用户名: 密码: 验证码:
模拟调强放疗模式对人鼻咽低分化鳞癌细胞株生物效应影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     鼻咽癌是人类常见的恶性肿瘤之一,尤其在我国南方高发,放射治疗作为首选治疗。调强放射治疗(intensity-modulated radiation therapy IMRT)技术作为先进放疗技术的代表,突破了传统常规放疗的规则大野照射,以不规则的多个子野从多个角度在保护危及器官及正常组织的同时,最大限度的给予肿瘤区域以较高剂量照射;IMRT还可实现同时补量技术,在治疗次数相同的情况下,给不同的靶区不同剂量。以期提高局控率并减少周围正常组织损伤,因而成为临床肿瘤放射治疗走向精确定位、精确计划设计、精确治疗的标志。近年来,IMRT因其技术优势广泛应用于临床肿瘤放射治疗实践中,如头颈部肿瘤、前列腺癌、乳腺癌、肺癌等。IMRT在物理学上的优势是显而易见的。关于IMRT放疗近期疗效的报道很多,而且大多数结果尚属满意,但至今没有大范围的、有说服力的这种治疗改善了预后的资料。因此推测这一技术在在生物学上可能存在不足之处。因为治疗技术的复杂性,使在常规照射时一次性给予的剂量分成了多次给予,尤其是MLC静态IMRT技术大大延长了照射时间。常规2Gy的照射1~2min即可完成,而IMRT则常常需要20~40min。这样单位时间内肿瘤吸收剂量就大大降低,有人将这种情况称为“相对剂量率降低”。这种照射模式所致“相对剂量率降低是否影响肿瘤细胞的杀灭”已成为临床放射生物学的热点问题。多年来,人们应用细胞培养、免疫组化、分子生物学技术等对肿瘤细胞相关基因蛋白表达情况进行了研究,积累了大量资料。也有作者就离体细胞IMRT照射后,细胞存活曲线的变化进行过研究,从而推断IMRT照射时间延长,可能导致亚致死性损伤修复增加,放射生物效应降低,但其确切影响仍不清楚,未见其他方面深入的报道。放射治疗模式的改变是否会影响肿瘤细胞的生物效应尚未明确,是否要对IMRT照射模式进行剂量补偿亦尚未定论。文献报道,影响细胞放射敏感性的生物因素主要包括DNA损伤的修复、细胞周期、及细胞凋亡。因此本研究旨在通过给予人鼻咽低分化鳞癌细胞株(CNE-2)不同模式照射,探索IMRT治疗模式对CNE-2生物效应的影响。为今后IMRT在临床上的广泛应用,放疗剂量的调整,缩短照射时间,从而提高肿瘤局控率,进一步提高远期生存率,提供实验依据。并依据检测指标的变化,为患者制定个体化的放疗方案,如:确定分割剂量,选择照射时间,提供理论依据。
     方法:
     选取CNE-2为实验对象,分为空白对照、常规照射、模拟IMRT(按设计要求对各个照射剂量点进行照射,每个剂量点分5次照射,其间分别间隔8.0-8.5min, 35min完成)3组,分别给予6MV-X 2、4、6、8Gy4个剂量点的照射;1)运用克隆形成实验(courtenay assay),检测不同照射模式下CNE-2的存活分数; 2)运用四氮唑蓝法(MTT)进一步验证克隆形成实验的结果;3)运用流式细胞仪(FCM)检测不同照射模式下CNE-2的细胞周期分布及凋亡比例;4)应用RT-PCR及Western blotting方法,检测CNE-2在不同照射模式下,与DNA损伤修复相关的Ku、ATM转录水平及蛋白表达;检测与细胞周期调控相关的Cyclin B1、Cyclin D1的转录水平及蛋白表达,检测与细胞凋亡调节相关的Bcl2、Bax的转录水平及蛋白表达。
     结果:
     1.克隆形成检测细胞存活分数:
     1)CNE-2α/β值为13.177Gy,在2、4、6、8Gy剂量点,常规照射组:SF值分别为0.225,3±0.017,7、0.013±0.002,0、0.002,6±0.000,6和0.0,002±0.000,1,模拟IMRT组:SF分别为0.335,3±0.016,7、0.060,7±0.009,3、0.006,9±0.000,9和0.000,6±0.0,003;模拟IMRT组的SF均高于常规照射组。
     2)根据线性二次方程拟合的CNE-2细胞存活曲线,常规放疗组:α、β、N、D0、Dq值分别为0.674,8、0.051,2、1.890,0、0.885,0、0.563,0,模拟IMRT组:α、β、N、D0、Dq值分别为0.537,7、0.026,8、2.610,0、0.986,0和0.946,0;α_(常规)>α_(IMRT),β_(常规)>β_(IMRT),N_(常规)〈N_(IMRT),D_(0常规)     2.MTT检测细胞增殖比例:
     CNE-2在2、4、6、8Gy剂量点,常规照射组:细胞增殖比例分别为0.598,7±0.021,7、0.455,7±0.053,7、0.235,3±0.045,3、0.056,7±0.018,3;模拟IMRT组:细胞增殖比例分别为0.682±0.055,0、0.528,3±0.074,3、0.322,3±0.002,0、0.091,7±0.022,3;模拟IMRT组的增殖比例均高于常规照射组。
     3.流式细胞术检测细胞周期分布(%):CNE-2在2、4、6、8Gy剂量点
     1)常规照射组:G2期细胞比例分别为26.77±0.43、38.33±1.77、46.57±1.43、66.97±1.47;模拟IMRT组:G2期细胞比例分别为21.07±0.87、30.83±1.67、39.47±3.03、56.87±2.50;在8Gy剂量点时,2组的CNE-2 G2期细胞比例均高达50%以上(66.97±1.47%与56.87±2.50%)。G2期细胞比例随照射剂量的增加而逐渐增加;在相同剂量点,模拟IMRT组G 2期细胞比例低于常规照射组。
     2)常规照射组:S期细胞比例37.50±0.20、26.47±0.97、19.23±0.97、13.67±0.73;模拟IMRT组:S期细胞比例分别为39.73±0.47、32.43±1.03、26.07±2.77、16.87±2.33。S期细胞比例随照射剂量的增加而逐渐减少;在相同剂量点,模拟IMRT组的S期细胞比例高于常规照射组。
     3)常规照射组:G1期细胞比例分别为35.73±0.23、35.20±0.80、34.20±0.50、19.37±0.73;模拟IMRT组:G1期细胞比例分别为39.20±0.40、36.73±0.63、34.47±0.33、26.27±0.27。G1期细胞比例随照射剂量的增加无明显变化;在相同剂量点,模拟IMRT组的G1期细胞比例略高于常规照射组。
     4.流式细胞术检测细胞凋亡比例及存活比例(%):CNE-2在2、4、6、8Gy剂量点
     1)常规照射组:早期凋亡比例分别为13.67±1.63、21.07±1.73、28.87±3.33、16.47±1.83;模拟IMRT组:早期凋亡比例分别为10.60±1.20、15.77±0.43、21.30±2.10、29.97±4.47;2Gy、4Gy、6Gy三个照射剂量点,早期凋亡比例随照射剂量的增加而逐渐增加;照射剂量为8Gy时,随剂量的增加,常规照射组早期凋亡比例不再增加反而下降;在相同剂量点,模拟IMRT组的早期凋亡比例低于常规照射组(8Gy除外)。
     2)常规照射组:晚期凋亡比例分别为3.33±0.67、10.57±1.73、25.10±3.40、70.20±2.90;模拟IMRT组:晚期凋亡比例分别为1.80±0.90、7.13±1.37、21.77±2.47、59.37±3.67。晚期凋亡比例随照射剂量的增加成倍增加;在相同剂量点,模拟IMRT组的晚期凋亡比例低于常规照射组。
     3)常规照射组:存活比例分别为82.83±1.67、47.40±4.90、21.73±6.93、5.13±1.37;模拟IMRT组:存活比例分别为87.40±2.10、54.70±3.50、27.80±5.30、7.57±1.77。细胞存活比例随照射剂量的增加而降低;在相同剂量点,模拟IMRT组的存活比例高于常规照射组。
     5.RT-PCR、Western blotting方法检测CNE-2 Ku80、ATM的转录水平及蛋白表达:CNE-2在2、4、6、8Gy剂量点
     1)常规照射组:Ku80的转录水平分别为0.588±0.131、0.929±0.125、0.840±0.084、0.775±0.084;模拟IMRT组:Ku80的转录水平分别为0.730±0.097、1.074±0.104、0.961±0.076、0.911±0.071;各组不同剂量点之间Ku80的转录水平差异均有统计学意义(P均=0.000);在相同剂量点,常规照射组与模拟IMRT组LSD法两两比较,4个剂量点Ku80的转录水平差异均有统计学意义(P均<0.05);接受照射后CNE-2 Ku80转录水平升高,模拟IMRT组Ku80的转录水平更高(P均=0.000),在4Gy剂量点时2组细胞Ku80的转录水平到达峰值,随后表达均下降。
     2)常规照射组:ATM转录水平分别为0.908±0.110、1.057±0.313、0.923±0.133、0.823±0.075;模拟IMRT组:ATM的转录水平分别为0.732±0.189、0.903±0.181、0.871±0.067、0.775±0.130;接受照射后,与空白对照比较,2组CNE-2 ATM转录水平均上调(P均<0.005);各组不同剂量点之间,ATM的转录水平差异均无统计学意义(P均>0.05);在相同剂量点,常规照射组与模拟IMRT组LSD法两两比较,ATM的转录水平差异均无统计学意义(P均>0.05)。
     Western blotting方法检测CNE-2 Ku80、ATM的蛋白表达均得到相似结果。
     6.PT-PCR、Western blotting方法检测CNE-2 Cyclin B1、Cyclin D1的转录水平及蛋白表达:CNE-2在2、4、6、8Gy剂量点
     1)常规照射组:Cyclin B1的转录水平分别为0.745±0.068、0.624±0.100、0.518±0.054、0.428±0.038;模拟IMRT组:Cyclin B1的转录水平分别为0.881±0.075、0.711±0.054、0.617±0.061、0.528±0.046;2组Cyclin B1的转录水平随照射剂量的增加而降低;各组不同剂量点之间,Cyclin B1的转录水平差异均有统计学意义(P均=0.000);且在相同剂量点,常规照射组与模拟IMRT组LSD法两两比较,Cyclin B1的转录水平差异均有统计学意义(P均<0.05),模拟IMRT组Cyclin B1的转录水平高于常规照射组。
     2)常规照射组:Cyclin D1的转录水平分别为0.857±0.090、0.810±0.327、0.798±0.303、0.802±0.038;模拟IMRT组:Cyclin D1的转录水平分别为0.822±0.063、0.701±0.213、0.812±0.093、0.801±0.064,各组不同剂量点之间转录水平差异均无统计学意义(P均>0.05);在相同剂量点,常规照射组与模拟IMRT组LSD法两两比较,Cyclin D1的转录水平差异均无统计学意义(P均>0.05)。
     Western blotting方法检测CNE-2 Cyclin B1、Cyclin D1的蛋白表达均得到相似结果。
     7.PT-PCR、Western blotting方法检测CNE-2 Bcl2、Bax的转录水平及蛋白表达:CNE-2在2、4、6、8Gy剂量点
     1)常规照射组: Bcl2的转录水平分别为0.298±0.029、0.308±0.024、0.290±0.033、0.273±0.025;模拟IMRT组:Bcl2的转录水平分别为0.313±0.030、0.297±0.028、0.294±0.021、0.293±0.025;各组不同剂量点之间,转录水平差异均无统计学意义(P均>0.05);在相同剂量点,常规照射组与模拟IMRT组LSD法两两比较,Bcl2的转录水平差异均无统计学意义(P均>0.05)。
