用户名: 密码: 验证码:
超高韧性水泥基复合材料拉伸力学行为解析模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高韧性水泥基复合材料(Ultra High Toughness Cementitious Composites, UHTCC)是一种掺加乱向短聚乙烯醇纤维(PVA)增强的高性能水泥基复合材料,在拉伸过程中有类似于金属材料的应变硬化特性以及比一般纤维水泥基材料更好的微裂缝控制能力。其直接拉伸极限应变可稳定的达到3%,最大的裂缝宽度可以控制在0.1mm以内,采用这种材料的结构将有助于解决混凝土的韧性差,易开裂的特点。本文针对该材料的拉伸宏观力学行为,采用微观力学和断裂力学来分析微观参数对材料性能的影响。
     (1)首先介绍了纤维水泥基复合材料国内外的研究状况,阐述了超高韧性水泥基复合材料应变硬化行为理论,着重介绍了超高韧性水泥基复合材料研究发展的过程和工程应用。
     (2)将超高韧性水泥基复合材料的直接拉伸过程分为三个阶段来分析来建立强度模型。为了建立材料微观参数与宏观性能之间的关系,首先介绍了单根PVA纤维的拔出试验,根据试验结果建立单根PVA纤维拔出模型,在模型基础上利用微观力学分析了单根纤维与基体的粘结滑移关系,最终建立单根纤维的应力-位移关系。
     (3)在单根PVA纤维分析的基础上,利用直接拉伸试验分析和微观参数分析建立了超高韧性水泥基复合材料的强度模型,并利用试验数据来检验解析结果,对比结果表明解析强度模型与试验结果是一致的,解析结果能够反映复合材料的拉伸强度。
     (4)根据上述建立的微观参数与宏观力学行为之间的关系,分析了材料参数如纤维体积参量、纤维与基体界面强度对材料开裂强度、极限强度、应变硬化行为等宏观力学性能的影响,结果表明纤维体积含量和界面强度对材料的强度和应变硬化行为影响是显著的。
     (5)针对超高韧性水泥基复合材料直接拉伸强度,通过多因素的改变来分析提高材料强度的可能,并检验其是否满足材料应变硬化条件的要求。结果表明在尽可能不影响超高韧性水泥基复合材料应变硬化特性的前提下,通过提高基体断裂韧度和纤维强度来提高材料拉伸强度(特别是初裂强度)是一条有效的途径。
Ultra high toughness cementitious composites is a cement-based material added with polyvinyl alcohol (PVA) fiber, which has the strain hardening properties in the uniaxial tensile process that similar to metallic materials and has more capable in particular micro-cracks control than general fiber cement-based materials. This type of composites under tensile load has better strain capacity, more than 3% and maximum crack width below 0.1mm. This kind of composites help to overcome the shortcomings of concrete such as poor toughness and cracking easily. In this paper, for the macro tensile mechanical behavior of UHTCC, micro-mechanics and micro-fracture mechanics are employed to analyze the impact of parameters on the material properties.
     (1) This paper introduces the research background of the ultra high toughness cementitious composites and describes the theory of the strain hardening behavior. Then, highlights the research development process and engineering application of ultra high toughness cementitious composites.
     (2) The tensile process of ultra high toughness cementitious composite is divided into three stages through experiments and theoretical analysis. In order to establish the relationship between microscopic parameters and macroscopic properties of the materials, the author first introduces the single PVA fiber pullout test, then according to test results to establish a single PVA fiber pull model, based on which use the micro-mechanical analysis of the bond-slip relationship between single fiber and the matrix. Finally the stress-displacement of single fiber is founded.
     (3) Based on the single PVA fiber pull out, the ultra high toughness cementitious composite strength model is created with the analysis of the direct tensile test and microscopic parameters. Comparison of the results show that the analytical model and experimental strength are consistent, which proves the analytical results could reflect the tensile strength.
     (4) In view of relationship between microscopic parameters and macroscopic mechanical behavior, the influence of material parameters such as fiber volume fraction and interface strength on the composites cracking strength, ultimate strength, strain hardening behavior and other macro-mechanical properties is analyzed.
