L., Jin Y. P., Gu M. Y., Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation, J. Photochem. Photobiol. A-Chem. 168 (2004) 97-101.
    [14] Balaji S., Selvan R. K., Berchmans L. J., Angappan S., Subramanian K., Augustin C. O., Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 119 (2005) 119-124.
    [15] Robertson J., Band offsets of high dielectric constant gate oxides on silicon, J. Non-Cryst. Solids 303 (2002) 94-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700