     2)常规照射组:Bax的转录水平分别为0.618±0.061、0.706±0.032、0.817±0.064、0.915±0.076;模拟IMRT组:Bax的转录水平分别为0.513±0.051、0.606±0.087、0.662±0.132、0.721±0.086;2组Bax的转录水平随照射剂量的增加而升高;各组不同剂量点之间,Bax的转录水平差异均有统计学意义(P均=0.000);在相同剂量点,常规照射组与模拟IMRT组LSD法两两比较,Bax的转录水平差异均有统计学意义(P均<0.05),模拟IMRT组Bax的转录水平低于常规照射组。
     Western blotting方法检测CNE-2 Bcl2、Bax的蛋白表达均得到相似结果。
     结论:
     1.照射时间延长,CNE-2存活分数增加,提示对肿瘤细胞的杀灭减少,在此期间可能发生亚致死性损伤修复,放射敏感性下降,放射生物效应降低。
     2.电离辐射诱导CNE-2 G2期阻滞,其阻滞作用随剂量增加而增加;模拟IMRT照射时间的延长,对G2期细胞阻滞作用减弱。电离辐射诱导CNE-2凋亡,细胞凋亡比例随照射剂量的增加而增加,细胞存活比例随照射剂量的增加而降低。模拟IMRT照射时间延长,CNE-2凋亡比例下降及存活比例均上升,导致辐射生物效应降低。流式细胞术较好地反映了辐射对CNE-2细胞周期分布及凋亡比例的影响。
     3.应用RT-PCR、Western blotting方法检测ATM、Ku80、Cyclin D1、Cyclin B1、Bcl2及Bax的转录水平及蛋白表达,并计算Bcl2/Bax的比值,可能有助于评价CNE-2放射生物效应的改变。IMRT时间延长,可能有利于SLDR,降低放射敏感性。DNA损伤修复相关因子Ku80、ATM,细胞周期素相关因子Cyclin D1、Cyclin B1,凋亡相关因子Bcl2、Bax的表达,可能部分预测辐射生物效应的变化。与常规放疗相比,IMRT这种高剂量率、多间歇、照射时间延长的照射模式有其独特的辐射生物效应,需要更进一步的研究。
Backgrounds & Objectives:
     Nasopharyngeal carcinoma (NPC) is one of the most common human cancers, and is highly prevalent in Southern China. Radiotherapy is the primary treatment of NPC. Intensity-modulated radiation therapy (IMRT) has become common as a new radiotherapy technique for treatment of malignancies. Compared with conventional 3D conformal radiotherapy (3D-CRT), Intensity-modulated radiation therapy allows greater dose conformity to the tumor target and normal tissues sparing; meanwhile, IMRT optimizes dose distribution of radiotherapy, which thereby could increase the dose of the target tissues and decrease the dose of the surrounding normal tissues at risk. All these technical innovations have led on the one hand to delivering a much higher dose to the target volumes, thus possibly increasing local tumor control, while on the other hand minimizing the undue dose delivered to the surrounding normal tissues, thus possibly decreasing treatment morbidity. IMRT has obvious dosimetric superiority. Over the past few years, IMRT appears to be more and more commonly used for routine treatment, especially in head and neck (HN) malignancies, prostate cancer, breast cancer and lung cancer. However, only a few randomized trials have demonstrated its superiority over conventional treatments. This technique often requires 15~30 min or a longer time in one treatment session for precise positioning of patient. Several studies suggested that the radiobiological effectiveness of IMRT that require considerably long beam interruption might be less than that of continuous irradiation with the same dose owing to the recovery from sublethal damage in tumor cells. It is known that sublethal damage repair (SLDR), cell cycle and apoptosis influence the radiosensitivity of tumor cells. To our knowledge, however, no systematic research has been carried out regarding the influence of IMRT on radiosensitivity、apoptosis and cell cycle and radiosensitivity-related genes expression in cultured tumor cells.
     Methods:
     Radiosensitivity was analyzed by Courtenay assay. Cell growth inhibition was measured by MTT. Apoptosis and cell cycle were analyzed by flow cytometry. RT-PCR was used to detect mRNA expressions of damage repair -related genes: Ku80、ATM; Cell cycle regulation genes: Cyclin D1、Cyclin B1.Apoptotic regulation genes: Bcl2、Bax; Western blotting was used to analyze protein expression.
     Results:
     1.Courtenay assay
     1)α/βof CNE-2 was 13.177Gy.when we delivered 4 different radiation doses including 2Gy、4Gy、6Gy、8Gy, Surviving Fractions (SF) of convention radiation (CR) group were 0.2253±0.0177、0.013±0.002、0.0026±0.0006 and 0.0002±0.0001. Surviving Fractions (SF) of Simulation IMRT (SIMRT) group were 0.3353±0.0167, 0.0607±0.0093, 0.0069±0.0009 and 0.0006±0.0003, respectively. Compared with SIMRT group, SF of convention radiation group was lower in every dose point.
     2) Fitting cell survival curve by Linear quadratic equation and Multi-target one-shot model, the values ofα、β、N、D0、Dq of CR group were 0.674,8、0.051,2、1.890,0、0.885,0 and 0.563 0. The values ofα、β、N、D0、Dq of SIMRT group were 0.537,7、0.026,8、2.610,0、0.986,0 and 0.946,0, respectively; andαCR>αSIMRT,βCR>βSIMRT, NCR     2.MTT: when we delivered 2Gy、4Gy、6Gy、8Gy upon them, cell proliferation rates of CR group were0.598,7±0.021,7、0.455,7±0.053,7、0.235,3±0.045,3、0.056,7±0.018,3. Cell proliferation rates of SIMRT group were 0.682,0±0.055,0、0.528,3±0.074,3、0.322,3±0.002,0、0.091,7±0.022,3, respectively.
     3.Flow cytometry for cell cycle: when we delivered 4 different radiation doses including 2Gy、4Gy、6Gy、8Gy
     1) G2 phases of CR group were26.77±0.43、38.33±1.77、46.57±1.43、66.97±1.47. G2 phases of SIMRT group were 21.07±0.87、30.83±1.67、39.47±3.03、56.87±2.50. The rate G2 phase was increasing with the radiation dose rised. Compared with SIMRT group, the rate G2 phase of convention radiation group was higher in every dose point. In 8Gy, the rate G2 phase of both CR group and SIMRT group was over 50% (66.97±1.47% vs 56.87±2.50%).