     (5) The multiple factors change which is made to improve to tensile strength of ultra high toughness cementitious composite,and satisfy the requirements of strain-hardening conditions. The results show that as far as possible without affecting ultra high toughness cementitious composite strain hardening properties, by improving the fracture toughness of the matrix and fiber strength to improve the tensile strength (in particular, first crack strength) is an effective way.
引文
[1]陈伟坚,王幼松,吕文龙.建筑工程加固改造业的发展现状与前景分析[J].建筑监督检测与造价,2010,1(1):7-11.
    [2]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.
    [3]沈荣熹,王璋水,崔玉忠.纤维增强水泥和纤维增强混凝土[M].北京:化学工业出版社,2006.7.
    [4]徐世娘,李贺东.超高韧性水泥基复合材料直接拉伸试验研究[J].土木工程学报,2009,42(9)32-41.
    [5]徐世娘,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能研究[J].水利学报,2009,40(9):1055-1063.
    [6]田砾,许婷华,万小梅,赵铁军.水泥基工程复合材料(ECC)的研究与应用[C].第十一届全国纤维混凝土学术会议论文集,大连,2006.
    [7]叶列平,陆新征,冯鹏,Asad Ullah Qazi,汪训流,林旭川.高强高性能工程结构材料与现代工程结构及其设计理论的发展[C]//第一届结构工程新进展国际论坛文集.北京:中国建筑工业出版社,2006:208-250.
    [8]Li V C.PROGRESS AND APPLICATION OF ENGINEERED CEMENTITIOUS COMPOSITES[J].硅酸盐学报,2007,35(4):1-7.
    [9]Fisher G. Deformation Behavior of Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions[D]. University of Michigan,2002.
    [10]Kanda T, Watanabe S and Li V C. Application of Pseudo Strain Hardening Cementitious Composites to Shear Resistant Structural Elements[C]. Ftacture Mechanics of Concrete Structures Proceedings FRAMCOS-3, AEDIFICATIO Publishers, D-79104 Freiburg, Germany, 1998:1477-1490.
    [11]Vasillaq Xoxia, Investigating the Shear characteristics.of High Performance Fiber Reinforced Concrete[D]. Toronto:University of Toronto,2003.
    [12]Maalej M, Li V C. Flexural Stength of Fiber Cementitious Composites[J]. journal of matertials in Civil Engineering, ASCE,1994,6(3):390-406.
    [13]Maalej M, Li V C. Flexural/Tensile Strength Ratio in Engineered Cementitious Compo-sites [J]. Journal of Materials in Civil Engineering, ASCE,1994,6(4):513-528.
    [14]Lepech M, Li V C. Size Effect in ECC Structural Members in Flexure[C]. In Proceedings of FRAMCOS-5, Colorado, USA,2004:1059-1066.
    [15]Li V C, Fischer G. Interaction Between Stleel Reinforcement And Engineered Cementi-tious [C]. In Proc. Of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC3), Ed. H. Reinhardt and A. Naaman, Chapman&Hull,1999:361-370.
    [16]Victor C. Li, Christopher K. Y. Leung. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264
    [17]Li V C, Wu H C. Conditions for Pseudo Strain-hardening in Fiber Reinforced Brittle matrix composites[J]. Applied Mechanics Reviews,1992,45(8):390-398.
    [18]Li V. C., From Micromechanics to Structural Engineering the Design of Cementitous Composites for Civil Engineering Applications [J]. JSCE Journal of Structural Mechanics and Earthquake Engineering,1993,10(2):37-48.
    [19]Li V C. Performance Driven Design of Fiber Reinforced Cementitious Composites[C]. In Proceedings of 4th RILEM International Symposium on Fiber Reinforced Concrete, Ed. R. N. Swamy, Chapman and Hall,1992:12-30.
    [20]Li V C. Reflections on the Research and Development of Engineered Cementitious Composites(ECC) [C]. In Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) Application and Evaluation (DRFCC-2002). Takayama, Japan,2002,8:1-21.
    [21]陈婷.高强高弹PVA纤维增强水泥基材料的研制与性能[D].合肥:合肥工业大学,2004.
    [22]Li V C and Obla K. Effect of Fiber Diameter Variation on Properties of Cement Based Matrix Fiber Reinforced Composites[J]. Composites Engineering International Journal, 1996, Part B 27B:275-284.