     2) S phases of CR group were 37.50±0.20、26.47±0.97、19.23±0.97、13.67±0.73; S phases of SIMRT group were 39.73±0.47、32.43±1.03、26.07±2.77、16.87±2.33, respectively. The rate of S phase was decreasing with the radiation dose rised. Compared with SIMRT group, the rate S phase of convention radiation group was lower in every dose point.
     3) G1 phases of CR group were 35.73±0.23、35.20±0.80、34.20±0.50、19.37±0.73. G1 phases of SIMRT group were 39.20±0.40、36.73±0.63、34.47±0.33、26.27±0.27, respectively.The rate of G1 phase was decreasing with the radiation dose rised.Compared with SIMRT group, the rate S phase of CR group was relatively stable with the radiation dose rised.Compared with SIMRT group, the rate S phase of convention radiation group was a little lower in every dose point.
     4.Flow cytometry for cell apoptosis: when we delivered 4 different radiation doses including 2Gy、4Gy、6Gy、8Gy
     1) Early apoptosis of CR group were 13.67±1.63、21.07±1.73、28.87±3.33、16.47±1.83. Early apoptosis of SIMRT group were 10.60±1.20、15.77±0.43、21.30±2.10、29.97±4.47; respectively; From 2Gy to 6Gy, early apoptosis of both group increased, interestingly, when radiation doses upto 8Gy, early apoptosis of CR group decreased. Compared with SIMRT group, From 2Gy to 6Gy, early apoptosis of CR group was higher with the radiation dose rised.
     2) Late apoptosis of CR group were 3.33±0.67、10.57±1.73、25.10±3.40、70.20±2.90. Early apoptosis of SIMRT group were 1.80±0.90、7.13±1.37、21.77±2.47、59.37±3.67; respectively. From 2Gy to 8Gy, late apoptosis of both group increased.Compared with SIMRT group, early apoptosis of CR group was higher in every dose point.
     3) The rates of viable cells of CR group were 82.83±1.67、47.40±4.90、21.73±6.93、5.13±1.37.The rates of viable cells of SIMRT group were 87.40±2.10、54.70±3.50、27.80±5.30、7.57±1.77; respectively. From 2Gy to 8Gy, the rates of viable cells of both group decreased. Compared with SIMRT group, the rates of viable cells of CR group was lower in every dose point.
     5.RT-PCR and Western blotting were employed to detect the expression of Ku80、ATM. RT-PCR results showed: when we delivered 4 different radiation doses including 2Gy、4Gy、6Gy、8Gy
     1) The Ku80 mRNA level expressions of CR group were 0.588±0.131、0.929±0.125、0.840±0.084、0.775±0.084.The Ku80 mRNA level expressions of SIMRT group were 0.730±0.097、1.074±0.104、0.961±0.076、0.911±0.071, respectively. Compared with SIMRT group, the Ku80 mRNA level expressions of SIMRT group were lower in every dose point (P<0.05). And the Ku80 mRNA level expressions of both groups were highest in 4Gy. Western blotting showed the similar results on the protein level expressions.
     2) The ATM mRNA level expressions of CR group were 0.908±0.110、1.057±0.313、0.923±0.133、0.823±0.075. The ATM mRNA level expressions of SIMRT group were 0.732±0.189、0.903±0.181、0.871±0.067、0.775±0.130, respectively.The ATM mRNA level expressions were up regulated after radiation (P<0.01). Compared with SIMRT group, the ATM mRNA level expressions of CR group had no significant difference in every dose point (P>0.05). Western blotting showed the similar results on the protein level expressions.
     6.RT-PCR and Western blotting were employed to detect the expression of Cyclin B1、Cyclin D1. RT-PCR results showed: when we delivered 4 different radiation doses including 2Gy、4Gy、6Gy、8Gy
     1) The Cyclin B1 mRNA level expressions of CR group were 0.745±0.068、0.624±0.100、0.518±0.054、0.428±0.038.The Cyclin B1 mRNA level expressions of SIMRT group were 0.881±0.075、0.711±0.054、0.617±0.061、0.528±0.046; respectively. Compared with SIMRT group, the Cyclin B1 mRNA level expressions of CR group were lower in every dose point (P<0.05). Western blotting showed the similar results on the protein level expressions.
     2) The Cyclin D1 mRNA level expressions of CR group were 0.857±0.090、0.810±0.327、0.798±0.303、0.802±0.038.The Cyclin D1 mRNA level expressions of SIMRT group were 0.822±0.063、0.701±0.213、0.812±0.093、0.801±0.064, respectively. Compared with SIMRT group, the Cyclin D1 mRNA level expressions of CR group had no significant difference in every dose point (P>0.05). Western blotting showed the similar results on the protein level expressions.
     7.RT-PCR and Western blotting were employed to detect the expression of Bcl2、Bax. RT-PCR results showed: when we delivered 4 different radiation doses including 2Gy、4Gy、6Gy、8Gy
     1) The Bcl2 mRNA level expressions of CR group were 0.298±0.029、0.308±0.024、0.290±0.033、0.273±0.025. The Bcl2 mRNA level expressions of SIMRT group were 0.313±0.030、0.297±0.028、0.294±0.021、0.293±0.025; respectively. Compared with SIMRT group, the Bcl2 mRNA level expressions of CR group had no significant difference in every dose point (P>0.05). Western blotting showed the similar results on the protein level expressions.
     2) The Bax mRNA level expressions of CR group were 0.618±0.061、0.706±0.032、0.817±0.064、0.915±0.076.The Bax mRNA level expressions of SIMRT group were 0.513±0.051、0.606±0.087、0.662±0.132、0.721±0.086, respectively. Compared with SIMRT group, the Bax mRNA level expressions of CR group is higher in every dose point (P<0.05). Western blotting showed the similar results on the protein level expressions.
     Conclusions:
     1.IMRT that require considerably long beam interruption may be one of the mechanisms responsible for altered radiosensitivity.
     2.Radiation-induced G2 arrest correlated with radiation dose and IMRT that required considerably long beam interruption weaken the effect of G2 arrest. Radiation-induced early and late apoptosis ratios were increasing when radiation dose raised and IMRT that required considerably long beam interruption weaken the effect of apoptosis and increased the rate of viable cells.
     3.Using RT-PCR and Western blotting to detect the expression of ATM、Ku80、Cyclin D1、Cyclin B1、Bcl2、Bax,and calculate the Bcl2/Bax ratio maybe a new approach to evaluate the altered IMRT radiobiological effect. And this unique radiobiological effect of IMRT is worthy of further research.
引文
[1]朱广迎主编.放射肿瘤学[M].第2版,北京:科学技术文献出版社, 2007:231-255, 127-133.
    [2]殷蔚伯,余子豪,徐国镇.肿瘤放射治疗学[M].第4版,北京:中国协和医科大学出版社, 2008:480, 149-182, 231-239, 280-284, 292-306, 101-112, 270-277.
    [3] Yi JL, Gao L, Huang XD, et al. Nasopharyngeal carcinoma treated by radical radiotherapy alone:ten - year experience of a single institution[J]. Int J Radiat Oncol Biol Phys, 2006, 65(1):161-168.
    [4]孔琳,张有望,吴永如,等.鼻咽癌放疗后长期生存者晚期副反应研究[J].中华放射肿瘤学杂志, 2006, 15(3):153-156.
    [5] Lee NY, Terezakis SA. Intensity-modulated radiation therapy[J]. J Surg Oncol, 2008, 97(8):691-696.
    [6] Lee N, Puri DR, Blanco AI, et al. Intensity-modulated radiation therapy in head and neck cancers: an update[J]. Head neck, 2007, 29(4):387-400.
    [7] Caglar HB, Allen AM. Intensity-modulated radiotherapy for head and neck cancer[J]. Clin Adv Hematol Oncol, 2007, 5(6):425-431.
    [8]惠周光,徐国镇等.鼻咽癌调强适形放疗的临床应用[J]. Journal of Practical Oncology, 2004, 19(2): 104-106.
    [9] Kam MK, Chau RM, Suen J, et al. Intensity-modulated radiotherapy in nasopharyngeal carcinoma: dosimetric advantage over conventional plans and feasibility of dose escalation[J]. Int J Radiat Oncol Biol Phys, 2003 , 56(1):145-157.
    [10] Kristensen CA, Kjaer-Kristoffersen F, Sapru W, et al. Nasopharyngeal carcinoma. Treatment planning with IMRT and 3D conformal radiotherapy[J]. Acta Oncol, 2007, 46(2): 214-220.
    [11] Kwong DL, Sham JS, Leung LH, et al. Preliminary results of radiation dose escalation for locally advanced nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2006, 64(2):374 - 381.
    [12] Taheri-Kadkhoda Z, Pettersson N, Bjork-Eriksson T, et al. Superiority of intensity-modulated radiotherapy over three-dimensional conformal radiotherapy combined with brachytherapy in nasopharyngeal carcinoma: a planning study[J]. Br J Radiol, 2008, 81(965):397-405.
    [13] Chau RM, Teo PM, Kam MK, et al. Dosimetric comparison between 2-dimensionalradiation therapy and intensity modulated radiation therapy in treatment of advanced T-stage nasopharyngeal carcinoma: to treat less or more in the planning organ-at-risk volume of the brainstem and spinal cord[J]. Med Dosim, 2007, 32(4):263-270.
    [14]赵充,卢泰祥,韩非,等. 139例鼻咽癌调强放疗的临床研究[J].中华放射肿瘤学杂志, 2006, 15(1):1-6.
    [15] Fowler JF, Welsh JS, Howard SP. Loss of biological effect in prolonged fraction delivery[J]. Int J Radiat Oncol Biol Phys, 2004, 59(1):242-249.
    [16] Shibamoto Y, Ito M, Suqie C, et al. Recovery from sublethal damage during intermittent exposures in cultured tumor cells:Implications for dose modification in radiosurgery and IMRT[J]. Int J Radiat Oncol Biol Phys, 2004, 59(5):1484-1490.
    [17] Wang JZ, Li XA, Warren D, et al. Impact of prolonged fraction delivery times on tumor control:a note of caution for intensity-modulated radiation therapy(IMRT). Int J Radiat Oncol Biol Phys, 2003, 57(2):543-552.
    [18]王鑫,何少琴.精确放疗所面对的生物学问题[J].中华肿瘤防治杂志, 2006, 13(10):1-4.
    [19]杨伟志.三维立体定向放射治疗中的放射生物学问题和机遇[J].实用肿瘤杂志, 2004, 19(2):101-103.
    [20]王志.调强放疗中剂量率改变对生物效应的影响[J].实用癌症杂志, 2007, 22(5):529-531, 537.
    [21] Elkind MM, Sutton H. X-ray damage and recovery in mammalian cells in culture[J]. Nature, 1959, 184:1293-1295.
    [22] Paganetti H. Changes in tumor cell response due to prolonged dose delivery times in fractionated radiation therapy[J]. Int J Radiation Oncology Biol Phys, 2005, 63(3) :892-900.
    [23]钱立庭,杨伟志,刘新帆.模拟IMRT模式的生物效应研究初探[J].中华放射肿瘤学杂志, 2005, 14(9):431-433.
    [24]李晓丽,刘希光,程熙国,等.照射时间延长对小鼠LEWIS肺癌细胞杀伤作用影响[J].齐鲁医学杂志, 2008, 23(3):195-197.
    [25] Mohan R, Wu Q, Manning M, et al. Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers[J]. Int J Radial Oncnl Biol Phys, 2000, 46(3):619-630.
    [26] Wu Q, Mohan R, Murris M, et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I:dosimetric results[J]. Int J Radiat Oncol Biol Phys, 2003, 56(2):573-585.
    [27]王洁,童建.蛋白组学在放射生物学研究中的应用[J].中华放射医学与防护杂志, 2005, 24(2):205-207.
    [28]张霞.蛋白质组学进展及其在肿瘤放射治疗中的运用[J].现代医药卫生, 2006, 22(3):358-360.
    [29] Wheldon TE, O Donoghue JA. The radiobiology of targeted radiotherapy[J]. Int J Radiat Biol, 1990, 58(1):1-21.
    [30] Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice[J]. Cell Res, 2008, 18(1):134-147.
    [31] Poplawski T, Blasiak J. Non-homologous DNA end joining[J]. Postepy Biochem, 2005, 51(3):328-338.
    [32] Komuro Y, Walanable T, Hosoi Y, et al. The expression paler of Ku correlates with radiosensity and disease free survival in patients with rectal carcinoma[J]. Cancer, 2002, 95(1):199-205.
    [33] Collis SJ, Schwaninger M, Ntambi AJ, et al. Evasion of early cellular response mechanisms following low level radiation induced DNA damage[J]. J Biol Chem, 2004, 279(l8):49624-49632.
    [34]陈新.细胞周期调控蛋白P34cdc2与Cyclin B1在头颈部鳞癌中的预测价值[J].国外医学口腔医学分册, 2005, 32(6):428-430.
    [35] MacLachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer[J]. Crit Rev Eukaryot Gene Expr, 1995, 5(2):127-156.
    [36] Nio Y, Iguchi C, Yamasawa K, et al. Apoptosis and expression of bcl-2 and Bax proteins in invasive ductal carcinoma of the Pancreas[J]. Pancreas, 2001, 22(3):230-239.
    [37] Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control[J]. Cell Death Differ, 2006, 13(8):1351-1359.
    [38] Cheng JC, Chao KS, Low D, et al. Comparison of intensity modulated therapy (IMRT)treatment techniques for nasopharyngeal carcinoma[J]. Int J Cancer, 2001, 96(2):126-131.
    [39] Xia P, Fu KK, Wong GW, et al. Comparison of treatment plans involving intensity-modulated radiotherapy for nasopharygeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2000, 48(2):329-337.
    [40] Lee N, Xia P, Quivey JM et al. Intensity-modulated radiotherapy in the treatment ofnasopharyngeal carcinoma:an update of the UCSF experience[J]. Int J Radiat Oncol Biol Phys, 2002, 53(1):12-22.
    [41] Kam MK, Teo PM, Chau RM et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy;the Hong Kong experience[J]. Int J Radiat Oncol Biol Phys, 2004, 60(5):1440-1450.
    [42] Lee SW, Back GM, Yi BY, et al. Preliminary results of a phaseⅠ/Ⅱstudy of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2006, 65(1):152-160.
    [43] Wolden SL, Chen WC, Pfister DG, et al1 Intensity-modulated radiation t herapy(IMRT)for nasopharynx cancer:update of the memorial Sloan Kettering experience[J]. Int J Radiat Oncol BiolPhys, 2006, 64(1):57-62.
    [44] Baujat B, Audry H, Bourhis J, et al. Chemotherapy in locally advanced nasopharyngeal carcinoma:an individual patient datameta- analysis of eight randomized trials and 1753 patients[J]. Int JRadiat Oncol Biol Phys, 2006, 64(1):47 - 56.
    [45] Lin JC, Jan JS, Hsu CY, et al. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma:positive effect on overall and p rogression -free survival[J]. J Clin Oncol, 2003, 21(4):631-637.
    [46] Chen Y, Liu MZ, Liang SB, et, al. Preliminary results of a prospective randomized trial comparing concurrent chemoradiotherapy plus adjuvant chemotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma in endemic regions of china[J]. Int J Radiat Oncol Biol Phys, 2008, 71(5):1356-1364.
    [47] Chua DT, Sham JS, Leung JS, et al. Re-irradiation of nasopharyngeal carcinoma with intensity-modulated radiotherapy[J]. Radiother Oncol, 2005, 77(3):290-294.
    [48]韩非,卢泰祥,赵充,等.放疗后局部复发的鼻咽癌调强放疗的预后分析[J].中华放射肿瘤学杂志, 2006, 15(4):244 -248.
    [49] Pow EH, Kwong DL, Mcmillan AS, et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs conventional radiotherapy for early-stage nasopharyngeal carcinoma:Initial report on a randomized controlled clinical trial[J]. Int J Radiat Oncol Biol Phys, 2006, 66(4):981-991.
    [50] Lu TX, Mai WY, Teh BS, et al. Initial experience using intensity-modulated radiotherapy for recurrent nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2004, 58(3):683-687.
    [51] Hsiung CY, Ting HM, Huang HY, et al. Parotid-sparing intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma: preserved parotid function after IMRT on quantitative salivary scintigraphy, and comparison with historical data after conventional radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2006,66(2): 454-461.
    [52] Kam MK, Leung SF, Zee B, et al. Prospective randomized study of intensity- modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients[J]. J Clin Oncol, 2007, 25(31):4873-4879.
    [53] Liang KL, Kao TC, Lin JC, et al. Nasal irrigation reduces postirradiation rhinosinusitis in patients with nasopharyngeal carcinoma[J]. Am J Rhinol, 2008, 22(3):258-262.
    [54] Hsiung CY, Huang EY, Ting HM, et al. Intensity-modulated radiotherapy for nasopharyngeal carcinoma: the reduction of radiation-induced trismus[J]. Br J Radiol, 2008, 81(970):809-814.
    [55] Chadwick KH, Leenhouts HP. A molecular theory of cell survival[J]. Phys Med Biol, 1973, 18(1):78-87.
    [56] Zheng XK, Chen LH, Yan X, et al. Impact of prolonged fraction dose-delivery time modeling intensity-modulated radiation therapy on hepatocellular carcinoma cell killing[J]. World J Gastroenterol, 2005, 11(10):1452-1456.
    [57] Mu X, Lofroth PO, Karlsson M, et al. The effect of fraction time in intensity modulated radiotherapy:theoretical and experimental evaluation of an optimisation problem[J]. Radiother Oncol, 2003, 68(2):181-187.
    [58] Sterzing F, Munter MW, Schafer M, et al. Radiobiological investigation of dose-rate effects in intense-modulated radiation therapy[J]. Strahlenther Onkol, 2005, 181(1):42-48.