    [23]Lin Z and Li V C. Effect of Fiber Orientation on Tensile Strength and Ductility of Short Fiber Composites [C]. In Proceedings 12th ASCE Engineering Mechanics Conference. 1998:634-637.
    [24]Li V C, Mishra D K and Wu H C. Matrix Design for Pseudo Strain-Hardening Fiber Reinforced Cementitious Composites[J]. RILEMJ. Materials and Structures,1995,28 (183):586-595.
    [25]Takashima H, Nishimatsu H, Miyagai K and Hashida T. Effect of Perlite Addition on Fracture Properties of Discontinuous Fiber-reinforced Cementitious Composites Manu-factured by Extrusion Molding[C]. Proceedings of FRAMCOS-5, Vail, Colorado, USA, April 2004,1029-1036.
    [26]Chan Y W and Li V C. Effects of Transition Zone Densification on Fiber/Cement Bond Strength Improvement [J]. J. Advanced Cement Based Materials,1997,5(1):8-17.
    [27]Li V C, Wu C, Wang S, Ogawa A and Saito T. Interface Tailoring for Strain-hardening PVA-ECC[J].ACI Materials Journal,2002,99(5):463-472.
    [28]Chan Y W and Li V C. Age Effect on the Characteristics of Fiber/Cement Interfacial Bond[J]. Materials Science,1997,32(19):5287-5292.
    [29]Li V C, Wang S and Wu C. Tensile Strain-Hardening Behavior of PVA-ECC[J]. AC I Materials Journal,2001,98(6):483-492.
    [30]Maalej M, Hashida T and Li V C. Effect of Fiber Volume Fraction on the Off-Crack Plane Energy in Strain-Hardening Engineered Cementitious Composites [J]. J. American Ceramics Society,1995,78(12):3369-3375.
    [31]Suthiwarapirak P, Matsumoto T and Kanda T. Flexural Fatigue Failure Characteristics of an Engineered Cementitious Composite and Polymer Cement Mortars[J]. J. Materials, Conc. Struc. Pavements, JSCE,2002, (718/V-57):121-134.
    [32]Lim Y M, Wu H C and Li V C. Development of Flexural Composite Properties and Dry Shrinkage Behavior of High Performance Fiber Reinforced Cementitious Composites at Early Age[J]. J. of Materials,1999,96(1):20-26.
    [33]Kim Y Y, Kong H J and Li V C. Design of Engineered Cementitious Composite (ECC Suitable for Wet-mix Shotcreting[J]. J. ACI Materials,2003,100(6):511-518.
    [34]Kong H J, Bike S and Li V C. Constitutive Rheological Control to Develop a Self-Consolidating Engineered Cementitious Composite Reinforced with Hydrophilic Poly (vinyl alcohol) Fibers [J]. J. Cement and Concrete Composites,2003,25(3):333-341.
    [35]Stang H and Li V C. Extrusion of ECC-Material[C]. Proc. Of High Performance Fiber Reinforced Cement Composites 3(HPFRCC3),1999:203-212.
    [36]张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究.第十一届全国纤维混凝土学术会议论文集,大连,2006.
    [37]丁一,陈小兵,李荣.ECC材料的研究紧张与应用[J].建筑结构,2007,37(s1):94-98.
    [38]王晓刚,Wittmann F H,赵铁军.优化设计水泥基复合材料应变硬化性能研究[J].混泥土与水泥制品,2006(3):46-49.
    [39]高淑玲,徐世娘.PVA纤维增强水泥基复合材料拉伸特性试验研究[J].大连理工大学学报,2007,47(2):233-239.
    [40]李贺东.超高韧性水泥基复合材料试验研究[D].大连:大连理工大学,2008
    [41]饶芳芬.粉煤灰对超高韧性水泥基复合材料弯曲胜能的影响试验研究[D].大连:大连理工大学,2008.
    [42]张帅.增稠剂在PVA超高韧性水泥基复合材料中的应用[D].大连:大连理工大学.2007.
    [43]王洪昌.超高韧性水泥基复合材料与钢筋粘结性能的试验研究[D].大连:大连理工大学,2007.
    [44]李大为.玻璃纤维编织网与超高韧性水泥基复合材料粘结性能的研究[D].大连:大连理工大学,2007.
    [45]徐世娘,张秀芳.钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究[J].中国科学(E辑)2009,39(5):878-896.