    [59] Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production /repair/misrepair[J]. Int J Radiat Biol, 1997, 72(4): 351-374.
    [60] Fertil B, Deschavanne PJ. Relationships between colony forming efficiency and parameters of intrinsic radiosensitivity[J]. Int J Radiat Biol, 1999,75(10):1275-1282.
    [61] Sandra P, Denise C, Daniela C, et al. Isolation and clonal analysis of human epidermal keratinocyte stem cells in long-term culture[J]. Stem Cells, 2003, 21(4):481-494.
    [62]肖健,曹秀峰,龚涌灵,等. 125I放射性粒子对体外培养的食管癌Eca-109细胞株克隆形成的影响[J].现代肿瘤医学, 2008, 16(6):883-885.
    [63]李莉,许昌韶,周菊英,等.人脑胶质瘤细胞株SHG244放射敏感性的测定方法探讨[J].苏州大学学报, 2005, 25(3):419-421.
    [64] Evans JW, Liu XF, Kirchgessner CU, et al. Inductionand repair of chromosome aberrations in scid cells measured by premature chromosome condensation[J]. Radiat Res, 1996, 145(1):39-46.
    [65]夏云飞,李满枝,黄冰等. 14株(亚株)人CNE-2的放射生物特性[J].癌症, 2001, 20(7):683-687.
    [66] Mosmann T. Colorimetric assay cellular growth and survival:App location to proliferation and cytotoxicity assays[J]. J Immunol Methods, 1983, 65(1):55-63.
    [67]王芹,李进,岳井银,等. MTT比色法检测人肿瘤细胞辐射敏感性的体外研究[J].山东医药, 2008, 48(8):33-34.
    [68] WittersLM, Santala SM, Engle L, et al. Decreased response to paclitaxel versus docetaxel in her-2 /neu transfected human breastcancer cells[J]. Am J Clin Oncol, 2003, 26(1):50-54.
    [69] CruzMT, Duarte CB, Goncalo M, et al. The sensitizer 2, 4-dinitrofluorobenzene activates caspase23 and induces cell death in a skindendritic cell line[J]. Int J Toxicol, 2003, 22(1):43-48.
    [70]杨建和,姜乃可,钱科卿,等.改良MTT比色法药敏试验指导急性非淋巴细胞白血病化疗的价值[J].山东医药, 2004, 44(7):37-38.
    [71]石卫民,范义湘,陈龙华,等.两株人肝癌细胞QSG-7701和HepG2放射敏感性的体外研究[J].癌症, 2002, 21(9):1020-1021.
    [72]阮志华,杨和平,曾勇,等. MTT法在测定细胞放射敏感性中的运用[J].第三军医大学学报, 2001, 23(3):360-363.
    [73]李杰,刘玉琴. MTT法在肿瘤研究中的改良及应用进展[J].中国肿瘤临床, 1998, 25(4):312 - 313.
    [74]陈一招,徐如祥,张世忠,等.脑胶质瘤p16基因转染对细胞生长及放射敏感性的影响[J].第一军医大学学报, 2000, 20(3):202 - 203.
    [75]金曙,吴清明,于皆平. NS398对放射抗拒食管鳞癌细胞的放射增敏作用[J].医药导报, 2006, 25(7):613-615.
    [76]王顺,陆雪官,胡超苏,等.辐射所致残存染色体易位与放射敏感性关系研究[J].肿瘤防治杂志, 2002, 9(1):18-21.
    [77] Sugie C, Shibamoto Y, Ito M, et al. Radiobiologic effect of intermittent radiation exposure in murine tumors[J]. Int J Radiat Oncol Biol Phys, 2006, 64(2):619-624.
    [78] Liu Y, Chen M, Zhao C, et al. Radiation-induced Temporomandibular Joint Damage in Nasopharyngeal Carcinoma Patients after Intensity-modulated Radiotherapy[J]. Chinese jounal of Cancer, 2007, 26(1):64-66.
    [79] Enns L, Murray D, Mirzayans R. Effects of the protein kinase inhibitors wortmannin and KN62 on cellular radiosensitivity and radiation-activated S phase and G1/S checkpoints in normal human fibroblasts[J]. Br J Cancer, 1999, 81(6):959-965.
    [80] Errami A, Finnie NJ, Morolli B, et a1. Molecular and biochemical characterization of new X-ray-sensitive hamster cell mutants defective in Ku80[J]. Nuc Acids Res, 1998, 26(19):4332-4338.
    [81] Fan Z, Chakravarty P, Alifieri A, et al. Adenovirus-mediated antisense ATM gene transfer sensitizes prostate cancer ce11s to radiation[J]. Cancer Gene Ther, 2000, 7(10):1307-1314.
    [82] Gu Y, Jin S, Gao Y, et a1. Ku70 deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination[J]. Proc Natl Acad Sci USA, 1997, 94(15):8076-8081.
    [83]沈瑜,糜福顺主编.肿瘤放射生物学[M].北京:中国医药科技出版社, 2002:29- 33?70.
    [84] eggo PA. Studies on mammalian mutants defective in rejoiningDouble-strand breaks in DNA[J]. Mutat Res, 1990, 239(1):1-16.
    [85]贺玉香,夏云飞,刘秀芳,等.不同敏感性鼻咽癌细胞株中Ku蛋白表达[J].中华放射肿瘤学杂志, 2005, 14(2):116-119.
    [86]朱小东,曲颂,黎丹戎,等. Ku蛋白表达与鼻咽癌细胞放射敏感性关系初探[J].中华放射医学与防护杂志, 2007, 27(2):128-131.
    [87] Smider V, Rathmell WK, Lieber MR, et al. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA[J]. Science, 1994,266(5183): 288-291.
    [88] Kurimasa A, Ouyang H, Dong LJ, et al. Catalytic subunit of DNA-dependent protein Kinase impact on lymphocyte development and Tumorigenesis[J]. Proc Natl Acad Sci USA, 1999, 96(4):1403-1408.
    [89] Chan JY. Chen LK, Chang JF, et al. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80: analysis by cDNA microarray[J]. J Radiat Res, 2001, 42(4):371-385.
    [90] Chang IY, Youn CK, Kim HB, et al. Oncogenic H-Ras up-regulates expression of Ku80 to protect cells from gamma-ray irradiation in NIH3T3 cells[J]. Cancer Res,2005, 65(15):6811-6819.
    [91] Yang QS, Gu JL, Du LQ, et al. ShRNA-mediated Ku80 gene silencing inhibits cell proliferation and sensitizes to gamma-radiation and mitomycin C-induced apoptosis in esophageal squamous cell carcinoma lines[J]. J Radiat Res(Tokyo), 2008, 49(4):399-407.
    [92] Negroni A, Stonati L, Grollino MG, et al. Radioresistance in a tumour cell line correlates with radiation inducible Ku 70/80 end-binding activity[J]. Int J Radiat Biol, 2008, 84(4):265-276.
    [93] Chang HW, Roh JL, Jeong EJ, et al. Wnt signaling controls radiosensitivity via cyclooxygenase-2-mediated Ku expression in head and neck cancer[J]. Int J Cancer, 2008, 122(1):100-107.
    [94]张捷,安继红,杨贵贞,等.反义Ku70在人肺癌细胞的表达及对放射线的敏感性研究[J].中国免疫学杂志, 2001, 17(2):82-84.
    [95]张捷,杨贵贞,淹口裕一,等.反义Ku80在人肺癌细胞的表达及对放射线的敏感性研究[J].中国免疫学杂志, 2002, 18(10):694-696.
    [96] Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase[J]. Science, 1995, 268(5218):1749-1753.
    [97] Bakkenist CJ, Kastan MB. Intiating cellular stress responses[J]. Cell, 2004, 118(1):9-17.
    [98] Bakkenist CJ, Koreth J, Williams CS, et al. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation[J]. Nature, 2003, 421(6922):499-506.
    [99] Lim DS, Kim ST, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway[J]. Nature, 2000, 404(6778):613-617.
    [100]Zhao S, Weng YC, Yuan SS, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products[J]. Nature, 2000, 405(6785):473-477.
    [101]Cortez D, Wang Y, Qin J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks[J]. Science, 1999, 286(5442):1162-1166.
    [102]Canman CE, Lim DS, Cimprich KA, et al, Activation of the ATM kinase by ionizing radiation and phosphorylation of p53[J]. Science, 1998, 281(5383):1677-1679.
    [103]Blasina A, Price BD, Turenne GA, et al. Caffeine inhibits the checkpoint kinase ATM[J]. Curr Biol, 1999, 9(19):1135-1138.
    [104]Matsuoka S, Rotman G, Oqawa A, et al. Ataxia telangiectasia-mutatedphosphorylates Chk2 in vivo and in vitro[J]. Proc Natl Acad Sci U S A, 2000, 97(19):10389-10394.
    [105]Blasina A, de WeyerⅣ, Laus MC, et al. A human homologue of the checkpoint kinase Cds 1 directly inhibits Cdc25 phosphatase[J]. Curr Biol, 1999, 9(1):1-10
    [106]Beamish H, Kedar P, Kaneko H, et al. Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein ATM[J]. J Biol Chem, 2002, 277(34):30515-30523.
    [107]Taniguchi T, Garcia-Higuera I, Xu B, et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways[J]. Cell, 2002, 109(4):459-472.
    [108]Kishi S, Lu KP. A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G(2)/M checkpoint defect of ataxia-telangiectasia cells[J]. J Biol Chem, 2002, 277(9):7420-7429.
    [109]Meyn MS. Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene[J]. Clin Genet, 1999, 55(5):289-304.
    [110]Luo CM, Tang W, Mekeel KL, et al. High frequency and error-prone DNA recombination in ataxia telangiectasia cell lines[J]. J Biol Chem, 1996, 271(8):4497-4503.
    [111]Bradbury JM, Jackson SP. ATM and ATR[J]. Curr Biol, 2003, 13(12):468.
    [112]Shiloh Y. ATM and related protein Kinases:safeguarding genome Integrity[J]. Nat Rev Cancer, 2003, 3(3):155-168.
    [113]Guha C, Guha U, Tribius S, et al. Antisense ATM gene therapy:a strategy to increase the radio sensitivity of human tumors[J]. Gene Ther, 2000, 7(7):852-858.
    [114]王宏梅,伍新尧,夏云飞,等. ATM蛋白在不同放射治疗敏感性鼻咽癌细胞株中的表达[J].癌症, 2003, 22(6):579-581.
    [115]Cowell IG, Durkacz BW, Tilby MJ. Sensitization of breast carcinoma cells to ionizing radiation by small molecule inhibitors of DNA-dependent protein kinase and ataxia telangiectsia mutated[J]. Biochem Pharmacol, 2005, 71(1-2):13-20.
    [116]罗加林,曹建平,朱巍,等. ATM与辐射激活的磷酸化p53?p21蛋白的相互作用[J].癌症, 2005, 24(9):1059-1063.
    [117]任军,何伟, Lavin Martin. ATM基因与肿瘤的发生[J].肿瘤防治杂志, 2004, 11(5):535-538.
    [118]马淑梅,刘晓东,鞠桂芝, CyclinB1?p34cdc2在射线诱导的K562细胞G2阻滞中的作用[J].中华放射医学与防护杂志, 2002, 22(2):105-106.
    [119]Charron T, Nili N, Strauss BH. The cell cycle:A critical therapeutic target to prevent vascular proliferative disease[J]. Can J Cardiol. 2006, 22(l):41-55.
    [120]Campbell MA. Dormancy and the cell cycle[J]. Genet Eng(N Y), 2006, 27:21-33.
    [121]钱浩,吴开良.实用胸部肿瘤放射治疗学[M].上海:复旦大学出版社, 2007, 3-18.
    [122]张萱,刘宁,刘扬,等.电离辐射对Jurkat T细胞周期进程的影响[J].吉林大学学报, 2007, 33(3):414-417.
    [123]Wang, Guo M, Ouyang H, et al. The catalytic subunit of DNA-dependent ptotein kinase selectively regulates p53-depedent apoptosis but cell-cycle arrest[J]. Pro Nat Acad Sci USA, 2000, 97(4):1584-1588.
    [124]Weinert T, Lydall D. Cell cycle checkpoints, genetic instability and cancer[J]. Semin Cancer Biol, 1993, 4(2):129-140.
    [125]Hartwell LH, Kastan MB. Cell cycle control and cancer[J]. Science, 1994, 266(5792):1821-1828.
    [126]North S, Hainant P. p53 and cell-cycle control:a finger in every pie[J]. Pathologie Biologie(Paris), 2000, 48(3):255-270.
    [127]Flack J, Mailand N, Syljuasen RG, et al. The ATM-Chk2-Cdc25a checkpoint pathway guards against radioresistant DNA synthsis[J]. Nature, 2001, 410(6830):842-847.
    [128]Cerline J, Deplanque G, Duclos B, et al. Relationships between p53 induction, cell cycle arrest survival of normal human fibroblasts following DNA damage[J]. Bulletin cancer, 1997, 84(11):1007-1016.
    [129]Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G2/M checkpoints are induced by ionizing irradiation[J]. Mol Cell Biol, 2002, 22(4):1049-1059.
    [130]Stark JR, Taylor WR. Control of the G2/M transition[J]. Mol Biotechnol, 2006, 32(3):227-248.
    [131]冯爽,曹建平.毛细血管扩张性共济失调症细胞周期调控与细胞凋亡的机制研究概述[J].中国职业医学, 2005, 5(32):56-57
    [132]Teyssier F, Bay JO, Dinet C, et al. Cell cycle regulation agents exposure to ionizing radiation[J]. Bull Cancer, 1999, 86(4):345-357.
    [133]夏景光,李文建,魏巍,等. 3Gyγ射线对不同肿瘤细胞细胞周期进程的影响[J].核技术, 2005, 28(8):621-624.
    [134]苏旭,金光辉,薛丽香,等.电离辐射对不同肿瘤细胞细胞周期的影响[J].中华放射医学与防护杂志, 2000, 20(3):168-170.
    [135]杨庚武,刘明,翟福山. IMRT放疗生物效应的动物实验[D].河北医科大学硕士究生毕业论文, 2007, 1-55. http://dlib. cnki. net/kns50/index. aspx.
    [136]胡国清,孙银萍.放射线对体外培养鼻咽癌细胞细胞周期阻滞?凋亡和抑癌基因p57kip2表达的影响[J].华中科技大学学报, 2005, 34(6):741-743.
    [137]刘光伟,龚守良.电离辐射诱导的细胞G2期阻滞[M].国外医学:放射医学核医学分册, 2002, 26(4):180-182.
    [138]冯惠茹,田嘉禾,丁为民,等.低剂量率32Pβ射线与高剂量率60Coγ射线对肿瘤细胞杀伤效应的对比研究[J].辐射研究与辐射工艺学报, 2004, 22(3):181-184
    [139]Taylor WR, Stark GR. Regulation of the G2/M transition by p53[J]. Oncogene, 2001, 20(15):1803-1815.
    [140]Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control:a mini review[J]. Int J Clin Pract, 2004, 58(12):1134-1141.
    [141]Morgan DO. Principles of CDK regulation[J]. Nature, 1995, 374 (6518):131-142.
    [142]Hunter T, Pines J. Cyclins and cancerⅡ:cyclin D and CDK inhibitors come of age[J]. Cell, 1994, 79(4):573-582.
    [143]Chu - Xia Deng. BRCA1:cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution[J]. Nucleic Acids Research, 2006, 34(5):1416-1426
    [144]Coleman TR, Dunphy WG. Cdc2 regulatory factors[J]. Curr Opin Cell Biol, 1994, 6(6):877-882.
    [145]Nigg EA. The substrates of the cdc2 kinase[J]. Semin Cell Biol, 1991, 2(4):261-270.
    [146]Brandeis M, Rosewell I, Carrington M, et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero[J]. Proc Natl Acad Sci U S A, 1998, 95(8):4344-4349.
    [147]秦丽莉,樊飞跃,詹启敏,等. CyclinB1在细胞周期调控及肿瘤发生发展中的作用[J].医学研究杂志, 2008, 37(1):8-10.
    [148]Yuan J, KrmerA, Matthess Y, et al. Strebhardt K. Stable gene silencing of cyclin B1 in tumor cells increases suscep tibility to taxol and leads to growth arrest in vivo[J]. Oncogene, 2006, 25(12):1753-1762.
    [149]Maity A, Hwang A, Janss A, et al. Delayed cyclin B1 expression during the G2 arrest following DNA damage[J]. Oncogene, 1996, 13(8):1647-1657.
    [150]Jin P, Hardy S, Morgan DO. Nuclear localization of cyclin B1 controls mitotic entry after DNA damage[J]. J Cell Biol, 1998, 141(4):875-885.
    [151]Porter LA, Singh G, Lee JM. Abundance of cyclinB1 regulates gamma- radiation-induced apoptosis[J]. Blood, 2000, 95(8):2645-2650.
    [152]Ozeki M, Tamae D, Hou DX, et al. Response of cyclin B1 to ionizing radiation: regulation by NF-kappaB and mitochondrial antioxidant enzyme MnSOD[J]. Anticancer Res, 2004, 24(5A):2657-2663.
    [153]Park M, Chae HD, Yun J, et al. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest[J]. Cancer Res, 2000, 60(3):542-545.
    [154]Khaled A, Hassan K, Kian Ang, et al. Cyclin B1 overexpression and resistance to radiotherapy in head and neck squamous cell carcinoma[J]. Cancer Res, 2002, 62(22):6414-6417.
    [155]Hassan KA, Elonaggar AK, Soria JC, et al. Clinical significance of Cyclin B1 protein expression in squamous cell carcinoma of the tongue[J]. Clin Cancer Res, 2001, 7(8):2458-2462.
    [156]Miyata H, Doki Y, Shiozaki H, et al. CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers[J]. Clin Cancer Res, 2000, 6(12):4859-4865.
    [157]Tashiro E, Tsuchiya A, Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression[J]. Cancer Sci, 2007, 98(5): 629-635.