    [46]徐世娘,李庆华.超高韧性复合材料控裂功能梯度复合梁弯曲性能理论研究[J].中国科学(E辑),2009,39(6):1081-1094.
    [47]蔡新华.混凝土结构裂缝的形成与发展及控制技术研究[D].大连:大连理工大学,2010.
    [48]高栋.超高韧性水泥基复合材料的抗渗性能研究[D].大连:大连理工大学,2010.
    [49]田艳华.自密实超高韧性水泥基复合材料试验研究[D].大连:大连理工大学,2008.
    [50]蔡向荣.超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D].大连:大连理工大学,2010.
    [51]http://www.engineeredcomposites.com/Applications/bridge_deck.html.
    [52]Lepech M D and Li V C. Durability and Long Term Performance of Engineered Cementitious Composites[J]. Restoration of buildings and monuments,2006,12(2):119-132.
    [53]http://www.engineeredcomposites.com/Applications/mitaka_dam.html.
    [54]http://www.engineeredcomposites.com/Applications/retaining_wall.html.
    [55]Kunieda M. and Rokugo K. Recent Progress on HPFRCC in Japan[J]. Journal of advanced concrete technology,2006,4(1):19-33.
    [56]Rokugo and Kanda. R/ECC coupling beam[C]. In HPFRCC workshop, Hawaii,2005.
    [57]Li V C. engineered cementitious composites. www.engin.umich.edu/ace-mrl/.
    [58]Li V C. Bendable composites-ductile concrete for structures[J]. Structure Magazine. July,2006:45-48.
    [59]Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composite with Multiple Fine Cracks (HPFRCC) [S]. Japan Society of Civil Engineers.2007.
    [60]Li V C, Wu H C. Maalej M, etal. Tensile behavior of cement based composites with random discontinuous steel fibers. Journal of the American Ceramic Society,1996,9(1)74-78.
    [61]高淑玲.PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究[D].大连:大连理工大学,2006.
    [62]王晓刚,毛新奇,赵铁军。聚乙烯醇纤维水泥基复合材料[J].青岛建筑工程学院学报.2004,25(4):28-31.
    [63]Antonine E. Naaman, George G.Namur, Jamil M. Alwan, Husam S. Najm. Fiber pullout and bond slip. I Analytical study [J]. Journal of Structural Engineering. ASCE,1991,117(9): 2769-2790.
    [62]A. E. Naaman, G. G. Namur, J. M. Alwan, H. S. Najm. Fiber pullout and bond slip. II: Experimental validation[J]. Journal of Structural Engineering. ASCE,1991,117(9): 2791-2780.
    [65]Tetsushi Kanda, Victor C. Li. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J]. Journal of Materials in Civil Engineering. ASCE,1998,10(1):5-13
    [66]C. Redon, V. C. Li, C.Wu, etal. Measure and modifying interface properties of PVA fiber in ECC matrix [J]. Journal of Materials in Civil Engineering. ASCE,2001,13 (6): 399-406.
    [67]Z. Lin, T. Kanda and V.C. Li. On interface property characterization and performance of fiber-reinforced cementitious composites[J]. Journal of Concrete Science and Engineering. RILEM,1999,1:173-184.
    [68]Victor C.Li, Youjiang Wang and Stranley Backer. A micromechanical model of tension softrning and bridging toughening of short random fiber reinforced brittle matrix composites[J]. J.Mech. Phys. Solids.1991.39(5):607-625.
    [69]Lawn,B. Fracture of brittle solids[M]. Cambridge Academic, Cambridge, Mass,1993
    [70]Mashall,D. B, Cox,B. N, Evans,A. G. The mechanics of matrix cracking in brittle matrix fiber composites. Acta Metall,1985,2(11):2013-2021.
    [71]Soroushion P., Lee,C.D. Distribution and orientation of fiber in steel fiber reinforced concrete[J]. ACI Materials Journal,1990,87(5):433-439.
    [72]Shuxin Wang, Victor C. Li. Tailoring of PVA Fiber/Matrix Interface For Engineered Cementitious Composites (ECC) [C]. Fiber Society 2003 Symposium in Advanced Flexible Materials and Structures:Engineering With Fiber. Loughborough, UK,2003:91-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700