    [158]Baldin V, Lukas J, Marcote MJ, et al. Cyclin D1 is a nuclear protein required for cell cycle progression in G1[J]. Genes Dev, 1993, 7(5):812-821.
    [159]Sherr CJ. The Pezcoller lecture:cancer cell cycles revisited[J]. Cancer Res, 2000, 60(14):3689-3695.
    [160]Mallya SM, Arnold A. Cyclin D1 in parathyroid disease[J]. Front Biosci, 2000, 5:D367-371.
    [161]Hosokawa Y, Arnold A. Mechanism of cyclin D1(CCND1, PRAD1)overexpression in human cancer cells:analysis of allele-specific expression[J]. Genes Chromosomes Cancer, 1998, 22(1):66-71.
    [162]Hinds PW, Dowdy SF, Eaton EN, et al. Function of a human cyclin gene as an oncogene[J]. Proc Natl Acad Sci U S A, 1994, 91(2):709-713.
    [163]Robles AI, Rodriquez-Pueblaml, Glick AB, et al. Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo[J]. Genes Dev, 1998, 12(16):2469-2474.
    [164]Lovec H, Grzeschiczek A, kowalski MB, et al. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice[J]. EMBO J, 1994, 13(15):3487-3495.
    [165]Lee RJ, Albanese C, Stenger RJ, et al. pp60(v-src)induction of cyclin D1 requirescollaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60(v-src)signaling in breast cancer cells[J]. J Biol Chem, 1999, 274(11):7341-7350.
    [166]Albanese C, D’Amico M, Reutens AT, et al. Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis[J]. J Biol Chem, 1999, 274(48):34186-34195.
    [167]Wang TC, Cardiff RD, Zukerberg L, et al. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice[J]. Nature, 1994, 369(6482):669-671.
    [168]Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E[J]. Mol Cell Biol, 1997, 17(1):453-459.
    [169]Milas L, Akimoto T, Hunter NR, et al. Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas[J]. Int J Radiat Oncol Biol Phys, 2002, 52(2):514-521.
    [170]Tong W, Pollard. Genetic evidence for the interactions of cyclin D1 and p27(Kip1)in mice[J]. Mol Cell Biol, 2001, 21(4):1319-1328.
    [171]Geng Y, Yu Q, Sicinska E, et al. Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice[J]. Proc Natl Acad Sci U S A, 2001, 98(1):194-199.
    [172]Xiao-Xiang Guan, Long-Bang Chen, Gui-Xia Ding, et al. Transfection of p27kip1 enhances radiosensitivity induced by 60Co gamma-irradiation in hepatocellular carcinoma HepG2 cell line[J]. World J Gastroenterol, 2004, 10(21):3103-3106.
    [173]Saini KS, Walker NI. Biochemical and molecular mechanisms regulating apoptosis[J]. Mol Cell Biochem, 1998, 178(1-2):9-25.
    [174]Amundson SA, Bittner M, Fornace AJ Jr. Functional genomics as a window on radiation stress signaling[J]. Oncogene, 2003, 22(37):5828-5833.
    [175]Sakakura C, Sweeney EA, Shirahama T, et al. Over expression of Bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis[J]. Int J Cancer, 1996, 67(1):101-105.
    [176]Formigli L, Conti A, Lippi D. "Falling leaves":a survey of the history of apoptosis[J]. Minerva Med, 2004, 95(2):159-164.
    [177]任晓庆.电离辐射与细胞凋亡[M].国外医学生物学分册, 2000, 23(6):336-344.
    [178]冯文峰,黄理金,漆松涛,等.放射诱导大鼠脑神经元和胶质细胞凋亡及敏感性的比较研究[J].中华放射医学与防护杂志, 2004, 24(2):111.
    [179]钟军,熊戴群,罗辉等.肿瘤细胞放射敏感性与放射诱导凋亡关系的研究[J].实用癌症杂志, 2007, 22(6):560-568.
    [180]张燕,岳婧.放射线诱发Lewis肺癌细胞凋亡的分子机制[J].实用癌症杂志, 2001, 16(4):372.
    [181]Mitsubashi N, Takahashi H, SakuraiM, et al. A radioresistant variant cell line, NMT-1R, isolated from a radiosensitive rar yolk sac tumor celI line. NTM-1:differences of early, radiation-induced morphological changes, especially apoptosis[J]. Int J Radiation Oncology Biol Phys, 1996, 69(2):329.
    [182]仇晓军,陆德炎,季斌,等.放射诱导胃癌细胞的凋亡及其相关基因的研究[J].中华放射肿瘤学杂志, 2005, 14(5):447-450.
    [183]Li H, Zhu H, Xu CJ. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, 1998, 94(4):491-501. (文献已修改)
    [184]Sheard MA. Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis[J]. Int J Cancer, 2001, 96(4):213-220.
    [185]McDonnell T, Deane N, Platt FM, et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation[J]. Cell, 1989, 57(1):79-88.
    [186]Vaux DL, Cory S, Adams JM. Bcl2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells[J]. Nature, 1988, 335(6189):440-442.
    [187]Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95(APO-1/Fas)signaling pathways[J]. EMBO J, 1998, 17(6):1675-1687.
    [188]Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity[J]. Immunol Rev, 2003, 193:10-21.
    [189]Wang X. The expanding role of mitochondria in apoptosis[J]. Genes Dev, 2001, 5(22):2922-2933.
    [190]Schuler M, Green DR. Mechanisms of p53-dependent apoptosis[J]. Biochem Soc Trans, 2001, 29(Pt 6):684-688.
    [191]Reed JC. Bcl-2 family proteins[J]. Oncogene, 1998, 17(25):3225-3236.
    [192]Danial NN, Korsmeyer SJ. Cell death:critical control points[J]. Cell, 2004, 116(2):205-219.
    [193]Tsujimoto Y, Cossman J, Jaffe E, et al. Involvement of the Bcl2 gene in humanfollicular lymphoma[J]. Science, 1985, 228(4706):1440-1443.
    [194]Guo WF, Lin RX, Huang J, et al. Identification of differentially expressed genes contributing to radioresistance in lung cancer cells using microarray analysis[J]. Rediat Res, 2005, 164(1):27-35.
    [195]Khaitan D, Chandna S, Arya MB, et al. Establishment and characterization of multicellular spheroids from a human glioma cell line;Implications for tumor therapy[J]. J Transl Med, 2006, 4:12.
    [196]Miyato Y, Ando K. Apop tosis of human melanoma cells by a combination of lonidamine and radiation[J]. J Radiat Res(Tokyo), 2004, 45(2):189.
    [197]Hara T, Omura-M inam, Isawam, Chao C, et al. Bcl2 inhibitors potentiate the cytotoxic effects of radiation in Bcl2 overexpressing radioresistant tumor cells[J]. Int J Radiat Oncol Biol Phys, 2005, 61(2):517.
    [198]Chen M. Supprssion of Bcl2 messenger RNA production may madiate appotosis after inoizing radiation, tumor necrosis factor, and ceramide[J]. Cancer Res, 1995, 55:991.
    [199]Anai S, Goodison S, Shiverick K, et al. Knock-down of Bcl2 by antisense oligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis in human PC-3 prostate tumor xenografts[J]. Mol Cancer Ther, 2007, 6(1):101-111.
    [200]Domen J, Gandy KL, weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation[J]. Blood, 1998, 91(7):2272-2282.
    [201]姜宏宇,王冠华,丁艳华.低剂量X射线照射对荷人小细胞肺癌(NCI2H446)裸小鼠移植瘤细胞凋亡相关基因mRNA表达的影响[J].中国老年学杂志, 2005, 11(25):1373-1375.
    [202]Hou Q, Cymbalyuk E, Hsu SC, et al. Apoptosis modulatory activities of transiently expressed Bcl2:roles in cytochrome C release and Bax regulation[J]. Apoptosis, 2003, 8(6):617.
    [203]Del Poeta G, Venditti A, Del Principe MI, et al. Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). [J]. Blood, 2003, 101(6):2125-2131.
    [204]Murphy KM, Ranganathan V, Farnsworthml, et al. Bcl2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells[J]. Cell Death Differ, 2000, 7(1):102-111
    [205]Tanakat, Bait, Yukawak, et al. Reduced radiosensitivity and increased CD40expression in cyclophosphamide - resistant subclones stablished from human cervical squamous cell carcinoma cells[J]. Oncol Rep, 2005, 14(4):941
    [206]Mackey TJ, Borkowski A, Amin P. et al. bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer[J]. Urology, 1998, 52(6):1085-1090.
    [207]Harima Y, Nagam K, Harima K, et al. Bax and Bcl2 protein expression following radiation therapy versus radiation plus thermoradiotherapy in stage III B cervical carcinoma[J]. Cancer, 2000, 88(1):132-138
    [208]苏珊,郭琳琅,张健.鼻咽癌细胞放射敏感性与Bcl2及Bax表达的关系[J].实用医学杂志, 2007, 23(8) :1113-1115.
    [209]Kim R, Inoue H, Toge T. Bax is an important determinant for radiation sensitivity in esophageal carcinoma cells[J]. Int J Mol Med, 2004, 14(4):697-706.
    [210]Streffer JR, Rimner A, Rieger J, et al. BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells[J]. J Neurooncol, 2002, 56(1):43-49.
    [211]Tello K, Christiansen H, Guleyen H, et al. Irradiation leads to apoptosis of Kupffer cells by a Hsp27-dependant pathway followed by release of TNF-alpha[J]. Radiat Environ Biophys, 2008, 47(3):389-397.
    [1] Verhey LJ. Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems[J]. Semin Radiat Oncol, 1999,9(1): 78-98.
    [2] Grant W, Woo SY. Clinical and financial issues for intensity-modulated radiation therapy delivery[J]. Semin Radiat Oncol, 1999, 9(1):99-107.
    [3] Purdy JY. 3D treatment planning and intensity-modulated radiation therapy[J]. Oncology(Williston Park), 1999, 13(10 Suppl 5):155-168.
    [4] Mihaylov IB, Siebers JV. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT planscomputed with a superposition/convolution dose algorithm[J]. Med Phys, 2008, 35(8):3722-3727.
    [5] Plowman PN. Recent london improvements in curative radiation therapy for relevant early prostate cancer[J]. Ann N Y Acad Sci, 2008, 1138:257-266.
    [6] Fogliata A, Nicolini G, Alber M. IMRT for breast a planning study[J]. Radiother Oncol, 2005, 76(3):300-310.
    [7] Gaspar LE, Ding M. A review of intensity-modulated radiation therapy[J]. Curr Oncol Rep, 2008, 10(4):294-299.
    [8] Xing L, Thorndyke B, Schreibmann E, et al. Overview of image-guided radiation therapy[J]. Med Dosim, 2006, 31(2):91-112.
    [9] Seong J. Recent developments in radiotherapy of hepatocellular carcinoma[J]. Korean J Hepatol, 2004, 10(4):241-247.
    [10]Huntzenger C, Munro P, Johnson S, et al. Dynamic targeting image-guided radiotherapy[J]. Med Dosim, 2006, 31(2):113-125.
    [11]Greco C, Clifton Ling C. Broadening the scope of image-guided radiotherapy (IGRT)[J]. Acta Oncol, 2008, 47(7):1193-1200.
    [12]Li G, Citrin D, Camphausen K, et al. Advances in 4D medical imaging and 4D radiation therapy[J]. Technol Cancer Res Treat, 2008, 7(1):67-81.
    [13]Verellen D, Ridder MD, Linthout N, et al. Innovations in image-guided radiotherapy[J]. Nat Rev Cancer, 2007, 7(12):949-960.
    [14]Dawson LA, Jaffray DA. Advances in image-guided radiation therapy[J]. J Clin Oncol, 2007, 25(8):938-946.
    [15]Shirato H, Shimizu S, Kitamura K, et al. Organ motion in image-guided radiotherapy: lessons from real-time tumor-tracking radiotherapy[J]. J Clin Oncol, 2007,12(1):8-16.
    [16]Yu CX, Jafray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation[J]. phys Med Biol, 1998, 43(1):91-104.
    [17]van Elmpt W, McDermott L, Nijsten S, et al. A literature review of electronic portal imaging for radiotherapy dosimetry[J]. Radiother Oncol, 2008, 88(3):289-309.
    [18]Kabuto M, Kubota T, Kobayashi H, et al. Intraoperative CT imaging system using a mobile CT scanner gantry mounted on floor-embedded rails for neurosurgery[J]. No to Shinkei, 1998, 50(11):1003-1008.
    [19]Walter C, Boda-Heggemann J, Wertz H, et al. Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy(IGRT):MV portal images vs. kV portal images vs cone-beam CT[J]. Radiother Oncol, 2007, 85(3):418-423.
    [20]Groh BA, Siewerdsen JH, Drake DG, et al. A performance comparison of flat-panel imager-based MV and kV cone-beam CT[J]. Med Phys, 2002, 29(6):967-975.
    [21]Sterzing F, Herfarth K, Debus J. IGRT with helical tomotherapy--effort and benefit in clinical routine[J]. Strahlenther Onkol, 2007, 183 Spec No 2:35-37.
    [22]Muacevic A. Cyberknife radiosurgery: a new treatment method for image-guided and robot-assisted precision radiation[J]. MMW Fortschr Med, 2007, 149(7):42-43.
    [23]Simpson RG, Chen CT, Grubbs EA, et al. A 4-MV CT scanner for radiation therapy:the prototype system[J]. Med Phys, 1982, 9(4):574-579.
    [24]王艳阳,傅小龙. CT在影像引导下放疗中应用的历史与现状[J].中国癌症杂志, 2006, 16(6):448-453.
    [25]Keall PJ, Chen GTY, Joshi S, et a1. Time-the fourth dimension in radiotherapy(ASTRO panel discussion)[J]. Int J Radial Oneol Biol Phys, 2003, 57:S8-S9.
    [26]Lawrence JA, Forrest LJ. Intensity-modulated radiation therapy and helical tomotherapy:its origin, benefits, and potential applications in veterinary medicine[J]. Vet Clin North Am Small Anim Pract, 2007, 37(6):1151-1165.
    [27]Yan D, Vicini F, Wong J, et a1. Adaptive radiation therapy[J]. Phys Med Biol, 1997, 42(1):123-132.
    [28]Birkner M, Yan D, Alber M, el a1. Adapting inverse pIanning to patient and organ geometrical variation algorithm and In implementation[J]. Med Phys, 2003, 30(10):2822-2831.
    [29]Martinez AA, Yan D, Lockman D, e1. al, Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal orintensity-modulated beams for prostate cancer. [J]. Int J Radial oncol Biol Phys, 2001, 50(5):1226-1234.
    [30]Juhler-Nottrup T, Korreman SS, Pederson AN, et al. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance[J]. Acta Oncol, 2008, 47(7):1406-1413.
    [31]Leng S, Tang J, Zambelli J, et al. High temporal resolution and streak-free four-dimensional cone-beam computed tomography[J]. Phys Med Biol, 2008, 53(20):5653-5673.
    [32]于金明,袁双虎.图像引导放射治疗研究及其发展[J].中华肿瘤杂志, 2006, 28(2):81-83.
    [33]Ling CC, Humm J, Larson S, et al. Towards multidimensional Radiotherapy (MD-CRT):biological imaging and biological conformality[J]. Int J Radiat Oncol Biol Phys, 2000, 47(3):551-560.
    [34]Soto DE, Kesslerml, Piert M, et al. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers[J]. Radiother Oncol, 2008 Jun 12.
    [35]Wong JR, Grimm L, Uematsu M, et a1. Image-guided radiotherapy for prostate cancer by CTlinear accelerator combination:prostate movements and dosimetric considerations[J]. Int J Radiat Oncol Biol Phys, 2005, 61(2):561-569.
    [36]Langen KM, Meeks SL, Pouliot J. Quality assurance of onboard megavoltage computed tomography imaging and target localization systems for on-and off-line image-guided radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2008, 71(1 Suppl):S62-65.
    [37]Ozyigit G, Chao KS. Clinical experience of head-and-neck cancer IMRT with serial tomotherapy[J]. Med Dosim, 2002, 27(2):91-98.
    [38]Harari PM. Promising new advances in head and neck radiotherapy[J]. Ann Oncol, 2005, 16(1):6-19.
    [39]Forrest LJ, Mackie TR, Ruchala K, et al. The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes[J]. Int J Radiat Oncol Biol Phys, 2004, 60(5):1639-1644.
    [40]庞学利,肖红,李建军,等. KV-X线CBCT用于鼻咽癌调强放疗精度保证的探讨[J].重庆医学, 2007, 36(20):2055-2056.
    [41]Welsh JS, Bradley K, Ruchala KJ, et a1. Megavoltage computed tomography imaging:a potential tool to guide an d improve the delivery of thoracic radiationtherapy[J]. Clin Lung Cancer, 2004, 5(5):303-306.
    [42]刘咏梅,丁振宇,王瑾,等.非小细胞肺癌图像引导的放疗49例临床分析[J]. 2007第六届全国放射肿瘤学学术年会汇编, 168-169.
    [43]Ponsky LE. Crownnover RL. Rosen MJ. et a1. 1nitial evaluation of Cyberknife technology for extracorporeal renal tissue ablation[J]. Urology, 2003, 61(3):498-501.
    [44]Koong AC, Le QT, Ho A, et a1. Phase I study of sterotactic radiosurgery in patients with locally advanced pancreatic cancer[J]. Int J Radiat Oncol Biol Phys, 2004, 58(4):1017-1021.
    [45]Gerszten PC, Ozhasoglu C, Burton SA, et a1. CyberKnife frameless sterotactic radiosurgery for spinal lesions:clinical experience in 125 caaes[J]. Neurosurgery, 2004, 55(1):89-98.
    [46]Baumann M, Holscher T, Zips D. The future of IGRT-cost benefit analysis[J]. Acta Oncol, 2008, 47(7):1188-1192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700